SOME REMARKS ON ISOMORPHISMS
OF FUNCTION ALGEBRAS (*)

by R. Z. DomiaTy (in Graz) (**)

SOMMARIO. - Sia B (X) lalgebra reale di tutte le funzioni limitate a valori reali
f: X— W sull'insieme X (. In questa nota mostriamo che ogni iso-
morfismo @ fra le algebre B (X), B(Y) é indotto da una biiezione @ X—=Y

@D W: =1Ip~ )]

Infine proviamo un teorema riguardante la rappresentazione di isomorfismi
di certi sottomonoidi moltiplicativi di B(X) e accenniamo ad un’applica-
zione alla topologia generale.

SUMMARY. - B (X) be the real algebra of all bounded real-valued functions
f: X— R on the set X4 . We prove in this note, that every algebra
isomorphism @: B (X)—»B (Y) is induced by a bijection p: X—=>Y

& () (): = [p=t O]

Finally we prove a theorem concerning the representation of isomorphisms
of certain multiplicative submonoids of B (X) and mention an application
in general topology.

1. Notation. Let X+ be a set and B (X) the real algebra of
all bounded real-valued functions f: X -1 with the usual pointwise
operations; O resp. 1 are the zero and unit element in B (X). We
denote by S (X) the multiplicative monoid of the idempotents in B (X)
(we have S (X)={n | MC X} where the symbol yu is throughout resei-
ved for the characteristic function of the set MCX; we further use

(*) Pervenuto in Redazione 1’1 dicembre 1975.
(**) Indirizzo dell’Autore: Institut fiir Mathematik III - Technische
Universitiat Graz A-8010 Graz, Kopernikusg, 24.
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the abbreviation y, for y;5), P (X): ={x,€S (X)| peX} and Py (X):
=P (X)U{0}. Finally, if X and Y are sets, we put bij (X, Y) resp.
iso [B (X), B (Y)] for the set of all bijections ¢: X =Y resp. (algebra)-
isomorphisms @: B (X) — B (Y).

2. The main results. At first we notice, that every gebij (X,Y)
induces a canonical map

(1) 0*: B(X) > B (Y); ¢* (f): ={Op".
It is easy to show, that
Vo€ bij (X, Y): ¢* € iso [B(X), B (Y)]
and therefore the map
(2) #: bij (X, Y) —iso [B(X), B(V)]; # (p): =gt
is defined and is injective.

REMARKs 1. If we would have taken into account that B X)
together with the uniform norm |[|f||: = sup |f (x)| is a Banachalgebra,
we could also show that g -in (1) is a norm-isometry.

2. The operator in (1) is well known; see for example [2], 4.2,
p. 76, where the symbol € (p) is used instead of ¢*.
The main theorem is

THEOREM 1. The map # in (2) is bijective.

This generalizes in some sense a result of Z. SEMADENI, [2],
7.7.1, p. 127. By the NaGasawA-theorem ([3], 149) not only every
algebra isomorphism has a representation of the form (2) but also
every norm isometry @: B (X)— B(Y) with & (0)=0 and o (=1
must be of the form (2). An immediate consequence of theorem 1,
which has an important application in topology, is

THEOREM 2. Let MCS(X) and NCS(Y) be submonoids,
@: [MUP, (X)] = [NUPy(Y)] a monoid-isomorphism and denote by
M*SM resp. N*SN the monoid which is generated by M—P,(X)
resp. N—Po(Y). Then there exists a @ebij (X,Y) such that

ot [IMUP (X)] =0.
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Further, we get
& (M)=N & & (M —M*)=N—N*,

3. Proof of theoremes 1 and 2.
ProorF OF THEOREM 1. Let
@€ iso [B (X), B (Y)]
be any fixed isomorphism. It is easy to show
D [S(X)]=S8(Y)
and
@ [P (X)]=P ()

and therefore the mappings

(3) Ds: =P | S (X): S(X)—>S(Y)
and
(4) Dp: =P |P(X): P(X)~>P(Y)

are Dbijections. If we denote by a: X—=P(X); a(x): = x. and.
f: Y= P(Y); f(y): =y, the canonical bijections and consider the dia-
gram
o
¥

L e
p

Y — P(Y)

— P(X)

we recognise by (4) that @, defines in a unique way a map

(5) p: =f10d,Oac€ bij (X, Y).
Now we will show
(6) VYMCX: &s (xm) = Ypr)

To do this, let us denote by 2* resp. 2¥ the powerset of X resp.
Y,y: 2= S (X); y(M): =yu and &: 2¥ = S (Y); 6 (Q): =yxo. Then
by (3) @s induces a unique natural map

7: =8-10®sOye bij (2%, 27)
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and we obtain immediately
(7) VMEX: &s (xm) = xa0r)
so we only need to show
VYMEX: # (M)=9 (M)={9p (x) | xeM}.

But this is trivial for M=@ and a simple consequence of (4), (5) and
(7) in the case M={x}. In the general case we proceede directly.

XEM = Y o) =Ds () =Ds (3 xm) =
=Ps (1) Ps (Xu) = Xot@) * Xn3r) =9 (X) €7 (M) = o (M) S 7 (M).
2€X (M) = X1y =Ps™' (X)=Ps™ (e xaan)) =
=057 (1) Bs ™ (Latan)) = X1y - 2 => 071 () €M =5 7 (M) S (M).
This proves (6), which means
(8) Ds=p*| S (X).
Finally we extend (8) to B (X):
9) ' D=0t .

We show (9) indirect. Assume that ®4g¢*. Then there exists a geB (X)
such that ¢’ (g)+P (g) and therefore a zeX with

g@)=0*(@[p ]+ (9 [ (2)].

Now put f: = g-x.€B(X). Trivially, we have f=wy, with w:
=g (z2)€R; this implies with (8)

WX ez =W ot ()= ® () =9 (w y)=

=D (=D (g x)=P(2)-D (Y)=D (8)* X pz) -
Thus we obtain

E@D=0w=wxemlp D= (@) X onlp )= (g) [» (2)].
This contradiction proves (9), and so the proof of theorem 1 is complete.

3
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PROOF OF THEOREM 2. As in the proof of theorem 1 we can
show, that @ [P (X)] = P (Y), which implies the existence of a
p€ebij (X, Y) such that

ot | [MUP, (X)] =9.

Because @ [Py (X)]=Po(Y) and @ [M—Py (X)]=N—P, (Y) we obtain
@ (M*)=N*; and therefore

dM=N&DdM-M*)=N-—-N*

(with M—M*CMNP,(X) and N—N*CNNP,(Y)) because M=
=(M—M*)UM* and N=(N—=N*)UN* are partitions.

4. A topological application.

4. A topological application. Let L* (X) denote the semiring of
all nonnegative realvalued lower semicontinuous functions on the
topological space X, I (X) the multiplicative monoid of all idempo-
tents in L* (X), I'* (X) the submonoid of I (X) which is generated by
the set I (X)—P (X) and D (X): =1 (X)—I* (X). It is evident that
D (X)CP (X) and contains at most two elements. ‘

THEOREM ([1]). Two topological spaces X and Y are homeomor-
phic iff there exists a monoid-isomorphism

@: [I(X)UP(X)] =T (Y)UP (V)]

such that
& [D(X)]=D (Y).
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