REGULARITY AND REPRESENTATION THEOREMS FOR A CLASS OF TRANSLATION EQUATION'S SOLUTIONS (*)

di Gian Luigi Forti (a Milano) (**)

Sommario. - In questa Nota vengono dimostrati alcuni teoremi che garantiscono la continuità di un sistema di omeomorfismi e del suo sistema inverso. Tali risultati sono poi utilizzati per dimostrare la regolarità di certe soluzioni dell'equazione funzionale di traslazione f(f(x, u, v), v, w) = f(x, u, w) e per fornire una rappresentazione di tali soluzioni.

SUMMARY. - In this Note some theorems are given which ensure the continuity of a system of homeomorphisms and of its inverse system. Those results are used to prove the regularity of certain solutions of the translation functional equation f(f(x, u, v), v, w) = f(x, u, w) and to give a representation of such solutions.

1. Consider the translation equation f(f(x, u, v), v, w) = f(x, u, w), where $f: X \times Y \times Y \to X$. This functional equation has been recently treated by C. T. NG ([3], [4]), who, assuming the local compactness and the local connectedness of the space X, gives a representation of a class of continuous solutions of such an equation, using the following theorem:

Let X be a locally compact Hausdorff and locally connected topological space, and let Y be a topological space. Let $f: X \times Y \to X$ be a continuous mapping such that for each $y \in Y$, the mapping $f(\cdot, y): X \to X$ is a homeomorphism on X. Then the inverse system $f^{-1}: X \times Y \to X$

(*) Pervenuto in Redazione il 29 gennaio 1977. Lavoro eseguito nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni del C. N. R.

(**) Indirizzo dell'Autore: Gian Luigi Forti, Istituto di Matematica «F. Enriques », via C. Saldini 50, 20133 Milano.

defined by $f^{-1}(x, y) = x'$ if and only if f(x', y) = x for all $x \in X$ and $y \in Y$, is also continuous on $X \times Y$.

In section 2 of this Note some theorems are given which ensure, in hypotheses different from the above mentioned theorem, the continuity of a system of homeomorphisms and of its inverse system. In section 3 those results are used to give some theorems of regularity and representation for a class of solutions of the translation equation.

2. Let X, Y be sets and let $f: X \times Y \to X$ be a mapping such that for each $y \in Y$, the mapping $f(\cdot, y): X \to X$ is bijective; f^{-1} will denote the mapping of $X \times Y$ into X defined by: $f^{-1}(x, y) = x'$ if and only if f(x', y) = x.

Afterwords the following notations will be used:

if X is a uniform space, the set of the entourages of the uniformity will be noted by \mathcal{U} .

if $V \in \mathcal{U}$, then for each $x \in X$ it is $V(x) = \{z \in X: (z, x) \in V\}$ and V is the set of pairs $(x, z) \in X \times X$, such that $(x, w) \in V$ and $(w, z) \in V$ for some $w \in X$;

if Z is a topological space, C(Z; X) denotes the set of all continuous mappings of Z into X.

Let \mathfrak{S} be a set of subsets of Z; for each $A \in \mathfrak{S}$ and each entourage V of X, let W(A, V) be the set of all pairs of continuous mappings (g, h) of Z into X such that $(g(z), h(z)) \in V$ for each $z \in A$; as A runs through \mathfrak{S} and V runs through \mathcal{U} , the finite intersections of the sets W(A, V) form a fundamental system of entourages of a uniformity on C(Z; X); this uniformity is called the uniformity of \mathfrak{S} -convergence and the uniform space obtained by endowing C(Z; X) with the uniformity of \mathfrak{S} -convergence is denoted by $C_{\mathfrak{S}}(Z; X)$. In particular $C_{\mathfrak{S}}(Z; X)$, $C_{\mathfrak{C}}(Z; X)$ and $C_{\mathfrak{U}}(Z; X)$ denote the set C(Z; X) endowed respectively with the uniformity of pointwise convergence, compact convergence and uniform convergence (see [2]).

LEMMA 1. Let X be a uniform space, let Y be a topological space and let $f: X \times Y \to X$ be a mapping such that for each $y \in Y$, $f(\cdot, y) \in C(X; X)$. Let $\widetilde{f}: Y \to C(X; X)$ be the mapping $\widetilde{f}(y) = f(\cdot, y)$.

