A FIXED POINT THEOREM FOR METRIC SPACES (*)

by M. S. KHAN (in Aligarh) (**)

Sommario. - Oggetto della presente nota è la dimostrazione di un teorema di punto fisso tramite espressioni razionali, e di dedurne alcuni risultati che non sembrano ancora noti.

SUMMARY. - The object of this paper is to prove a fixed point theorem using rational expression and to study related results which are believed to be new.

1. - Let (X, d) be a complete metric space, and let $T: X \to X$ satisfy

$$d\left(Tx,Ty\right)\leq Kd\left(x,y\right)$$

where $0 \le K < 1$ and $x, y \in X$. Then, by Banach's fixed point theorem T has a unique fixed point.

Many extensions and generalizations of Banach's theorem were derived in recent years. For related results see [1], [2], [3], [4], [5], [6]. In this note, we shall prove a fixed point theorem using symmetric rational expression and study the continuity of fixed point.

THEOREM 1. Let (X, d) be a complete metric space and $T: X \to X$ satisfy

(A)
$$d(Tx, Ty) \leq K \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)}$$

where $0 \le K < 1$ and $x, y \in X$. Then T has a unique fixed point

^(*) Pervenuto in Redazione il 12 marzo 1975.

^(**) Indirizzo dell'Autore: Department of Mathematics-Aligarh Muslim University, Aligarh - 202001 (India).

PROOF. Let $x_0 \in X$. Put $x_n = T(x_{n-1})$, n = 1, 2, 3, ... then we have

$$\begin{split} d\left(x_{1}\,,x_{2}\right) &= d\left(Tx_{0}\,,\,Tx_{1}\right) \leq \\ &\leq K\,\frac{d\left(x_{0}\,,\,Tx_{0}\right)\,d\left(x_{0}\,,\,Tx_{1}\right) + d\left(x_{1}\,,\,Tx_{1}\right)\,d\left(x_{1}\,,\,Tx_{0}\right)}{d\left(x_{0}\,,\,Tx_{1}\right) + d\left(x_{1}\,,\,Tx_{0}\right)} \\ &= K\,\frac{d\left(x_{0}\,,\,x_{1}\right)\,d\left(x_{0}\,,\,x_{2}\right) + d\left(x_{1}\,,\,x_{2}\right)\,d\left(x_{1}\,,\,x_{1}\right)}{d\left(x_{2}\,,\,x_{2}\right) + d\left(x_{1}\,,\,x_{2}\right)}\,. \end{split}$$

Hence $d(x_1, x_2) \leq Kd(x_0, x_1)$. Similarly, we have

$$d\left(x_{2}\,,\,x_{3}\right)=d\left(Tx_{1}\,,\,Tx_{2}\right)\leq$$

Ida I in in a soci

$$\leq K \frac{d(x_{1}, x_{2}) d(x_{1}, x_{3}) + d(x_{2}, x_{3}) d(x_{2}, x_{2})}{d(x_{1}, x_{3}) + d(x_{2}, x_{2})}.$$

Therefore, $d(x_2, x_3) \le Kd(x_1, x_2) \le K^2 d(x_0, x_1)$. In general, we have

$$d(x_n, x_{n+1}) \leq K^n d(x_0, x_1)$$

This means that $\{x_n\}$ is a Cauchy-sequence which, by the completeness of X, converges to some point $x \in X$. For the point x,

$$d(x,Tx) \leq d(x,x_{n+1}) + d(Tx_n,Tx)$$

$$\leq d(x, x_{n+1}) + K \frac{d(x_n, Tx_n) d(x_n, Tx) + d(x, Tx) d(x, Tx_n)}{d(x_n, Tx) + d(x, Tx_n)}$$

$$= d(x, x_{n+1}) + K \frac{d(x_n, x_{n+1}) d(x_n, Tx) + d(x, Tx) d(x, x_{n+1})}{d(x_n, Tx) + d(x, x_{n+1})}.$$

Letting $n \to \infty$, we get d(x, Tx) = 0. Hence x is a fixed point of T. For the unicity of x, consider a $y \neq x$ such that Ty = y. Then

$$d(x, y) = d(Tx, Ty) \leq K \frac{d(x, Tx) d(x, Ty) + d(y, Ty) d(y, Tx)}{d(x, Ty) + d(y, Tx)}$$

$$=K\frac{d(x,x) d(x,y) + d(y,y) d(y,x)}{d(x,y) + d(x,y)}.$$

Hence $d(x, y) \le 0$ or x = y. This completes the proof.

