A REMARK ON SURJECTIVITY OF QUASIBOUNDED P-COMPACT MAPS (*)

by G. Conti and E. De Pascale (a Cosenza) (**)

Sommario. - Usando la teoria spettrale per operatori non lineari, recentemente introdotta da M. Furi ed A. Vignoli, si dà un teorema di suriettività per operatori P-compatti e quasi limitati. Come corollario si ottiene un teorema dovuto a W. V. Petryshyn.

Summary. - In the framework of a spectral theory for nonlinear maps, recently introduced by M. Furi and A. Vignoli, we give a surjectivity theorem for quasibounded P-compact operators. As a consequence we obtain a result due to W. V. Petryshyn.

I. Introduction.

Let E be a Banach space and $A: E \to E$ be a P-compact quasi-bounded operator (see definition below). In [4] W. V. Petryshyn proved that for any $\mu > M$, where M is the quasinorm of A, the operator $A - \mu I: E \to E$ is onto.

The purpose of this note is to show that Petryshyn's result remains true if we replace the condition $\mu > M$ with the weaker assumption $\mu > r^+(A)$, where $r^+(A)$ is the positive spectral radius of A. This result has been obtained using the spectral theory for non linear operators, introduced recently by M. Furi - A. Vignoli [2], and the topological degree for A-proper maps [5].

Lavoro fatto sotto gli auspici del « Consiglio Nazionale delle Ricerche ». (**) Indirizzo degli Autori: Dipartimento di Matematica - Università della Calabria - Cosenza.

^(*) Pervenuto in Redazione 1'8 aprile 1976.

II. Notations, definitions.

Let E be a real Banach space with the property that there exist a sequence $\{E_n\}$ of finite dimensional subspaces of E, $E_n \subset E_{n+1}$, $\overline{U_n E_n} = E$ and a sequence of linear projections $\{P_n\}$ such that $P_n E = E_n$ and $P_n x \to x$ for every $x \in E$.

DEFINITION 2.1. ([5]). A map $T: E \to E$ is said to be A-proper if for any n the operator $T_n = P_n T$ is continuous as a map from E_n into itself and if for any bounded sequence $\{x_k\}$ such that $x_k \in E_k$ and $T_k(x_k) \to g$, $g \in E$, there exist a subsequence $\{x_{k_j}\}$ and $x \in E$ such that $x_{k_j} \to x$ and Tx = g.

DEFINITION 2.2. ([4]). A map $T: E \rightarrow E$ is said to be *P*-compact if $T - \lambda I$ (where *I* denotes the identity of *E*) is *A*-proper for every $\lambda > 0$.

F. Browder and W. V. Petryshyn ([5]) defined a topological degree for A-proper maps having the basic properties of the classical Leray-Schauder degree.

Let B_r denote the closed unit ball of radius r centered at the origin, ∂B_r its boundary, $\overset{\circ}{B}_r$ its interior.

DEFINITION 2.3. A map $T: E \rightarrow E$ is said to be quasibounded (see A. Granas [3]) if there are positive real numbers A, B such that $||Tx|| \le A + B ||x||$ for any $x \in E$.

Let $T: E \to E$ be quasibounded. The number $|T| = \inf\{B > 0$: there exists A > 0 such that $||T(x)|| \le A + B||x||, x \in E\}$ is called the quasinorm of T.

It is easy to see that $|T| = \lim_{\|x\| \to +\infty} \frac{\|Tx\|}{\|x\|}$.

Let E be a Banach space over the complex or real field K and let $T: E \rightarrow E$ be quasibounded and continuous.

In [2] M. Furi - A. Vignoli defined a spectrum $\Sigma(T)$ of T in the following way:

$$\Sigma(T) = \{ \lambda \in K: d(T - \lambda I) = 0 \}$$

where

$$d(T-\lambda I) = \lim_{\|x\| \to +\infty} \inf \frac{\|Tx - \lambda x\|}{\|x\|}.$$

We observe that the properties of Σ and d listed in [2] hold true even without the continuity assumption on T. In particular one can prove that Σ (T) is compact.