If there exists an open cover \mathfrak{S} of X such that $\widetilde{f}: Y \to C_{\mathfrak{S}}(X; X)$ is continuous, then f is continuous.

PROOF. Let $x_0 \in X$, $y_0 \in Y$ and let $V \in \mathcal{U}$. As $f(\cdot, y_0) \in C(X; X)$, there exists a neighbourhood U of x_0 , with $U \subset A \in \mathfrak{S}$, such that for each

 $x \in U$ it is $(f(x, y_0), f(x_0, y_0)) \in V$. By the continuity of \widetilde{f} , the set W of all $y \in Y$ such that $(f(x, y), f(x, y_0)) \in V$ for all $x \in A$, is a neighbourhood of y_0 , then for each $(x, y) \in U \times W$ it is $(f(x, y), f(x_0, y_0)) \in V$, i. e. f is continuous.

REMARK 1. If \mathfrak{S} is an open cover of X, the topology of $C_{\mathfrak{S}}(X;X)$ is finer than the topology of $C_c(X;X)$, and the continuity of f implies the continuity of \widetilde{f} from Y to $C_c(X;X)$; the converse is not true. If X is locally compact, then f is continuous if and only if \widetilde{f} from Y to $C_c(X;X)$ is continuous ([2]).

THEOREM 1. Let X be a uniform space, let Y be a topological space and let $f: X \times Y \to X$ be a mapping such that for each $y \in Y$, $f(\cdot, y)$ is a homeomorphism on X; if

- 1) there exists an open cover \mathfrak{S} of X such that $\widetilde{f}: Y \to C_{\mathfrak{S}}(X; X)$ is continuous;
- 2) noted $\widetilde{Y} = \widetilde{f}(Y)$, the set \widetilde{Y}^{-1} of the inverse homeomorphisms is equicontinuous on X;

then f and f^{-1} : $X \times Y \rightarrow X$ are continuous.

Proof. f is continuous by Lemma 1.

Let \widetilde{Y}^{-1} be endowed with the topology of $C_s(X;X)$, then the mapping $(x,\widetilde{y}^{-1}) \to \widetilde{y}^{-1}(x)$ of $X \times \widetilde{Y}^{-1}$ into X is continuous. Indeed let $\widetilde{y_0}^{-1} \in \widetilde{Y}^{-1}$, $x_0 \in X$ and $V \in \mathcal{U}$; by 2) there exists a neighbourhood U of x_0 such that for each $\widetilde{y} \in \widetilde{Y}$ and for each $x \in U$ $(\widetilde{y}^{-1}(x), \widetilde{y}^{-1}(x_0)) \in V$; the set T of all $\widetilde{y}^{-1} \in \widetilde{Y}^{-1}$ such that $(\widetilde{y}^{-1}(x_0), \widetilde{y_0}^{-1}(x_0)) \in V$ is a neighbourhood of $\widetilde{y_0}^{-1}$ and, for every $(x, \widetilde{y}^{-1}) \in U \times T$, it is $(\widetilde{y}^{-1}(x), \widetilde{y_0}^{-1}(x_0)) \in V$.

If \widetilde{Y} and \widetilde{Y}^{-1} are endowed with the topology of $C_s(X;X)$, then the mapping $\phi\colon \widetilde{Y}\to \widetilde{Y}^{-1}$, $\phi(\widetilde{y})=\widetilde{y}^{-1}$, is continuous. It is enaugh to show that, for each $x_0\in X$, the mapping $\widetilde{y}\to \widetilde{y}^{-1}(x_0)$ of \widetilde{Y} into X is continuous at every point $\widetilde{y_0}\in \widetilde{Y}$. Let $V\in \mathcal{U}$ and let $u_0=\widetilde{y_0}^{-1}(x_0)$; by 2) there exists a neighbourhood U of x_0 such that, for each $\widetilde{y}\in \widetilde{Y}$ and for each $x\in U$, it is $(\widetilde{y}^{-1}(x),\widetilde{y}^{-1}(x_0))\in V$; if in particular $\widetilde{y}\in \widetilde{Y}$ is such that $\widetilde{y}(u_0)\in U$, then $(u_0,\widetilde{y}^{-1}(x_0))\in V$, i. e. $(\widetilde{y_0}^{-1}(x_0),\widetilde{y}^{-1}(x_0))\in V$.

