REGULARITY AND REPRESENTATION
THEOREMS FOR A CLASS OF TRANSLATION
EQUATION’S SOLUTIONS (*)

di GiaN Luict ForTI (a Milano) (**)

SoMMARIO, - In questa Nota vengono dimostrati alcuni teoremi che garanti-
scono la continuits di un sistema di omeomorfismi e del suo sistema
inverso. Tali risultati sono poi utilizzati per dimostrare la regolarita di
certe soluzioni dell’equazione funzionale di traslazione f(f (x,u,v),v,w) =
= f(x,u, w) e per fornire una rappresentazione di tali soluzioni.

SUMMARY. - In this Note some theorems are given which ensure the continuity
of a system of homeomorphisms and of its inverse system. Those results
are used to prove the regularity of certain solutions of the translation
functional equation f(f (x,u,v),v,w) = f (x,u, w) and to give a represen-
tation of such solutions.

1. Consider the translation equation f (f (x, u, v), v, w)=f (x, u, w),
where f: XXY XY —>X. This functional equation has been recently
treated by C. T. Ne ([3], [4]), who, assuming the local compactness
and the local connectedness of the space X, gives a representation of a
class of continuous solutions of such an equation, using the following
theorem: :

Let X be a locally compact Hausdorff and locally connected topo-
logical space, and let Y be a topological space. Let f: XXY — X be a
continuous mapping such that for each yeY, the mapping f (-, y): X—>X
is a homeomorphism on X. Then the inverse system f™': X XY =X

(*) Pervenuto in Redazione il 29 gennaio 1977.
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defined by f'(x,y)=x" if and only if f(x',y)=x for all xeX and
y€Y, is also continuous on XXY.

In section 2 of this Note some theorems are given which ensure,
in hypotheses different from the above mentioned theorem, the conti-
nuity of a system of homeomborphisms and of its inverse system. In
section 3 those results are used to give some theorems of regularity
and representation for a class of solutions of the translation equation.

|

|

i

2. Let X, Y be sets and It f: XXY —> X be a mapping such that
for each yeY, the mapping f (-, ¥): X — X is bijective; ! will denote
the mapping of XX Y into X ﬂeﬁned by: f~'(x,y)=x" if and only if
& =% |

Afterwords the following notations will be used:

if X is a uniform space,{ﬁhe set of the entourages of the uni-

formity will be noted by <. |

if VeU, then for each x€X it is V(x)={zeX: (z,x)eV} and 12/
is the set of pairs (v, z)eX X X, such that (x, w)eV and (w, z)eV for
some weKX;

if Zis a topological - space, C (Z; X) denotes the set of all conti-
nuous mappings of Z into X. | , .

Let & be a set of subsets of Z; for each AeS and each entourage
V of X, let W (A, V) be the set of all pairs of continuous mappings
(g h) of Z into X such that (g(2), h (2))eV for each z€A; as A runs
through % and V runs through U, the finite intersections of the sets
W (A,V) form a fundamental system of entourages of a uniformity
on C(Z; X); this uniformity is 1ca11ed the uniformity of %-convergence
and the uniform space obtained by endowing C (Z; X) with the unifor-
mity of &-convergence is denoted by Cg (Z; X). In particular C, (Z; X),
C.(Z; X) and C,(Z; X) denote Ithe set C (Z; X) endowed respectively
with the uniformity of pointwise convergence, compact convergence
and uniform convergence (see [2]).

LEMMA 1. Let X be a um'férm space, let Y be a topological space
and let f: XXY — X be a mapping such that for each yeY, f(-,y)€e

€C(X; X). Let f: Y~ C(X; X) be the mapping Tor=1(,y).

If there exists an open cover % of X such that 'fl Y - Cs(X; X)
is continuous, then f is continuous.

~ PROOF. Let x0€X, yoeY and let VeUW. As 1, y)eC (X; X), there
exists a neighbourhood U of x,, with UcAe %, such that for each
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xeU it is (f (x, yo), f (xo, yo))€V. By the continuity of '7, the set W of
all yeY such that (f (x, y), f (x, y))€V for all x€A, is a neighbourhood

2
of yo, then for each (x,y)eUXW it is (f (x, ), f (xo, yo))EV, i. e. f is
continuous.