\$ 1 PM

As simple consequence we state the following theorems. A model

THEOREM 2. Let T and S be self mappings of a complete metric space (X, d) such that T satisfies (A) and TS = ST, then S and T have a unique common fixed point.

PROOF. If x_0 is the unique fixed point of T, then $T(x_0) = x_0$ implies $TS(x_0) = ST(x_0) = S(x_0)$, which gives $S(x_0) = x_0$, that is, S and T have a unique common fixed point.

THEOREM 3. If T be a self mapping of a complete metric space (X, d) such that for positive integer n, T^n satisfies (A). Then T has a unique fixed point in X.

Proof. Let x_0 be the unique fixed point of T^n . Then

 $T(T^n x_0) = Tx_0$

or

$$T^n(Tx_0) = Tx_0.$$

This gives $Tx_0 = x_0$.

2. - In this section, we prove a convergence theorem concerning fixed points.

THEOREM 4. Suppose (X, d_0) is a metric space and $\{d_n\}$ is a sequence of metrics converging uniformly to d_0 . Let $\{T_n\}$ be a sequence of mappings converging d_0 -pointwise to a map T_0 with fixed point x_0 and let each T_n having fixed points x_n satisfy

$$d_n(T_n x, T_n y) \leq K \frac{d_n(x, T_n x) d_n(x, T_n y) + d_n(y, T_n y) d_n(y, T_n x)}{d_n(x, T_n y) + d_n(y, T_n x)}$$

where 0 < K < 1 and $x, y \in X$. Then $\{x_n\}$ converges to x_0 .

Proof. For any $\varepsilon > 0$, the conditions of the theorem give

$$|d_n(x,y)-d_0(x,y)|<\frac{(1-K)\epsilon}{(2+K)}$$

and

$$d_0\left(T_nx_0\,,\,T_0x_0
ight)<rac{(1-K)\,arepsilon}{(2+K)}$$

whenever $n \ge N$ for some natural number N.

Now for $n \ge N$ we get,

$$\begin{aligned} d_{0}(x_{n}, x_{0}) &= d_{0}(T_{n} x_{n}, T_{0} x_{0}) \leq d_{0}(T_{n} x_{n}, T_{n} x_{0}) + d_{0}(T_{n} x_{0}, T_{0} x_{0}) \\ &\leq d_{n}(T_{n} x_{n}, T_{n} x_{0}) + \frac{(1 - K) \varepsilon}{(2 + K)} + \frac{(1 - K) \varepsilon}{(2 + K)} \\ &\leq K \frac{d_{n}(x_{n}, T_{n} x_{n}) d_{n}(x_{n}, T_{n} x_{0}) + d_{n}(x_{0}, T_{n} x_{0}) d_{n}(x_{0}, T_{n} x_{n})}{d_{n}(x_{0}, T_{n} x_{n}) + d_{n}(x_{n}, T_{n}, x_{0})} \\ &+ 2 \frac{(1 - K) \varepsilon}{(2 + K)} = K \frac{d_{n}(x_{0}, x_{n}) d_{n}(x_{0}, T_{n} x_{0})}{d_{n}(x_{0}, x_{n}) + d_{n}(x_{n}, T_{n} x_{0})} + 2 \frac{(1 - K) \varepsilon}{(2 + K)} \\ &\leq K d_{n}(x_{0}, x_{n}) + \frac{2(1 - K) \varepsilon}{(2 + K)} \leq K d_{0}(x_{0}, x_{n}) \\ &+ \frac{K(1 - K) \varepsilon}{(2 + K)} + \frac{2(1 - K) \varepsilon}{(2 + K)}. \end{aligned}$$

Hence

$$d(x_n, x_0) \leq \varepsilon$$
 for $n \geq N$.

This shows that $\{x_n\}$ converges to x_0 .

BIBLIOGRAPHY

- [1] M. EDELSTEIN, On fixed and periodic points under contraction mapping, J. London Math. Soc., 37 (1962), 74-79.
- [2] M. Edelstein, An extension of Banach's contraction principle, Proc. Amer. Math. Soc., 12 (1961), 7-10.
- [3] R. KANNAN, Some results on fixed points II, Amer. Math. Monthly 76 (1969), 405-408.
- [4] S. Reich, Some remarks concerning contraction mappings, Canad. Math. Bull., Vol. 14 (1), (1971), 121-124.
- [5] P. SRIVASTAVA and V. K. GUPTA, A note on common fixed points, Yokohama Math. J., XIX (1971), 91-95.
- [6] CHI SONG WONG, Common fixed points of two mappings, Pacific J. Math. 48 (1) (1973), 299-312.