COMMUTATIVE INVERSE PROPERTY LOOPS AS GROUPOID WITH ONE LAW (*)

by B. L. SHARMA (in Ile-Ife) (**)

Sommario. - Lo scopo di questo lavoro è di dare una caratterizzazione dei loops commutativi dotati di inverso come sottovarietà di gruppoidi con una sola identità.

Summary. - The object of this paper is to give characterization of commutative inverse property loops as a subvariety of groupoids with a single identity.

1. Introduction: One of the problems of varieties is to define some class of varieties by a single identity. Higman and Neumann [1] have solved this problem for groups and Abelian groups. Padmanabhan [4] has solved this problem for inverse loops and generalized the corresponding result for groups due to Higman and Neumann [1]. The object of this paper is to show that every variety of commutative inverse property loops which can be defined by a finite system of laws as a subvariety of the variety of commutative inverse property loops can be defined by a single law as a subvariety of groupoids. This generalizes the corresponding results for Abelian groups proved by Higman and Neumann [1]. An interesting corollary is that commutative Moufang loops can be defined by means of a single law. For algebraic properties of commutative inverse property loops see, Bruck [3].

^(*) Pervenuto in Redazione il 30 luglio 1975.

^(**) Indirizzo dell'Autore: Department Mathematics, University of Ife, Ile-Ife, Nigeria.

2. Let $\langle Q, \cdot \rangle$ be a loop with identity e. Then Q is said to be a loop with CIP (commutative inverse property) if to each element x in Q there corresponds a unique element x^{-1} of Q such that

(1)
$$x^{-1}(x \cdot y) = (y \cdot x) x^{-1} = y$$
, $xy = yx$ for all $x, y \in Q$.

According to Bruck [3, p. 292] the CIP loop Q also satisfies the identities

(2)
$$x \cdot x^{-1} = x^{-1} \cdot x = e, (x^{-1})^{-1} = x, (x \cdot y)^{-1} = y^{-1} \cdot x^{-1} = x^{-1} \cdot y^{-1},$$

for all $x, y \in Q$.

Let $\langle Q, * \rangle$ be a groupoid, we say that the groupoid $\langle Q, * \rangle$ is an iso - CIP loop if there is a CIP loop $\langle Q, \bigcirc \rangle$ which is a principal isotope of $\langle Q, * \rangle$ such that '*' and ' \bigcirc ' are connected by the relation $x * y = x \bigcirc y^{-1}$.

THEOREM 1. A necessary and sufficient condition that a groupoid $\langle Q, * \rangle$ is an iso - CIP loop is that

(3)
$$z = (u * u) * [((v * v) * (z * (v * x))) * ((t * t) * (x * y))]$$

for all $x, y, z, u, v, t \in Q$.

Proof: Sufficiency: Let the identity (3) hold in $\langle Q, * \rangle$. First we shall show that (*) is right cancellative. Let z * a = w * a for some $a \in Q$. Now, by the given identity, any element a in Q is of the form b * c for some $b, c \in Q$, so

$$z = (u * u) * [((v * v) * (z * (b * c))) * ((t * t) * (c * b))]$$

$$= (u * u) * [((v * v) * (w * (b * c))) * ((t * t) * (c * b))] = w.$$

Thus (*) is right cancellative. Using the right cancellative, from (3), keeping x, y, z, v, t the same and changing u to w, and using (3), we get

(4)
$$u * u = w * w = \text{constant} = e \text{ (say) for all } u, w \in Q.$$

with the help of (4), (3) becomes

(5)
$$z=e^*[(e^*(z^*(y^*x)))]*(e^*(x^*y))]$$
 for all $x, y, z \in Q$.

Putting z=y * x in (5),

(6)
$$y * x = e * [e * (e * (x * y))]$$

Putting x=y in (5),

(7)
$$z=e^*[(e^*(z^*e))^*e].$$

Let a * z = a * w. Then, by (6),

$$z * a = e * [e * (e * (a * z))] =$$

$$=e * [e * (e * (a * w))] = w * a.$$

On using the right cancellative of (*), we have z=w. Thus (*) is left cancellative. Next, by (7),

$$e * (e * z) = e * (e * (e * (e * (z * e)) * e))) = e * (e * (z * e)),$$

on using the left cancellative of (*), we have

$$(8) z=z*e.$$

With the help of (8), (7) becomes

(9)
$$z=e^*(e^*z)$$
.

With the help of (9), (6) becomes

(10)
$$y * x = e * (x * y).$$

Let us define $\langle Q, O \rangle$ as follows.

(11)
$$x \circ y = x * y^{-1}$$
 and

(12)
$$x^{-1}=e * x \text{ for all } x, y \in Q.$$

Now we shall show that $\langle Q, \bigcirc \rangle$ is a CIP loop.

(13)
$$x \circ e = x * (e * e) = x \text{ by (8), for all } x \in Q.$$

(14)
$$e \circ x = e * (e * x) = x \text{ by (9), for all } x \in Q.$$

(13) and (14) imply that e is the identity of $\langle Q, O \rangle$.

