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SoMMARI0. - In questo lavoro si classificano tutte le soluzioni dell’equazione
differenziale non lineare fortata con argomenti devianti:

" !

#0 0+ 2 % lgy O, % [, 01, ., ¥ [g, ) = o

con riguardo al loro comportamento per t—> oo e al loro carattere oscil-
latorio.

SUMMARY. - In this paper we élassify all solutions of the nonlinear forced
differential equation with deviating arguments:

0O+ 2 1,0 [gy O, % I8 O, % [, O]) = B ()

with respect to their behavior as t—s oo and to their oscillatory character.

1. Introduction.

Recently, Ladas-Ladde-Papadakis [3] and Ladas-Lakshmikantham-
Papadakis [4] classified all solutions of the following linear retarded

(*) Pervenuto in Redazione il 5 gennaio 1977.
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differential equations of the particular forms

x” ()— j'E_ P x [a H]=0
and |
x® O+ (=1 p ®) x [g(H]=0

with respect to their behavior as t— oo and to their oscillatory cha-
racter. Ladde [5] also generalized the results in [3] to the following
nonlinear differential equations with retarded arguments

¥ (0= I (6% 0, % (@ ON=0.

More recently, Staikos-Sficas [6] extended and improve the above
results to the following nonlinear differential equation with deviating
arguments

x® )+ ¢ x [g O, x [& O, ..., x [gn (H])=0
where

lim g ()=o0, j=1,2,..,m.

t—» oo

In their discussions they only treated with the unforced differential
equations. In the present paper, we extend Staikos-Sficas’s results to
the following more general nonlinear forced differential equation with
deviating arguments:

™ O+ I £ x [ga O], x [g2 O, e x [ OD=D ()

i=1
where the following conditions are always assumed to hold:
() f:€C [[t, )XR,R], i=1,2,..,m,
(ii) ¢€C [[t()s °°)5 R] »

(iii) giieC [[to, °°)’ R]; tlim gi]' (t):: co,
i=1,2,...,m; j=12,..,r

The oscillatory character is considered in the usual sence, i. e. a
continuous real-valued function which is defined for all large ¢ is called
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oscillatory if it has no last zero, and otherwise it is calléd“no‘n()s(:illaforjr’:
Let S denote the set of all solutions of equation (*) and S, S°, 57 ,
ST, L9877, 81, 87 subsets of S defined as follows.

S” ={x()eS: x @) is oscillatory }.

S'={x (HeS: x (#) is nonoscillatory and |
' ¥ () =0 as t—> oo, i=0,1,..,n—1}.

St ={x (€S: there exists an integer k, 0<k=<n-1,
with n+%& odd and such that

(C)  lim 9 () =oo for j=0,1, ...k,

t - co

Q) if k<n—2, then |lim x®*+D (#) exists in R,

(€ if k<n—3, then for j=k+2, .. n—1
lim x% ($)=0, x® ® 0,

- l-> o0
xD () 0+ () <0 for all large ¢}.

St “5{x (H€S: x (t) posses properties (C;) - (C3) e
for some integet k, 0<k=<n—1, with n+k even}

ST° ={x ()eS: —x (#) possess properties (C) - (Cy)
for some integer Ik, 0<k<pn— 1, with n+k odd}.

S:7 ={x (eS: —x (¢) possess propetrties (Cy) - (Cs)
for some integer'k, 0<k<p— 1, with n+k even}.
|

S~ L sTeuss™.

We now, introduce, the mhin conditions which will be used in
the classification of the solutions of (*). :

(@) There exists an OScifldtory function p (¢) such that

POO=3@®, lim p® (=0, j=0,1, .. n_1.
. t—=o0 |

|
|
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(B) For every t=t,
fi (¢,0,..,0)=0, i=1,2,.. ,m.

(y) For every constant c+0,

oo
[e=]

z ft‘"“ lf, (f, c, ...., c)]atzw.

i==1

(@) For every constant ¢%0,

E [U’ (t’ C8i (t)3 vee s CZir (t))l dt-——- oo,
Usiﬁg‘ COndiii;)h (a), (*) may Be written as :
(%) ¥® O+ 2 f:t,y [ga O] +p Lga O, .,y [g O] +p [g (91 =0

where y (H)=x ()—p (2).
In order to obtain our results we need the following three lemmas.