Since the topology of $C_{\mathfrak{S}}(X;X)$ is finer than the topology of $C_{\mathfrak{S}}(X;X)$, the mapping $f^{-1}(x,y)=[\phi(\widetilde{f}(y))](x)$ is continuous.

REMARK 2. The hypothesis 1) of Theorem 1 is equivalent to the following

- 1') there exists an open cover \mathfrak{S} of X such that for every $A \in \mathfrak{S}$ the set $H_A = \{y \to f(x, y), x \in A\}$ is equicontinuous on Y ([2]). The hypothesis 2) of Theorem 1 is equivalent to the following
- 2') for each $x \in X$ and for each $V \in \mathcal{U}$, there exists a neighbourhood U of x such that $\bigcap_{\mathbf{y} \in Y} f(V(\widetilde{\mathbf{y}}^{-1}(x)), \mathbf{y}) \supset U$.

COROLLARY 1. Let X be a uniform space, let Y be a topological space and let $f: X \times Y \to X$ be a continuous mapping such that for each $y \in Y f(\cdot, y)$ is a homeomorphism on X.

If the hypothesis 2) of Theorem 1 holds then f^{-1} is continuous.

PROOF. $\widetilde{f}: Y \to C_s(X; X)$ is continuous; indeed let $B \subset X$ a finite set, then fixed $y_0 \in Y$ and $x \in B$, the continuity of f implies that for every $V \in \mathcal{U}$ there exists a neighbourhood U_x of y_0 such that $y \in U_x$ implies $(f(x, y), f(x, y_0)) \in V$; set $U = \bigcap_{x \in B} U_x$, then for each $y \in U$ and for each $x \in B$ it is $(f(x, y), f(x, y_0)) \in V$.

Now, acting as in the proof of Theorem 1, the assertion is proved.

The following example will illustrate Theorem 1; at the same time the impossibility of making use in this case of the theorem in [4], shows that the two theorems are suitable in different situations.

EXAMPLE. Let $X=Q^+-\{0\}$ and $Y=\{y\in Q: 0< y< 1\}$ (Q is the field of rational numbers; Q^+ is the set of non negative rational numbers) be topological subspaces of Q.

Let $f: X \times Y \to X$ be defined by

$$f(x,y) = \begin{cases} \frac{1}{x} + y - 1 & \text{if } 0 < x < 1 \\ \frac{y}{x} & \text{if } x \ge 1 \end{cases}$$

It is easy to verify that \widetilde{f} is continuous from Y to $C_u(X; X)$ and therefore to $C_{\mathfrak{S}}(X; X)$, for every open cover \mathfrak{S} of X.

 \widetilde{Y}^{-1} is composed by the following mappings

$$\widetilde{y}^{-1}(x) = \begin{cases} \frac{y}{x} & \text{if } 0 < x \le y \\ \frac{1}{x - y + 1} & \text{if } x > y \end{cases}$$

For fixed $x_0 \in X$, for every $\widetilde{y} \in \widetilde{Y}$ it is $|\widetilde{y}^{-1}(x) - \widetilde{y}^{-1}(x_0)| < K|x - x_0|$, where $K = \operatorname{Max}\left(1; \frac{2}{x_0}; \frac{2}{x_0^2}\right)$, therefore \widetilde{Y}^{-1} is equicontinuous in x_0 and then on X; hence the hypotheses of Theorem 1 hold.

The following example (see [4]) on the contrary shows that if hypothesis 2) of Theorem 1 is dropped, the function f^{-1} does not result necessarily continuous.

EXAMPLE. Let $X=C^0$ [0,1] be the linear space of all continuous real-valued functions defined on the interval [0,1] vanishing at the origin 0, endowed with the topology of uniform convergence. Let $Y = \left\{\frac{1}{n} : n \in N\right\} \cup \{0\}$ (N is the set of all positive integer) with the topology of the real line.

