AN ISOMORPHISM THEOREM ON A BANACH ALGEBRA (*)

by E. O. Oshobi (in-Ile-Ife) (**)

- Sommario. Sia A_i (i=1,2) un'algebra riflessiva di Banach. Dimostreremo che un isomorfismo dell'algebra di moltiplicatori A_1^m su A_2^m che sia un'isometria porta il gruppo G_1 dei moltiplicatori isometrici ed invertibili nella topologia forte di operatori (SOT) sul gruppo G_2 della topologia debole di operatori (WOT).
- Summary. Let A_i (i=1,2) be a reflexive Banach algebra. We shall show that an algebra isomorphism of the multiplier algebra A_1^m onto A_2^m which is an isometry maps the group of isometric and invertible multipliers G_1 in the strong operator topology (SOT) onto G_2 in the weak operator topology (WOT).

1. Introduction.

In [2] Gaudry showed that if $m_p(G_i)$ denotes the set of all right multipliers of $L^p(G_i)$ ($i=1,2; 1 \le p < \infty; p \ne 2; G_i$ a locally compact Hausdorff group) and T is an isametric isomorphism of $m_p(G_1)$ onto $m_p(G_2)$, then G_i and G_2 are isomorphic topological groups. In this short note we try to investigate to what extent this result holds when $L^p(G)$ is replaced by a Banach algebra though $L^p(G)$ is not, in general, an algebra.

2. Notation.

Throughout this paper A denotes a reflexive Banach algebra which is without order (i. e. $A = A^{**}$ and $\forall x \in A$, $xA = (0) \Rightarrow x = 0$

^(*) Pervenuto in Redazione il 30 luglio 1975.

^(**) Indirizzo dell'Autore: Department of Mathematics, University of Ife, Ile-Ife (Nigeria).

or $Ax=(0) \Rightarrow x=0$), A^* denotes the dual of A. A^m is the Banach algebra of left multipliers of A and G the group of isometric and invertible multipliers. It is easy to show that G is a topological group in the norm, strong and weak operator topologies (SOT and WOT). (see [3]). A^m (SOT) shall mean A^m with the strong operator topology. Similarly for A^m (WOT). L_x denotes the left multiplication operator; and we shall also assume throughout the note that A^2 is dense in A.

- 3. Before the main theorem is proved we shall consider the following important lemma:
- 3.1. LEMMA: Let T be a norm bounded homomorphism of A_1^m onto A_2^m ; T restricted to norm bounded sets is continuous as a mapping of A_1^m (SOT) onto A_2^m (WOT).

Proof: Let (φ_i) be a net in A_1^m which is norm bounded and convergent in the SOT to φ (i. e. $\varphi_i(x) \xrightarrow{\text{norm}} \varphi(x)$ for $x \in A_I$ and $||\varphi_i|| \leq M < \infty$).

Since

$$\begin{split} \|L_{\varphi_{i}x} - L_{\varphi x}\| &= \sup_{\|y\| \leq 1} \|L_{\varphi_{i}x} y - L_{\varphi x} y\| = \sup_{\|y\| \leq 1} \|(\varphi_{i} x) y - (\varphi x) y\| \\ &\leq \sup_{\|y\| \leq 1} \|\varphi_{i} x - \varphi x\| \|y\| \leq \|\varphi_{i} x - \varphi x\| \end{split}$$

then if $\varphi_i x$ tends to φx in norm, $L_{\varphi_i x}$ tends to $L_{\varphi x}$ in the uniform norm topology of A_1^m . Since T is norm bounded, it is continuous in norm, hence $TL_{\varphi_i x}$ tends $TL_{\varphi x}$ in the norm of A_2^m . But uniform norm topology is stronger than weak operator topology; hence $f[(TL_{\varphi_i x}) y^1]$ tends to $f[TL_{\varphi x}) y^2$ $\forall f \in A_2^*$ and $y^1 \in A_2$. Since $L_{\varphi_i x} = \varphi_i L_x$, then

(1)
$$f[T(\varphi_i \cdot L_x) y^1]$$
 tends to $f[T(\varphi \cdot L_x) y^1]$

since T is norm bounded, $(T \varphi_i)$ is norm bounded; and since A_2 is reflexive, $(T \varphi_i)$ is contained in a set which is compact in WOT (see [1]). Hence $(T \varphi_i)$ has a subset which converges to $\psi^1 \in A_2^m$ in the WOT.

i. e. $f[(T \varphi_i) y^1]$ tends to $f(\psi^1 y^1)$ where

$$f \in A_2^*$$
 and $y^1 \in A_2$.