(15)
$$(x^{-1})^{-1} = (e * x)^{-1} = e * (e * x) = x \text{ for all } x \in Q.$$

Since the equations a * x = b and y * a = b have unique solutions in the groupoid $\langle Q, * \rangle$. Thus the equations $a \cap x = b$ and $y \cap a = b$ have unique solutions in the systems $\langle Q, \cap \rangle$. Thus we have proved that $\langle Q, \cap \rangle$ is a loop. Further

$$x \cap (y^{-1} \cap x^{-1}) = x * (y^{-1} * x)^{-1} = x * (e * (y^{-1} * x)) = x * (x * y^{-1})$$

by (10) $=x \circ (x \circ y)^{-1}$, on using the left cancellative of (0), we have

(16)
$$(x \bigcirc y)^{-1} = y^{-1} \bigcirc x^{-1}$$
 for all $x, y \in Q$. From (5)
$$x^{-1} = e^* \left[(e^* (x^{-1} * (y * e))) * (e^* (e * y)) \right]$$
$$= \left[(x^{-1} \bigcirc y^{-1})^{-1} \bigcirc y^{-1} \right]^{-1} \text{ by (11) and (12)}$$
$$= \left[(y \bigcirc x) \bigcirc y^{-1} \right]^{-1} \text{ by (16), it implies that}$$
$$(17) \qquad x = (y \bigcirc x) \bigcirc y^{-1} \text{ for } x, y \in Q.$$

With the help of (16), we write

$$x^{-1} \bigcirc y^{-1} = [((x \bigcirc y) \bigcirc x^{-1}) \bigcirc (x \bigcirc y)^{-1}] \bigcirc y^{-1}$$

$$= (y \bigcirc (x \bigcirc y)^{-1}) \bigcirc y^{-1} \text{ by (16)}$$

$$= (x \bigcirc y)^{-1} \text{ by (16)},$$

it gives

(18)
$$(x \circ y)^{-1} = x^{-1} \circ y^{-1} \text{ for all } x, y \in Q.$$

(16) and (18) imply that

(19)
$$x \bigcirc y = y \bigcirc x \text{ for all } x, y \in Q.$$

From (17) and (19) imply that left inverse property and right inverse property are true for the loop $\langle Q, \bigcirc \rangle$. Thus $\langle Q, \bigcirc \rangle$ is a CIP loop. It follows that $\langle Q, * \rangle$ is an iso - CIP loop.

Necessity: Let the groupoid $\langle Q, * \rangle$ be an iso - CIP loop. Let $\langle Q, \bigcirc \rangle$ be the corresponding CIP loop with identity e. The binary

operations (*) and (O) are connected by

(20) $x * y = x \bigcirc y^{-1}$ for all $x, y \in Q$ and (15) and (16) are true.

Putting y=x in (20), it gives

$$x * x = e.$$

Putting x=e in (20), it gives

$$(12) x^{-1} = e * x.$$

Further we consider

$$z = [((x \bigcirc y^{-1}) \bigcirc z^{-1}) \bigcirc (x \bigcirc y^{-1})^{-1}]^{-1} \text{ by (17)}$$

$$= [(z \bigcirc (x \bigcirc y^{-1})^{\perp 1})^{-1} \bigcirc (y \bigcirc x^{-1})]^{-1} \text{ by (16)}$$

$$= [(z * (x * y))^{-1} * (y * x)^{-1}]^{-1} \text{ by (20)},$$

on using (4) and (12), we get

(3)
$$z = (u * u) * [((v * v) * (z * (y * z))) * ((t * t) * (x * y))].$$

This completes the proof of the theorem.

3. Let $w = w(x_1, ..., x_n)$ be some word in the variables $x_1, ..., x_n$ in the groupoid $\langle Q, * \rangle$.

THEOREM 2. A necessary and sufficient condition that a groupoid $\langle Q, * \rangle$ is an iso - CIP loop, in which the law $w(x_1, ..., x_n) = e$ holds, is that

(21)
$$z = ((u * u) * w) * [((v * v) * (z * (y * x))) * ((t * t) * (x * y))]$$

for all $x, y, z, u, v, t \in Q$.

Proof: The necessary part is an easy consequence of theorem 1 and the hypothesis w=e. We need only to prove the sufficient part. As in theorem 1, here also we can show that $x*a=y*a \Rightarrow x=y$. Thus from (21) we have

(u * u) * w = (s * s) * w for all $u, s \in Q$, from which it follows that

$$u * u = s * s = constant = e.$$

Putting x=y=z=e in (21) we get (e * w) * e=e=e * e and hence, by the right cancellation law we have

$$(22) e * w = e,$$

which by virtue of (4) gives w=e.

The condition (22) reduces the equation (21) to (3) in $\langle Q, * \rangle$. Thus, by theorem 1, $\langle Q, * \rangle$ is an iso-CIP loop, in which the identity w=e is satisfied. This completes the proof of the theorem.

Corollary 1. Every variety of abelian groups which can be defined by a finite system of laws as a subvariety of the variety of abelian groups can be defined by a single law as a subvariety of the variety of groupoids.

Proof: An abelian group is a commutative inverse property loop in which the associative law (xy) z = x (yz) also holds.

Corollary 1 is due to Higman and Neumann [1].

COROLLARY 2. Commutative Moufang loops can be defined by a single law as a sub-variety of groupoids.

Proof: A commutative Moufang loop is a commutative inverse property loop in which the identity (xy)(zx) = [x(yz)]x also holds. For Moufang loops, see Bruck [2, p. 115].

REFERENCES

- [1] G. HIGMAN and B. H. NEUMANN, Groups as groupoids with one law. Publ. Math. Debrecen, 2 (1952), 215-221.
- [2] R. H. Bruck, A survey of binary systems. Springer-Verlag, (1958).
- [3] R. H. Bruck, Contributions to the theory of loops. Trans. Amer. Math. Soc. 60, (1964), 245-354.
- [4] R. PADMANABHAN, Inverse loops as groupoids with one law. J. London Math. Soc. (2), 1 (1969), 203-206.