SOME REMARKS ON ISOMORPHISMS OF FUNCTION ALGEBRAS (*)

by R. Z. Domiaty (in Graz) (**)

Sommario. - Sia B(X) l'algebra reale di tutte le funzioni limitate a valori reali $f: X \to \mathbb{R}$ sull'insieme $X \neq \emptyset$. In questa nota mostriamo che ogni isomorfismo Φ fra le algebre B(X), B(Y) è indotto da una biiezione $\varphi: X \to Y$

$$\Phi\left(f\right)\left(t\right)\colon=f\left[\varphi^{-1}\left(t\right)\right].$$

Infine proviamo un teorema riguardante la rappresentazione di isomorfismi di certi sottomonoidi moltiplicativi di B(X) e accenniamo ad un'applicazione alla topologia generale.

SUMMARY. - B(X) be the real algebra of all bounded real-valued functions $f\colon X \to \mathbb{R}$ on the set $X \neq \emptyset$. We prove in this note, that every algebra isomorphism $\Phi\colon B(X) \to B(Y)$ is induced by a bijection $\Phi\colon X \to Y$

$$\Phi(f)(t) := f[\varphi^{-1}(t)].$$

Finally we prove a theorem concerning the representation of isomorphisms of certain multiplicative submonoids of B(X) and mention an application in general topology.

1. Notation. Let $X \neq \emptyset$ be a set and B(X) the real algebra of all bounded real-valued functions $f: X \to \mathbb{R}$ with the usual pointwise operations; 0 resp. 1 are the zero and unit element in B(X). We denote by S(X) the multiplicative monoid of the idempotents in B(X) (we have $S(X) = \{\chi_M \mid M \subseteq X\}$ where the symbol χ_M is throughout reserved for the characteristic function of the set $M \subseteq X$; we further use

^(*) Pervenuto in Redazione l'1 dicembre 1975.

^(**) Indirizzo dell'Autore: Institut für Mathematik III - Technische Universität Graz A-8010 Graz, Kopernikusg, 24.

the abbreviation χ_p for $\chi_{\{p\}}$), P(X): ={ $\chi_p \in S(X) \mid p \in X$ } and $P_0(X)$: = $P(X) \cup \{0\}$. Finally, if X and Y are sets, we put bij (X, Y) resp. iso [B(X), B(Y)] for the set of all bijections $\varphi: X \to Y$ resp. (algebra)-isomorphisms $\Phi: B(X) \to B(Y)$.

2. The main results. At first we notice, that every $\varphi \in \text{bij}(X, Y)$ induces a canonical map

(1)
$$\varphi^{\sharp} \colon B(X) \to B(Y); \ \varphi^{\sharp}(f) \colon = f \circ \varphi^{-1}.$$

It is easy to show, that

$$\forall \varphi \in \text{bij } (X, Y): \varphi^{\sharp} \in \text{iso } [B(X), B(Y)]$$

and therefore the map

(2)
$$\#: \text{ bij } (X, Y) \rightarrow \text{ iso } [B(X), B(Y)]; \# (\varphi): = \varphi^{\#}$$

is defined and is injective.

REMARKS 1. If we would have taken into account that B(X) together with the uniform norm $||f|| := \sup |f(x)|$ is a Banachalgebra, we could also show that φ^{\sharp} in (1) is a norm-isometry.

2. The operator in (1) is well known; see for example [2], 4.2, p. 76, where the symbol $\mathcal{C}(\varphi)$ is used instead of $\varphi^{\#}$.

The main theorem is

THEOREM 1. The map # in (2) is bijective.

This generalizes in some sense a result of Z. Semadeni, [2], 7.7.1, p. 127. By the Nagasawa-theorem ([3], 149) not only every algebra isomorphism has a representation of the form (2) but also every norm isometry $\Phi: B(X) \to B(Y)$ with $\Phi(0) = 0$ and $\Phi(1) = 1$ must be of the form (2). An immediate consequence of theorem 1, which has an important application in topology, is

THEOREM 2. Let $M \subseteq S(X)$ and $N \subseteq S(Y)$ be submonoids, $\Phi: [M \cup P_0(X)] \to [N \cup P_0(Y)]$ a monoid-isomorphism and denote by $M^* \subseteq M$ resp. $N^* \subseteq N$ the monoid which is generated by $M - P_0(X)$ resp. $N - P_0(Y)$. Then there exists a $\varphi \in bij(X, Y)$ such that

$$\varphi^{\sharp} \mid [M \cup P_0(X)] = \Phi.$$

Further, we get

$$\Phi(M) = N \Leftrightarrow \Phi(M - M^*) = N - N^*.$$

3. Proof of theorems 1 and 2.

Proof of theorem 1. Let

$$\Phi \epsilon$$
 iso $[B(X), B(Y)]$

be any fixed isomorphism. It is easy to show

$$\Phi [S(X)] = S(Y)$$

and

$$\Phi [P(X)] = P(Y)$$

and therefore the mappings

(3)
$$\Phi_{S} := \Phi \mid S(X) : S(X) \to S(Y)$$

and

(4)
$$\Phi_P := \Phi \mid P(X) : P(X) \to P(Y)$$

are bijections. If we denote by $\alpha: X \to P(X)$; $\alpha(x):=\chi_x$ and $\beta: Y \to P(Y)$; $\beta(y):=\chi_y$ the canonical bijections and consider the diagram

$$egin{array}{cccc} X & \stackrel{\pmb{lpha}}{-----} & P\left(X
ight) \\ arphi & & & & & & & & & & & \\ arphi & & & & & & & & & & \\ Y & \stackrel{\pmb{eta}}{-----} & & & & & & & & & \\ Y & \stackrel{\pmb{\beta}}{------} & & & & & & & & & \\ \end{array}$$

we recognise by (4) that Φ_P defines in a unique way a map

(5)
$$\varphi \colon = \beta^{-1} \bigcirc \Phi_P \bigcirc \alpha \in \text{bij } (X, Y).$$