REMARK 1. If & is an open cover of X, the topology of Cg (X; X)
is finer than the topology of C.(X; X), and the continuity of .f implies

the continuity of ? from Y to C.(X; X); the converse is not true. If

X is locally compact, then f is continuous if and only if 3“ from Y to
C. (X; X) is continuous ([2]). '

THEOREM 1. Let X be a uniform space, let Y be a topological space
and let f: XXY — X be a mapping such that for each yeY, f(-,y)
is a homeomorphism on X; if

1) there exists an open cover % of X such that f: Y —=C,(X; X)
is continuous;

2) noted ?z?(Y), the set Y- of the inverse homeomorphisms
is equicontinuous on X;

then f and f': XXY — X are continuous.

Proor. f is continuous by Lemma 1.

Let Y-! be endowed with the topology of Cs(X; X), then the
mapping (x, ) —>y~1(x) of X xY-! into X is continuous. Indeed
let yo-leY-!, x0€X and VeU; by 2) there exists a neighbourhood U _
of x, such that for each 5(—:'17‘ and for each xeU ('37“1 (x), ')7“ (x0))EV;
the set T of all }7‘1617“ such that (y-! (xo), 30! (xo)) €V is a neighbout-
hood of yo~! and, for every (x, y)eUXT, it is G (x), )7;]"‘ (xo))dz/. |

If ¥ and ¥-! are endowed with the topology of Cs(X; X), then
the mapping ¢: Y— Y-, ¢ 3)=y-, is continuous. It is enaugh to
show that, for each x€X, the mapping ;——> ;‘1 (x0) of Y into X is
continuous at every point %e'\f/. Let VeU and let u0=;0_1 (x0); by 2)
there exists a neighbourhood U of xo such that, for each 3;617 and for
each xeU, it is (y~! (x),i:v‘1 (x0))€V; if in particular 37617 is such that
Y w)eU, then (uo, y-* ()€EV, i. e. (o (x0), ¥ () €EV.
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Since  the topology of 'Cg(X; X) is finer than the topology of
C: (X; X), the mapping ' (%, y)=[¢ F )] (x) is continuous.

REMARK 2. The hypothesis 1) of Theorem 1 is equivalent to the
following

1) there exists an open cover & of X such that for every
A€S the set Ho={y—f(x,¥), X€A} is equicontinuous on Y (I2]).
~ The hypothesis 2) of Théorem 1 is equivalent to the following

2") for each xeX and for each VeU, there exists a neighbour-
hood U of x such that N f(V (')7“ (%)), Yo U.
» yex

CorOLLARY 1. Let X be u uniform space, let Y be a topological
Space and let f: XxXY > X be a continuous mapping such that for
each yeY f (-, y) is a homeomorphism on X. ‘

If the hypothesis 2) of Theorem 1 holds then ! is continuous.

Proor. f' Y= C (X; X) is continuous; indeed let BcX a finite
set, then fixed yo€Y and xeB, the continuity of f implies that for every
VeU there exists a neighbouthood U, of Yo such that yeU, implies
fF 9,1, y0)eV; set U= QB U:, then for each yeU and for each’

x€B it is (f (x,y), f (x, yo))€eV.
Now, acting as in the prodf of Theorem 1, the assertion is proved.

~ The following example wiﬂ illustrate Theorem 1; at the same time
the impossibility of making use in this case of the theorem in [4],
shows that the two theorems dre suitable in different situations.

 EXAMPLE. Let X=Q*—{0} and Y={yeQ: 0<y<1} (Q is the
field of rational numbers; Q* is jthe set of non negative rational numbers).
be topological subspaces of Q. |
Let f: XXY — X be defirled by

‘-;13—+y—1 if 0<x<1

H&w=*y

It is easy to verify that 7 is |continuous from Y to C,(X; X) and
therefore to Cg (X; X), for every open cover & of X.



REGULARITY AND REPRESENTATION THEOREMS ETC. 97

Y- is composed by the following mappings
| % if 0<x<y
y )= o

if x>y

For fixed xeX, for every ye¥ it is [y~ () —y~' (x0)] <K |x—xq|, where
2 2 ~ ‘

K =Max (1 F—3 ;—2) , therefore Y~! is equicontinuous in xo and then
0o 0

on X; hence the hypotheses of Theorem 1 hold.

The following example (see [4]) on the contrary shows that if
hypothesis 2) of Theorem 1 is dropped, the function f~' does not
result necessarily continuous.

ExaMPLE. Let X=C° [0, 1] be the linear space of all continuous
real-valued functions defined on the interval [0, 1] vanishing at the
origin 0, endowed with the topology of uniform convergence. Let

Y= 1. N
n

U{0} (N is the set of all positive integer) with the

topology of the real line. _ ;
Let {®,} be a sequence of continuous functions on [0, 1] defined
by @ (t)=1, S

1 : 1
/ i <t< ——
—— if _0—t<n+l
1 1 _, 1
0.0=] L (i- L) s 1
® n+1 o \t n+1) if n+1 =t< n
!