Let $\{\Phi_n\}$ be a sequence of continuous functions on [0, 1] defined by $\Phi_0(t) = 1$,

$$\Phi_{n}(t) = \begin{cases} \frac{1}{n+1} & \text{if } 0 \le t < \frac{1}{n+1} \\ \frac{1}{n+1} + n^{2} \left(t - \frac{1}{n+1} \right) & \text{if } \frac{1}{n+1} \le t < \frac{1}{n} \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

Consider the mapping $f: X \times Y \to X$ defined by f(x, 0) = x, $f\left(x, \frac{1}{n}\right) = \Phi_n x$, where $\Phi_n x$ is the pointwise product of Φ_n and x. Since $\Phi_n(t) \neq 0$ for each n, the mapping f, as a function of the first variable, is a homeomorphism on X for every element of Y. To prove the existence of an open cover \mathfrak{S} of X such that $\hat{f}: Y \to C_{\mathfrak{S}}(X; X)$ is continuous, is equivalent to show that for each $x_0 \in X$ a neighbourhood A of x_0 exists such that $\hat{f}: Y \to C_u(A; X)$ is continuous at O([2]). Indeed,

for fixed $\varepsilon > 0$ there exists $m \in N$ such that $|x_0(t)| < \varepsilon$ for $t \in \left[0, \frac{1}{m}\right]$, then for each $x \in X$ with $||x_0 - x|| < \varepsilon$ and for each n > m it is

$$||\Phi_{n} x - x|| \leq ||\Phi_{n} x - \Phi_{n} x_{0}|| + ||\Phi_{n} x_{0} - x|| \leq ||x - x_{0}|| + \sup_{t \in [0, 1]} |\Phi_{n}(t) x_{0}(t) - x(t)| \leq \varepsilon + \max \{ \sup_{t \in [0, \frac{1}{n}]} |\Phi_{n}(t) x_{0}(t) - x(t)| ; \sup_{t \in [\frac{1}{n}, 1]} |x_{0}(t) - x(t)| \} \leq \varepsilon + \max \{ \sup_{t \in [0, \frac{1}{n}]} (|\Phi_{n}(t)| |x_{0}(t)| + |x(t)|); \varepsilon \} \leq \varepsilon + \max \{ \sup_{t \in [0, \frac{1}{m}]} |x_{0}(t)| + \sup_{t \in [0, \frac{1}{m}]} |x(t)|; \varepsilon \} \leq 4\varepsilon.$$

The set of mappings $x \to \frac{x}{\Phi_n}$ is not equicontinuous at x=0. For fixed $\varepsilon > 0$, suppose there exists $\delta > 0$ such that $||x|| < \delta$ implies $\left\| \frac{x}{\Phi_n} \right\| < \varepsilon$ for all Φ_n ; for each $n \in N$ let $x_n \in X$ be a function such that $||x_n|| < \delta$ and $x_n \left(\frac{1}{n+1} \right) = \frac{\delta}{2}$, then

$$\frac{x_n\left(\frac{1}{n+1}\right)}{\Phi_n\left(\frac{1}{n+1}\right)} = \frac{n+1}{2} \delta > \varepsilon \text{ for } n > \frac{2\varepsilon}{\delta} - 1.$$

The function f^{-1} is not continuous at (0,0). Indeed let $\{x_n\}$ be a sequence in X converging to 0 and such that $x_n\left(\frac{1}{n+1}\right) = \frac{1}{n+1}$, then

$$\left\| f^{-1}\left(x_{n}, \frac{1}{n}\right) - f^{-1}\left(0, 0\right) \right\| = \sup_{t \in [0, 1]} \left| \frac{x_{n}\left(t\right)}{\Phi_{n}\left(t\right)} \right| \ge \frac{x_{n}\left(\frac{1}{n+1}\right)}{\Phi_{n}\left(\frac{1}{n+1}\right)} = 1.$$

3. In this section, using the previous results, some regularity and representation theorems for a class of solutions of the translation equation, are proved.

If Y is a topological space, $R \subset Y \times Y$ is called a closed total relation if R is a closed set in $Y \times Y$ and if for each pair $(u, v) \in Y \times Y$ it is $(u, v) \in R$ or $(v, u) \in R$.

For fixed $u_0 \in Y$, it is $R_{u_0} = \{u \in Y : (u_0, u) \in R\}$ and $R^{u_0} = \{u \in Y : (u, u_0) \in R\}$.

THEOREM 2. Let X be a uniform space, let Y be a topological space on which a closed total transitive relation $R \subset Y \times Y$ is defined.