Let E be a real Banach space and $T: E \to E$ be quasibounded. Define $r^+(T) = \sup \{\lambda \ge 0: \lambda \in \Sigma(T)\}$. If $\Sigma(T) = \Phi$ we put $r^+(T) = 0$. Clearly $r^+(T) \le |T|$.

III. Results.

Let E be a real Banach space and let $T: E \to E$ be a quasibounded, P-compact map. Assume that $\lambda \notin \Sigma(T) \ U(-\infty, 0]$. Then there exists $r_0 > 0$ such that $(T - \lambda I) \ x \neq 0$ for any $x \in E$ with $||x|| \geq r_0$. This implies that for any $r \geq r_0$ the Browder-Petryshyn degree of the A-proper map $T - \lambda I$ restricted to B_r is defined. Moreover we have that $Deg(I - \lambda I, B_r, 0)$ is indipendent of $r \geq r_0$.

In fact let $s > r \ge r_0$. Then $\text{Deg}(T - \lambda I, B_s \setminus B_r, 0) = \{0\}$ (see Property B_2 of [5]) and so

Deg
$$(T-\lambda I, B_s, 0)$$
 = Deg $(T-\lambda I, B_s \setminus \mathring{B_r}, 0)$ +
$$Deg (T-\lambda I, B_r, 0) = Deg (T-\lambda I, B_r, 0)$$

(see Property B_4 of [5]).

Therefore we can define $\deg(T-\lambda I)$: = $\deg(T-\lambda I, B_r, 0), r \ge r_0$. We call $\deg(T-\lambda I)$ « surjectivity degree » of the map $T-\lambda I$. The following Lemma holds:

LEMMA 3.1. Let $T: E \to E$ be P-compact and quasibounded. Assume that $\lambda \notin \Sigma(T) \ U(-\infty, 0]$. If $\deg(T - \lambda I) \neq \{0\}$ then $T - \lambda I$ is onto.

PROOF: Let $p \in E$. Consider the homotopy $H: E \times [0,1] \to E$ defined by $H(x,t) = Tx - \lambda x - tp$. Let us prove that there exists $r_0 > 0$ such that $Tx - \lambda x - tp \neq 0$ for any $x \in E$ with $||x|| \ge r_0$ and for any $t \in [0,1]$. In fact suppose that for any $n \in N$ there exists $x_n \in E$, $||x_n|| \ge n$, and $t_n \in [0,1]$ such that $Tx_n - \lambda x_n - t_n p = 0$. Since $t_n \in [0,1]$ we may assume $t_n \to t_0 \in [0,1]$.

Since $\frac{||Tx_n - \lambda x_n - t_0 p||}{||x_n||} \le |t_n - t_0| \frac{||p||}{||x_n||}$, it follows that $d(T - \lambda I - t_0 p) = 0$.

Thus $d(T-\lambda I)=d(T-\lambda I-t_0 p)=0$ contradicting the assumption $\lambda \notin \Sigma(T) U(-\infty,0]$.

The uniform continuity of H(x, t) with respect to $x \in \partial B_{r_0}$, insures that $\text{Deg}(T - \lambda I, B_{r_0}, 0) = \text{Deg}(T - \lambda I - p, B_{r_0}, 0)$ (see property B_3 of [5]). Thus there exists $x \in E$ such that $Tx - \lambda x = p$ (see Property B_2 of [5]).

We are in a position of proving our result:

THEOREM 3.1. Let $T: E \rightarrow E$ be a quasibounded, P-compact map. If $\lambda > r^+(T)$ then $T - \lambda I$ is onto.

PROOF. Consider the homotopy $H: Ex[0,1] \to E$ defined by $H(x,t)=t T(x)-\lambda x$ which is A-proper for every $t \in [0,1]$.

We want to show that there exists $r_0 > 0$ such that $H(x, t) \neq 0$ for every $x \in E$, $||x|| \ge r_0$ and $t \in [0, 1]$.