LEMMA 1. If x(f) is a positive (negative) solution of (*) for
t=>t, then there is a ti=t, for which y ()=x (t)—p (t) is a solution
of (**) for t=t, also there is an integer 1 with 0<I<n—1, n+I odd
if y? ()<0, n+1 even if y™ (t)=0 and such that for every t=t

y®) (1)>0 (y® (t)<0) for v=0,1,-..,1,
(A)

(—1)*H y® (1)>0 (— 1)+ y® (1) <0) for v=I+1,14+2, ..., 7,
(B) X B)yO (>0 for v=0,1,...,n.

ProoF. Since (A) is Lemma 1 of {1], we only ptove (B). If
x® () <0 then y» ()< —p* () for v=0,1,..,n Since y* (¢) is
positive or negative, p™ (f) is negative or positive respectively, a contra-
diction to the oscillatory character of p® () for v=0, 1, ..., n.

LEMMA 2 (Staikos-Sficas). If y () is as'in Lemma 1 and for some’
j=0,1,..,n—2 R
lim y? ()=c, ceR

t—oOO

then
lim yU+d () =0.

t + o0
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LEMMA 3 (Staikos-Sficas). Consider the linear differential equation

| ‘4, kO _
(1) z ~7 2+ —= =0,
where a is a positive integer %and h (t) is continuous on [T, oo’) where
T>0. Let u(t) be the solution of (1) on [T, ) satisfying u (T)=0.

If lim |k (t)|=h* exists in the extended real line R* then lim [u ()] =u*

t—+ co l t— oo
exists in R*. In particular h*=co implies u*= oo.

i

2. Theorems.

i
|
|

i

The monotonicity of f,, f =1,2,..,m are considered with respect
to the order in R defined as ffollows:

| .
Xi=(Xity oo s Xi) SYi= Vit our 5 Yir)

@xi,-sjh,- for i=1,2,.. ,m, i=1,2, .;.,1‘.

THEOREM 1. Let the conditions (a), (B) and (y) hold. If, for
each t=t, f: (1Y), i=1, 2,...,m, are nonincreasing (respectively,
nondecreasing) with respect |to y, i=1,2,...,m, then for n even
(respectively, odd)

S=8STUS'USt= US—°°,

while for n odd (respectively, | even)
S=8TUSteys§—=.

" In particular, for n odd (respectively, even) all bounded solutions
of equation (*) are oscillatory, while for n even (respectively, odd) all
bounded solutions of equation (*) are either oscillatory or tending
monotonically to zero as t —> o together with their first n-1 derivatives.

Pk-OOF. Let X(t)eS—SN. Let

1)) | Yy =x O —p @

From (*), (d) and (2) we have

3 YO+ I fix [gai(t)],’x [g2 (D1, ..., x [g« (n])=O0.

=1
|
|
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By the monotonicity of f;, i=1,2,...,m, we see that y™ (f) is of
constant sign for all large #. This and Lemma 1 implys that all deriva-
tives y? (t), j=0, 1, ...,n—1, are also of constant sign for all large ¢.
Therefore, lim y') (f) exists in the extended real line R* for every

t — o0

ji=0,1,..,n—1.
Suppose that lim x (£)%=0, then there exist T=t and M>0 such

t — oo

that for every t=T and for i=1,2,...,m, j=1,2,..,r

(4) lx [g5 O] =M.
Let t

gi ()= / sty (s) ds

T
q: ()=tq"i-1 (t) —Ti y@ (T) —iqi-1 (1.

Therefore, gi-1-(t) is a solution of the differential equation

then we obtain

(5) | z — T z4 "t— =0 |
where h:i (t)=—T'y® (H)—q: (t), i=0,1,...,n—1. We see easily that
this solution satisfies the initial condition g;—1 (T)=0.

Since

t

gn-1 ()= / sy (s) ds=
T
t

- .:] /S"'l fi (s, x [ga 9], ..., x [gir (5)]) ds,

T

from (3), (4) and conditions (), (ﬁ) and monotonicity of f;, i=1, 2,....,m,

we obtain
t

js" If: (s, M, ..., M)| ds,
=1

| if x is eventually positive,
an—l (t) =

g’ /s"" lfi (s, =M, ... ,—M)|ds
=1 ,

\ T : if x is eventually negative.
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Thus, by condition (y), o
im |gu_q ()] = oo
PR R . t— 60
and consequently

lim A, (8)] = co.