- 1) If $f: X \times R \to X$ is a solution of the restricted translation equation f(f(x, u, v), v, w) = f(x, u, w) for all $x \in X$, $(u, v), (v, w) \in R$ such that:
 - (i) for each $(u, v) \in R$, $f(\cdot, u, v)$ is a homeomorphism on X;
- (ii) there exists $u_0 \in Y$ and two open covers \mathfrak{S} and \mathfrak{S}' of X such that the mappings $\phi: R_{u_0} \to C_{\mathfrak{S}}(X; X), \phi(u) = f(\cdot, u_0, u),$ and $\psi: R^{u_0} \to C_{\mathfrak{S}'}(X; X), \psi(u) = f(\cdot, u, u_0),$ are continuous;
- (iii) for each $x \in X$ and $V \in \mathcal{U}$ there exists a neighbourhood U of x such that

$$\{\bigcap_{u \in R_{u_0}} f(V([\phi(u)]^{-1}(x)), u_0, u)\} \cap \\ \cap \{\bigcap_{u \in R^{u_0}} f(V([\psi(u)]^{-1}(x)), u, u_0)\} \supset U;$$

then f is continuous and a continuous function g: $X \times Y \to X$ exists such that for each $u \in Y$, $g(\cdot, u)$ is a homeomorphism on X and for each $(u, v) \in R$ it is $f(x, u, v) = g(g^{-1}(x, u), v)$. Furthermore there is a unique representative function g for f which fulfils the condition $g(x, u_0) = x$ for all $x \in X$.

2) If $g: X \times Y \to X$ is a function which fulfils the hypotheses of Theorem 1, then the function $f(x, u, v) = g(g^{-1}(x, u), v)$ is a continuous solution of the restricted translation equation such that $f(\cdot, u, v)$ is a homeomorphism on X for each $(u, v) \in R$.

REMARK 3. If $R=Y\times Y$, then the continuity of ψ is forced by that of ϕ . In effect, the translation equation implies f(x, u, u) = x for all $x \in X$ and all $u \in Y$, consequently

$$[\phi(u) \circ \psi(u)] (x) = \phi(u) (f(x, u, u_0)) =$$

$$= f(f(x, u, u_0), u_0, u) = f(x, u, u) = x,$$

i. e. $\psi(u) = [\phi(u)]^{-1}$ and Theorem 1 implies the continuity of ψ .

REMARK 4. The hypothesis (iii) of Theorem 2 may be substituted by the following: (iii') for each $x \in X$ and $V \in \mathcal{U}$ there exists a neighbourhood U of x such that

$$\left\{\bigcap_{u \in R_{u_0}} f(V([\phi(u)]^{-1}(x)), u_0, u)\right\} \cap \left\{\bigcap_{u \in K} f(V([\psi(u)]^{-1}(x)), u, u_0)\right\} \supset U,$$

where K is a closed set containing $Y - R_{u_0}$; hence if $R = Y \times Y$ $K = \emptyset$.

PROOF OF THEOREM 2. 1) Let $g: X \times Y \to X$ be defined by $g(x, u) = f(x, u_0, u)$ if $u \in R_{u_0}$, and g(x, u) = x' where x' is the unique point of X such that $f(x', u, u_0) = x$ if $u \in R^{u_0}$. Since R is total, g is defined on all $X \times Y$, furthermore if $u \in R_{u_0} \cap R^{u_0}$ it is $f(f(x, u_0, u), u, u_0) = f(x, u_0, u_0) = f(f(x, u_0, u_0), u_0) = x$, in this case it is $x' = f(x, u_0, u)$ and g is well defined. By (i) $g(\cdot, u)$ is a homeomorphism on X for each $u \in Y$. The mapping $(x, u) \to f(x, u_0, u)$ of $X \times R_{u_0}$ into X, by (ii) and (iii), fulfils the hypotheses of Theorem 1, hence it is continuous with its inverse system of homeomorphism on $X \times R_{u_0}$, that is g and g^{-1} are continuous on $X \times R_{u_0}$. The same reasoning on the mapping $(x, u) \to f(x, u, u_0)$, gives the continuity of g and g^{-1} on $f(x, u) \to f(x, u, u_0)$ are closed and total, $f(x) \to f(x)$ are closed and $f(x) \to f(x)$ then $f(x) \to f(x)$ are continuous on $f(x) \to f(x)$ are closed and $f(x) \to f(x)$ then $f(x) \to f(x)$ are continuous on $f(x) \to f(x)$.

Now the identity $f(x, u, v) = g(g^{-1}(x, u), v), (u, v) \in R$, will be proved and then the continuity of f on $X \times R$ will be proved.

Let $x \in X$ and $(u, v) \in R$ be given arbitrarily.