Assume the contrary. Then there exist $t_n \in [0, 1]$ and $x_n \in E$, $||x_n|| \ge n$ such that $t_n T(x_n) - \lambda x_n = 0$. We may assume, without loss of generality, that $t_n \to t_0$. Hence

$$\frac{\parallel t_{0} T(x_{n}) - \lambda x_{n} \parallel}{\parallel x_{n} \parallel} \leq |t_{n} - t_{0}| \frac{\parallel T(x_{n}) \parallel}{\parallel x_{n} \parallel} + \frac{\parallel t_{n} T(x_{n}) - \lambda x_{n} \parallel}{\parallel x_{n} \parallel} \leq |t_{n} - t_{0}| |T|.$$

It follows that $d(t_0 T - \lambda I) = 0$.

This is clearly impossible if $t_0=0$ since $d(0T-\lambda I)=\lambda$. Thus $t_0>0$.

But
$$0=d$$
 $(t_0 T-\lambda I)=t_0 d\left(T-\frac{\lambda}{t_0}I\right)>0$ since $\frac{\lambda}{t_0}>r^+$ (T) .

Since for any real number r > 0 the restriction of H to the subset ∂B_r is continuous in t uniformly with respect to $x \in \partial B_r$, it follows that $\text{Deg}(T - \lambda I, B_{r_0}, 0) = \text{Deg}(-\lambda I, B_{r_0}, 0)$, for any $r > r_0$. The right-hand side of the last equality is different from $\{0\}$ (see B_5 [5]). Hence $\text{deg}(T - \lambda I) \neq \{0\}$ and the statement follows from Lemma 3.1.

COROLLARY 3.1. (Petryshyn [3]).

Let $T: E \to E$ be a quasibounded P-compact map. If $\lambda > |T|$ then $T - \lambda I$ is onto.

PROOF: Follows immediately from the fact that $r^+(T) \le |T|$.

REMARK 3.1. We observe that if T is a monotone decreasing quasibounded operator defined in a Hilbert space H, then $\Sigma(T)$

 $\subset (-\infty, 0]$. In fact for any $\lambda > 0$ we have

$$\lim_{\left|\left|x\right|\right|\to\infty}\inf\frac{\left\|\left|\lambda x-T\left(x\right)\right\|}{\left\|x\right\|}=\lim_{\left|\left|x\right|\right|\to\infty}\inf\frac{\left\|\left|\lambda x-T\left(x\right)+T\left(0\right)\right\|}{\left\|x\right\|}\geq\lambda$$

(see Proposition 2.1, pag. 21 of [1]).

Hence if, in addition, T is P-compact (for this it sufficies that T is either continuous, demicontinuous, or weakly continuous) then $T-\lambda I$ is onto for any $\lambda > 0$.

REMARK 3.2. Obviously in Definition 2.2 we may require that $T-\lambda I$ is A-proper for any $\lambda < 0$. A result analogous to Theorem 3.1 can be obtained for the class of quasibounded operators $T \colon E \to E$, which are P-compact in the above sense. More precisely we have that $T-\lambda I$ is onto provided that $\lambda < r^-(T)$, where $r^-(T) = \inf \{ \mu \le 0 : \mu \in \Sigma(T) \}$. As a consequence we obtain in Corollary 3 of [4].

REFERENCES

- [1] H. Brezis, Operateurs maximaux monotones. Amsterdam 1973.
- [2] M. Furi A. Vignoli, A nonlinear spectral approach to surjectivity in Banach spaces. J. Functional Analysis 20 (1975), 304-318.
- [3] A. Granas, On a class of nonlinar mappings in Banach spaces. Bull. Acad. Pol. Sci. Cl. III 9 (1975), 867-870.
- [4] W. V. Petryshyn, Further remarks on Nonlinear P-compact operators in Banach spaces. J. Math. Anal. Appl. 16 (1966), 243-253.
- [5] W. V. Petryshyn, On the approximation-solvability of equations involving A-proper and pseudo-A-proper mappings. Bull Amer. Math. Soc. 81 (1975), 223-312.