Consider the mapping f: X X Y—>X defined by f (x, 0)=x, f(x,,—;l—-) =d,x,

where @, x is the pointwise product of @, and x. Since P (H)%0 for
each n, the mapping f, as a function of the first variable, is a homeo-
morphism on X for every element of Y. To prove the existence

of an open cover % of X such that f Y = Cg (X; X) is continuous,
is equivalent to show that for each x€X a neighbourhood A of xo

exists such that }V Y = C.(A; X) is continuous at 0([2]). Indeed,

7



98 GIAN LUIGI FORTI

- h—t e e

] 1
for ﬁxed £>0 there exists meN such that |x (f)] <e for te[O ——] then

for each xeX with on—xH<e and for each n>m it is

1§00 x—x|| < ||@n x—Dr 0] 4
|
+ |@n 20— x|| < ||x—xo|| + tSlup]] [ (1) %0 () —x (B)] <
$e+ Max{ Sup [®,()x ()—x(¥)|; Sup |0 (£) — x(t)|}<
o te-[o.-i—] | ¢e[—.1]

| <£+ Max { Sup (2. )] |x0 )] + |x O); e}=<
te[o. ~—]

<é&+ Max { Sup |xo(t)|+ Sup |x (0)]; e} <4e.
te[o.;] i ts[o,——]

The set of mappings x—>qf— is not equicontinuous at x=0. For fixed

n

€>0, suppose there exists 10 such that [|x||<& implies
all @,; for each neN let x,€X be a function such that ||xs|| <& and

1 \ ¢ |
x"(n+1)_7’then

8>¢ for n>25~£—1

1
%%n+1) i1

1 = 12
¢n(”+1) ;

. i
The function f~! is not continuous at (0,0). Indeed let {x.} be a se-

. . | 1 1
quence in X converging to 0 and such that x, (n T ) =aIT’ then

, » 1
Xn
1 _ — Pxn(t), (I’l-l—l)__ '
“f (x,,, ) 100, 0)” Sup [0 ] = —1.

i
3. In this section, using ihe previous results, some regularity and

representation theorems for a class of solutions of the translation
equation, are proved.

|

|
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If Y is a topological space, RCY XY is called a closed total re-
lation if R is a closed set in Y XY and if for each pair (u, v)€Y XY
it is (u, v)eR or (v, u)ER. '

For fixed weY, it is Ry={ueY: (u,u) € R} and R™=
={ueY: (u, w)€eR}. :

THEOREM 2. Let X be a uniform space, let Y be a topological
space on which a closed total transitive relation RCY XY is defined.

1) If f: XXR— X is a solution of the restricted translation
equation f (f (x, u, v), v, w)=f (x,u, w) for all xeX, (u,v), (v, w)ER
such that:

() for each (u,v)€R, f (-, u,v) is a homeomorphism on X;

(ii) there exists ue€Y and two open covers S and 9 of X
such that the mappings ¢: Ry, = Cg (X; X), ¢ W) =F (-, uo, u), and
¢: Rvv—= Cg(X; X), ¥ w)=f (-, u, wo), are continuous;

(ii) for each xeX and Ve U there exists a neighbourhood U
of x such that

{ r; FOV ([p @)1 (x), o, u)IN
° Cn{ N FVAS @I @), u)}oU;

u ¢ RYo

then f is continuous and a continuous function g: X XY —> X exists
such that for each ueY, g (-, u) is a homeomorphism on X and for each
(u, v)ER it is f (x, u, v)=g (g~! (x, u), v). Furthermore there is a unique
representative function g for f which fulfils the condition g (x,uo)=x
for all xeX.

2) If gt XXY —> X is a function which fulfils the hypotheses
of Theorem 1,then the function f(x,u,v)=g (g™ (x,u),v) is a conti-
nuous solution of the restricted translation equation such that f (-, u, v)
is a homeomorphism on X for each (u,v)€ER.

REMARK 3. If R=Y XY, then the continuity of ¢ is forced by
that of ¢. In effect, the translation equation implies f(x, u, u)=x for
all xeX and all ueY, consequently '

[6 @ o @] =6 @ (s uu)=

Co=f(f (%, u; wo), Uo, W)=F (x, u, U)=x,
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i. e ¢.'(u)=:['g'b’(u)] -1 and Théorem 1 implies the continuity of .