If $(v, u_0) \in R$, then $f(f(x, u, v), v, u_0) = f(x, u, u_0)$ and so $f(x, u, v) = g(f(x, u, u_0), v) = g(g^{-1}(x, u), v)$.

If $(u_0, v) \in R$ and $(u, u_0) \in R$, then $f(x, u, v) = f(f(x, u, u_0), u_0, v) = g(f(x, u, u_0), v) = g(g^{-1}(x, u), v)$.

If $(u_0, u) \in R$, let y be the point such that $f(y, u_0, u) = x$, then $f(x, u, v) = f(f(y, u_0, u), u, v) = f(y, u_0, v) = g(y, v) = g(g^{-1}(x, u), v)$.

Now suppose that $g(x, u_0) = x$ for all $x \in X$. If $\hat{g}: X \times Y \to X$ is a continuous function representing f with the required properties, for each $(u, v) \in R$ it is $g(g^{-1}(x, u), v) = \hat{g}(\hat{g}^{-1}(x, u), v)$, and putting $u = u_0$ it is $g(x, v) = \hat{g}(x, v)$ for each $v \in R_{u_0}$, then $g = \hat{g}$ on $X \times R_{u_0}$. Analogously it is $g = \hat{g}$ on $X \times R^{u_0}$, then $g = \hat{g}$ on $X \times Y$.

2) By Theorem 1 g and g^{-1} are continuous on $X \times Y$, then f is continuous on $X \times R$, $f(\cdot, u, v)$ is a homeomorphism on X for each

 $(u, v) \in R$ and $f(f(x, u, v), v, w) = g(g^{-1}(f(x, u, v), v), w) = g(g^{-1} \cdot (g(g^{-1}(x, u), v), v), w) = g(g^{-1}(x, u), w) = f(x, u, w).$

COROLLARY 2. Let X be a uniform space, let Y be a topological space on which a closed total transitive relation $R \subset Y \times Y$ is defined.

The following statements concerning f are equivalent:

- 1) $f: X \times R \rightarrow X$ is a solution of the restricted translation equation, such that:
 - (i) the hypothesis (i) of Theorem 2 holds;
- (ii) there exists $u_0 \in Y$ such that the functions $(x, u) \to f(x, u_0, u)$ and $(x, u) \to f(x, u, u_0)$ are continuous respectively on $X \times R_{u_0}$ and on $X \times R^{u_0}$;
 - (iii) the hypothesis (iii) of Theorem 2 holds with the previous u_0 ;
- 2) there exists a unique continuous function $g: X \times Y \to X$ which fulfils the hypotheses of Corollary 1, such that $g(x, u_0) = x$ for all $x \in X$ and $f(x, u, v) = g(g^{-1}(x, u), v)$, for each $(u, v) \in R$.

COROLLARY 3. Let X be a uniform space and let Y be a topological space. Let $f: X \times Y \times Y \to X$ be a solution of the unrestricted translation equation such that:

- 1) for each $(u, v) \in Y \times Y$, $f(\cdot, u, v) \in C(X; X)$;
- 2) there exist $u_0 \in Y$ and two open covers \mathfrak{S} and \mathfrak{S}' of X such that $\phi: Y \to C_{\mathfrak{S}}(X; X)$, $\phi(u) = f(\cdot, u_0, u)$, and $\psi: Y \to C_{\mathfrak{S}'}(X; X)$, $\psi(u) = f(\cdot, u, u_0)$, are continuous.

Then f is continuous.

PROOF. Set $g(x, u) = f(x, u_0, u)$ and $h(x, u) = f(x, u, u_0)$, by Lemma 1 g and h are continuous functions. For each $(u, v) \in Y \times Y$ it is $f(x, u, v) = f(f(x, u, u_0), u_0, v) = g(f(x, u, u_0), v) = g(h(x, u), v)$, then f is continuous.

REFERENCES

- [1] J. Aczel, Lösung der Vektor-funktionalgleichung der Homogenen und Inhomogenen n-Dimensional einparametrigen 'Translation', ..., Acta Math. Acad. Sci. Hungar., 6 (1955), pagg. 131-141.
- [2] N. Bourbaki, General Topology, Hermann, Paris (1966).
- [3] C. T. NG, On the continuous solutions of the functional equation f(f(x,u,v),v,w) = f(x,u,w), Aequationes Math., 8 (1972), pagg. 138-139.
- [4] C. T. Ng, Inverse system and the translation equation on topological spaces, (to appear).