Applying Lemma 3 for the differential equation

we obtain

lim gu; () =+
. t— oo
and consequently

Iim Ihn_l (t)l =00,
t - oo

Therefore, we can apply again' Lemma 3 for the differential equation
I v

z'_ ’.1_—.:? Z+ hn;z(.g :0,

' t t
to obtain that L '
| lim iqn-—S ()==%o0o.
t — oo
1

Following the same procedure, we obtain finally

lim gy ()= =+ o,
t— o0

which gives that o
lim y ()= o,

. . t— oo

i. e. | ' | ,

lim x ()= =+ oo,

t -+ o0

since for every t=>T, YO =y (M) +qo (2).
Hence the only possible ¢ases for a nonoscillatory solution x (¢)
of equation (*) are the followfng ones: '

Cast 1° lim y (=0, i.e. lim x (f)=0.

t -+ 00 t— oo
From Lemma 2, we have that ifdr every j=1,2,..,n—1

lim y% (=0
t -+ bo

!
|
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and since yP (), j=0,1,..,n— 1 are eventually monotone, and
p?(#)—>0 as t— oo for j=0,1,..,n—1, we have xP (p), j=0,1,...
n—1 are eventually monotone. Hence x (£)eS°.

Case 2. lim y ()=co, i e: lim X (£)=oco.

t--soo t—+ o0

Let k be the greatest integer with 0 <k <n — 1 and for every
j=0,1, ..., k,
- lim y» ()= c0, i.e. lim xV ()= oo

t—»oo t—»oo

Obviously, if k<n—2, then

lim y*+D (¢), i. e. lim x™**D (¢)

t->00 . t— oo

exists in R and they are nonnegative. If k<n—3, then from Lemma 2,
for every j=k+2,..,n—1,

lim y? ()=0, i. e. lim x ()= 0

t — oo t — oo
and consequently it is easy to see that for all large ¢
xD (8) x9+D($) <0.

Finally in order to derive that for every j= k+2,..,n—1, 9 ()40
for all large ¢, it is enough to verify that x™ (¢) is not identically zero for
all large t. To do this, we see that, by (3), the monotonicity of f;,
i=1,2,...,m and conditions (a), (f), for t=T

ly™ ()| = | S (t M,..,M)| =o0.

t=1
Therefore, for all large ¢
o y (t)$0

Thus, x (f) possess propertles (Cl), (C) and (C3) Wthh means that
x (H)eSte=.

CaSE 3% lim y(f)=— o0, i. &. lim x ()= — co.

t— oo { —+ o0

Let k, be the greatest integer with 0<k=<n—1 and for every j=0, 1 e s K
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lim y ()= lim x? ()= — co.

t - oo t - oo

Similar to the Case 2° we %:an prove that —ux (f) posses properties
(C1), (Cy) and (Cs), which means that x (f)eS—. Therefore, we have
derived the

S=5~ USUSte Us—e.

In order to complete the pr(]ﬁof of our theorem, we must verify that

i
i

S'4=@ implies n even (respectively, odd).

In fact, if x (f)€S°, then by Lemma I, y(®)=x(®)—p (¥) is a solution
of (**). Let x (£)>0, then th)>0. Since y (f) is bounded, Lemma 1
implies (—1)*'y? (>0 for!j=0, 1, ..., n.
i.e. | |

—y@D (¢) yitD (t$_>_0, for j=0,1,..,n—1.

(=1"y @) ¢ @) .. v O y™ ()=0

implies (—1)"y (£) y™ (t)ZO.j Since y™ (f)%0 for all large ¢ and
y () y™ (£)=0 (respectively, =0), we. must have (—1)"=1 (respectively,
(—=1)"=—1), which means that n is even (respectively, odd).

THEOREM 2. Let the conditions (), (B), () and (3) hold. If, for
each t=ty, f:(t,Y), i=1,2,..,m, are nonincreasing with respect to
Y, i=1,2,..,m, then for nleven

S=8~ USUSHe uUsT™
while for n odd, n>1,
S=S~USteusT™.