Now we will show

$$(6) \qquad \forall M \subseteq X: \ \Phi_{S}(\chi_{M}) = \chi_{\varphi(M)}.$$

To do this, let us denote by 2^X resp. 2^Y the powerset of X resp. $Y, \gamma: 2^X \to S(X); \gamma(M): = \chi_M$ and $\delta: 2^Y \to S(Y); \delta(Q): = \chi_Q$. Then by (3) Φ_S induces a unique natural map

$$\pi:=\delta^{-1}\bigcirc\Phi_S\bigcirc\gamma\epsilon$$
 bij $(2^X,2^Y)$

and we obtain immediately

$$\forall M \subseteq X: \ \Phi_{S} (\chi_{M}) = \chi_{\pi(M)},$$

so we only need to show

$$\forall M \subseteq X: \pi(M) = \varphi(M) = \{\varphi(x) \mid x \in M\}.$$

But this is trivial for $M = \emptyset$ and a simple consequence of (4), (5) and (7) in the case $M = \{x\}$. In the general case we proceede directly.

$$x \in M \Rightarrow \chi_{\varphi(x)} = \Phi_{S} (\chi_{x}) = \Phi_{S} (\chi_{x} \cdot \chi_{M}) =$$

$$= \Phi_{S} (\chi_{x}) \cdot \Phi_{S} (\chi_{M}) = \chi_{\varphi(x)} \cdot \chi_{\pi(M)} \Rightarrow \varphi (x) \in \pi (M) \Rightarrow \varphi (M) \subseteq \pi (M).$$

$$z \in \pi (M) \Rightarrow \chi_{\varphi^{-1}(z)} = \Phi_{S^{-1}} (\chi_{z}) = \Phi_{S^{-1}} (\chi_{z} \cdot \chi_{\pi(M)}) =$$

$$= \Phi_{S^{-1}} (\chi_{z}) \cdot \Phi_{S^{-1}} (\chi_{\pi(M)}) = \chi_{\varphi^{-1}(z)} \cdot \chi_{M} \Rightarrow \varphi^{-1} (z) \in M \Rightarrow \pi (M) \subseteq \varphi (M).$$

This proves (6), which means

(8)
$$\Phi_{S} = \varphi^{\sharp} \mid S(X).$$

Finally we extend (8) to B(X):

$$\Phi = \varphi^{\sharp}.$$

We show (9) indirect. Assume that $\Phi + \varphi^{\sharp}$. Then there exists a $g \in B(X)$ such that $\varphi^{\sharp}(g) + \Phi(g)$ and therefore a $z \in X$ with

$$g(z) = \varphi^{\sharp}(g)[\varphi(z)] \neq \Phi(g)[\varphi(z)].$$

Now put $f: = g \cdot \chi_z \in B(X)$. Trivially, we have $f = \omega \chi_z$ with ω : $= g(z) \in \mathbb{R}$; this implies with (8)

$$\omega \chi_{\varphi(z)} = \omega \varphi^{\sharp} (\chi_{z}) = \omega \Phi (\chi_{z}) = \Phi (\omega \chi_{z}) =$$

$$= \Phi (f) = \Phi (g \cdot \chi_{z}) = \Phi (g) \cdot \Phi (\chi_{z}) = \Phi (g) \cdot \chi_{\varphi(z)}.$$

Thus we obtain

$$g(z) = \omega = \omega \chi_{\varphi(z)}[\varphi(z)] = \Phi(g) \cdot \chi_{\varphi(z)}[\varphi(z)] = \Phi(g)[\varphi(z)].$$

This contradiction proves (9), and so the proof of theorem 1 is complete.

PROOF OF THEOREM 2. As in the proof of theorem 1 we can show, that $\Phi[P(X)] = P(Y)$, which implies the existence of a $\varphi \in \text{bij}(X, Y)$ such that

$$\varphi^{\#} \mid [M \cup P_0(X)] = \Phi.$$

Because $\Phi[P_0(X)] = P_0(Y)$ and $\Phi[M-P_0(X)] = N-P_0(Y)$ we obtain $\Phi(M^*) = N^*$; and therefore

$$\Phi(M) = N \Leftrightarrow \Phi(M - M^*) = N - N^*$$

(with $M-M^*\subseteq M\cap P_0(X)$ and $N-N^*\subseteq N\cap P_0(Y)$) because $M=(M-M^*)\cup M^*$ and $N=(N-N^*)\cup N^*$ are partitions.

4. A topological application.

4. A topological application. Let $L^+(X)$ denote the semiring of all nonnegative realvalued lower semicontinuous functions on the topological space X, I(X) the multiplicative monoid of all idempotents in $L^+(X)$, $I^*(X)$ the submonoid of I(X) which is generated by the set I(X)-P(X) and $D(X):=I(X)-I^*(X)$. It is evident that $D(X)\subseteq P(X)$ and contains at most two elements.

THEOREM ([1]). Two topological spaces X and Y are homeomorphic iff there exists a monoid-isomorphism

$$\Phi \colon \left[I\left(X\right) \cup P\left(X\right) \right] \to \left[I\left(Y\right) \cup P\left(Y\right) \right]$$

such that

$$\Phi [D(X)] = D(Y).$$

REFERENCES

- [1] R. Z. Domiaty, Characterizing topologies by functions, (to appear).
- [2] Z. Semadeni, Banach spaces of continuous functions I, Warszawa, 1971.
- [3] W. ZELAZKO, Banach Algebras, Warszawa, 1973.