 REMARK 4. The »hypot‘hesiis (iii) of Theorem 2 may be substituted
by the following: (iii’) for each xeX and Ve U there exists a neigh-
bourhood U of x such that | .

£ 0 10V (6 @1 @), o)} NV (1Y @]~ (), u, w)} U,

©e Ruo

where K is a closed set Containfng Y—Ru; ‘'henceif R=YXY K=0.

PROOF OF THEOREM 2. 1) Let g: X XY — X be defined by g (x, )=
=f(x, uo, u) if ue R.,, and g (x, u)=x" where ¥’ is the unique point
of X such that f(x’, u, u)=x'if ueR™. Since R is total, g is defined
on all XXY, furthermore if ueR.,NR™ it is f(f (x, uo, w), u, up) =
=f (x, to, o) =1 (f (x, tio, Uo),uo, o) =%, in this case it is X' = (x, to, 1)
and g is well defined. By (i) g (-, u) is a homeomorphism on X for each
u€Y. The mapping (x, u) = f(x, uo, u) of XX Ry, into X, by (i) and
(iii), fulfils the hypotheses of Theorem 1, hence it is continuous with
its inverse system of homeomorphism on X X R.,, that is g and g ! are
continuous on X X R.,. The same reasoning on the mapping (x, u) —>
—> f (x, u, wy), gives the continuity of g and g~! on XX R%. R being
closed and total, R,, and R* are closed and Ry, UR% =Y, then g
and g-! are-continuous on XXY.

Now the identity f(x,u,v) = g(g~! (x, u), v), (u, v)eR, will be
proved and then the continuity of f on X XR will be proved.

Let x€X and (u,v)€R be given arbitrarily.

If (v, w)€R, then f (f (x, u, v), v, o) =1 (x, u, o) and so f (x, u, v)=
=g (f (x, u, wo), V)=g (g7 (x, u), v).

~ If (w,v)eR and (4, w)€R, then f(x, u, v)=f(f (x, u, w), to, v) =
=g (f (%, u, w), V) =g (g7 (x, w), v). |

If (uo, u)eR, let y be the point such that f(, u, u) = x, then
1w, v)=1 (f (y, uo, u), u, =1, uo, V)=¢ (y, ) =g (g (x, u), v).

 Now suppose that g (x, uofzx for all xeX. If é XXY =X is a
continuous function representing f with the required properties, for

edch (4, V)ER it is g (g1 (x, u), v):é (é“ (x, w), v), and putting u=up
it is g, v)= § (x, v) for each véR,,o, then g= é on X X Ry,- Analogously
it is g=¢ on XXR%, then g=g on XXY.

2) By Theorem 1 g anﬁ g~! are continuous on X XY, then fis .
continuous on XXR, f(-,u,v) is a homeomorphism on X for each
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(u,v) € R and f(f (x, u, v), v, w) = g (g (f (x, u, ), v), w) = g (g7"
(g (g (x, u), v), v), w)=g (g~ (x, u), w)=] (x, u, w).

COROLLARY 2. Let X be a uniform space, let Y be a topological
space on which a closed total transitive relation RCY XY is defined.
The following statements concerning f are equivalent:

1) f: XXR— X is a solution of the restricted translation equa-
tion, such that:

() the hypothesis (i) of Theorem 2 holds;

(i) there exists uo€Y such that the functions (x, u) => f (x, uo, u)
and (x, u) = f (x, u, uo) are continuous respectively on XX Ru, and on
X X Ru() ; .

(iii) the hypothesis (iii) of Theorem 2 holds with the previous uo;

2) there exists a unique continuous function g: XXY —X
which fulfils the hypotheses of Corollary 1, such that g (x, u))=x for
all xeX and f (x,u, v)=g (g ! (x, ), v), for each (u,v)€ER.

COROLLARY 3. Let X be a uniform space and let Y be a topological
space. Let f: X XY XY — X be a solution of the unrestricted transla-
tion equation such that: '

1) for each (w,v)eY XY, f(-,u,v)eC (X; X);

2) there exist weY and two open covers S and &’ of X
such that ¢: Y — Cg (X; X), ¢ (w)=f (-, uo, u), and ¢: Y——->O’g (X; X),
- (w)=f (-, u, o), are continuous.
Then f is continuous.

PROOF. Set g (x, u)=f (x, o, u) and h (x, u)=f (x, u, wo), by Lem-
ma 1 g and h are continuous functions. For each (u, v)eY XY it is

O, u, v)=1(f (x, u, o), uo, V) =8 (f (%, u, ), V) =g (h (x, u), v), then f{ is
continuous.
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