(We have used the same notation for subnet as net.).

Hence

(2)
$$f[(T \varphi_i T L_x) y^1]$$
 tends to $f[(\psi^1 T L_x) y^1]$.

From (1) and (2)

$$f [(\psi^1 \cdot T L_x) y^1] = f [(T \varphi \cdot T L_x) y^2]$$

$$\forall f \in A_2^* \text{ and } y \in A_2.$$

(3) i. e.
$$\psi^1 \cdot T L_x = T \varphi \cdot T L_x$$

Applying T^{-1} to (3), we have

$$T^{-1}\psi^1\cdot L_x=\varphi\cdot L_x$$
.

Hence $(T^{-1}\psi^1 - \varphi) L_x y = o \quad \forall y \in A_1$ and so $(T^{-1}\psi^1 - \varphi) xy = o \quad \forall y \in A_1$ since A_1^2 is dnese in A_1 , we have $T^{-1}\psi^1 = \varphi$

i. e.
$$T \varphi = \psi^1$$
.

Therefore $T \varphi_i$ tends to $T \varphi$ in the WOT and the proof is complete.

3.2. THEOREM: T, an isometric algebra isomorphism of A_1^m onto A_2^m maps G_1 (SOT) onto G_2 (WOT).

PROOF. (i) Tis onto: Let $\varphi \in G_1$; then

(4)
$$||\varphi^1|| = ||T\varphi|| = ||\varphi|| = 1$$

where $T \varphi = \varphi^1$.

Since T is an algebra isomorphism onto, $I^1 = T(I) = T(\varphi \varphi^{-1}) = T(\varphi^{-1}) = T(\varphi^{-1}) = \varphi^1 T(\varphi^{-1})$ where I and I^1 are the identities in A_1^m and A_2^m respectively.

Hence $T \varphi^{-1} = (\varphi^1)^{-1}$ and

(5)
$$||(\varphi^1)^{-1}|| = ||T \varphi^{-1}|| = ||\varphi^{-1}|| = 1$$

i. e. $\varphi^1 \in G_2$.

Conversely if $\varphi^1 \in G_2$, then $||T^{-1} \varphi^1|| = ||\varphi^1|| = 1$. Therefore T is onto

(ii) T is continuous: Let $\{\varphi_i\}$ a net in G_i ; $(T \varphi_i)$ is a norm bounded set in G_2 since T is an isometry. T is also continuous in norm for the same reason. Using 3.1, (ii) is proved.

(iii) T^{-1} is continuous: By the open mapping theorem, T^{-1} is bounded and hence continuous in norm. Let (φ_i) be a net in G_2 , then $(T^{-1}\varphi_i^1)$ is a norm bounded set in G_1 and using 3.1 again, (iii) is proved and hence the theorem.

Remark: If T is assumed to be just norm decreasing, it has not been possible to prove theorem 3.2 without the strong conditions of SOT coinciding with WOT on G_i and G_i generating A_i in both SOT and WOT. One example of an algebra which makes 3.2 to hold however is $L^p(G)$ for compact group G.

BIBLIOGRAPHY

- [1] DUNFORD N. and SCHWARTZ J., Linear operators (Part 1) Interscience, New York 1958.
- [2] GAUDRY G. L., Isomotphism of multiplier Algebras, Canad. J. Math. 20 1165-1172 (1968).
- [3] Greenleaf F. P., Characterization of group algebras in terms of their translation operators. Pacific Journal of maths. Vol. 18 No. 2 1966 243-276.