ProoF. We assume that Si® <& and we consider a solution
x ())eSF ™ as well as the associated integer k. Since n4k is even, we
must always have k<n-—2. Using the present conditions and arguing
as in the proof of Theorem' 1, one again obtains that (4) and all
derivatives y® (), hence x% (¥), j=0,1, ... sn—1, are of consant sign
for all large ¢
| If for some integer d, 1<d<n-—1, and for all large ¢

(6) , x@ (1)>/0 and xU*+D (1) >0
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then, by choosing To=t, so ﬁhat x9 (To)>0 and using Taylor’ s
theorem, we have for all large ¢

% [gy (0] = £ x“’ (To)

8=0

[gi (H—Tol5 i=1,2,..,m; j=1,2,..,r

Hence there exists T=Te and M >0 such that for i=1,2,...,m
j=1,2,..,r and for every t=T

(7) x [g; ()1 =Mgi; (D).

From (4), (7), conditions (a), (ﬂ), and the monotonicity of f,, i=1, 2 yeunsttl,
we have

Yy @)=y (T)— X Z [ fi (s, x [ga1 ()], ..., x [gir (5)]) ds=

Zy(n—l) (T)— .§1 f fi (S, Mg (8), ... , Mg (s)) ds=

m

=y (T) + Z f |fi (s, Mgit (5), ... , Mg (s))] ds

and consequently, by condition (9),

lim y* D (f)=oc0, i. e. lim x" P ()= oo

{ - oo t — oo

which contradicts that k<n—2. Thus, (6) is impossible for any integer
d with 1=<d=<n-—1.

Since (6) is satisfied for d=k, we must have k=0 and, in addition,
n even. Thus, since by the monotonicity of f;, i=1,2,...,m, and condi-
tion (f), for all large ¢
y™ (=0, i. e. x (=0,

from condition (Cs5), we obtain for all large ¢,

¥y’ ®)=0, i. e. x” (H=0.
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Hencé, (6) is satisfied for d=1, a contradiction. It isrproved, now,
that S5 “=@, which means that ST*° =g, Similarly, we can prove
that ST =87 . |

THEOREM 3. Let the conditions (a), (B), (y) and ©) FHold. If, for
- each t=t, fi (1Y), i=1,2, 4 »m are nondecreasing with respect to
Y, i=1,2,..,m, then for n even .

S=8~ USH° us™
while for n odd, n>1 R :
S5=S~US".

Proor. Using the present conditions and arguing as in the proof
of Theorem 1, one again’ obtains (4) and all derivatives ¥ (£), hence
xD (), j=0,1,...,n—1 are lof constant sign for all large £ Let
x()eSt> and k be the associated integer. If k=1, then, by the
mean-value theorem, for each i=1,2, wm; j=1,2,..,r, and for
all large ¢,

®) x [g (0] =% (To) +x' (To) [gy ()—To]

where Ty is chosen so that x’ (To)>0. So, there exist T>T, and
M>0 such that for i=1, 2, wlymy j=1,2,...,r and for every =T,

O kg ®]=Me .

i

From this, by virtue of the imonotonicity of f;, i=1, 2,..,m, and
conditions (a), (§), we obtain | S » ,

. . tl 7 i
Yo (f) =y-D (T) — § / fi (s, x [ga (s)],j'..,x [gir (5)]) ds<

=1
A S,V(n-l) (T)—— _le /fl (S; Mgil (S), see s Mgir (S)) dS:,

=y(n=1) (T)—- :’_gll / If: (s, Mgs (s), ..., Mg (s))| ds
' E T ’ ) |

and consequently, by condition ((d),. the contradiction




OSCILLATORY AND ASYMPTOTIC CHARACTERIZATION ETC. 81

(10) lim y("—l) ()= — 0.

t —+ oo

Thus, k must be zero, which implies
y ()eST™ , if n is even,
y ()eST™ , if n'is odd.

Since, by the monotonicity of f, i=1,2,..,m, and conditions (a),
(B), ™ (1)<0 for all large ¢, in the case of odd n,

x” ()>0 for all large t.

Moreover, x (f) and x’ (f) are evenually positive and hence (8),
(9) and the contradiction (10) can again be derived in the considered
case of odd n. :

Therefore, for n even ST° =87, while for n odd St =&,
Similarly, we can prove that for n even S ©=8;", while for n odd
S—~=¢, This proves the theorem, since, by Theorem 1, the solutions’
of equation (*) admit the decomposition

S=S" US'USt> US—*, if n is odd,
and
S=STUSte US>, if n is even.
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