ON THE EXISTENCE OF PERIODIC SOLUTIONS
OF THE EQUATION et — (o(te)ls — Atss —f = 0"

by C. O. A. SowuNmI (in Pisa) (**)

SOMMARIO. - Si determinano condz!ztoni di esistenza di soluzioni periodiche del-
B lequazione: pu,— (¢ (U, )) —Aly—f=0. ‘

.SUMMARY - Conditions for the ejastence of periodic solutions of the equation
P u,,— (0' W), — A Uy — i =0 are determined.

0. Introduction. =

, Except for the given fuhction f which is here assumed to be
- periodic in ¢, the equation to be investigated is the same as was studied
by GREENBERG et al [1]; thus the physical mterpretatlon of its
,terms will not be duplicated. :

1. Notation, formulation of the problem and «a priori»
estimates. - - L
~ 1.1. NOTATION.
.Denote o L et
I={xeR |0<x<1}; dI=I
T={teR| - <t<oo}.
*) kP)eryvvenuto in Redazione il 20 gennaio 1975.
Lavoro eseguito nell’ambito: di una borsa di studio del C.N.R. presso
I'Istituto Matematico « L. Tonelli » dell’Universita di Pisa.

(**) Indirizzo dell’Autore : Mathematics Department - University of
Ibadan - Ibadan, Oyo State (Nigeria).
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Let v be a real valued function defined on T X T and of perlod 1 in ¢,
square summable on every compact measurable subset of IXT. We
form an L%space of the class of all functions having this property by
considering the restriction of all such functions to Q= [0 1] x [0, 1]

and defining ||v|R,= [ v dx dr.

In a similar manner we define l]v[IWp where W, (Q) is the usual

notation for the appropnate Sobolev space glven the usual L2 type
norm. ,
Nextly we consider the class of C* functions of x and ¢, of period
1 in ¢, whose supports do not contain the lines x=0 and x=1. As
before we take the restriction of this class to Q and complete it in
the norm of W3! (Q). The Hilbert space so produced will be denoted

by V[?zl (Q). Finally let W be the space of functions v on' IXT of
penod 1 in ¢ such that in the sense of the above veWz (Q) and
o Nextly let f be a real functlon on IXT havmg the propertles

B jed=f@i+) Mt

F, SIS . felX (@
_Also o7 ‘IR-—>1R has the properties:

%y the operator Z: w—>0o0 w= a(w( »*)) is a continuous -map-
ping of L? (0)) into - itself ,

% 3 k>0 such that a(f)/§>k VE (—:1R — {0} and 0(0) 0,
2 3rzy>0 arzo )=y VéeR.

- Lastly p,A are- fixed but otherwise arbltrary strictly positive
real numbers ‘

, 1.2. FORMULATION OF THE PROBLEM. .

- .On the basis of section 1.1 the problem U is posed. Whether
there exists a function u on IXT satisfying:

U oeuEputt"‘(O'(ux))x“luxtx—fzo i ¥ (x, t)ETXT
U . wOD=u(ly . MiteT

U; ~ ux,)=u(x,t+1) M (x, t)eIXT



60 €. 0.l A, SOWUNMI

‘Multiplying U; by a w WhiiC’h’ satisfies U, and Us, integrating over
'Q and using U, Us one obtains U*, the problem: Whether a

function weW exists ‘satisfying §

~ N ~
U* f(——putwt+a(ux)wx+l Uzt Wx— [ 0)=0

for all weW. Such u will be called a generalized solution of U.

- In order to obtain all the requisite a priori estimates it is
necessary to have an alternative formulation of U* other then Uj*.
"The ‘technique was suggested by Prof G. Propi and consists essentially
‘in slightly relaxing the test-space.

By Z; of section 1.1, Ui* can be written

v f (o= (5 e 4 i = f 0} =0

Note that only @ and w:- éppear in this form. Denote by W the

closure of W by the norm ||oo||2 f (|wP+ |wdfd. If U* holds for

all weW, then U,* holds for’ all weW, and by the construction -of
W*, holds also for all weW4. An alternative formulation of U* is
therefore -whether a ifunction*‘itvéﬁ/ exists -satisfying U,* for ll weW «.
It remains to show that Wx is! the space of functlons we L*(Q) which
have ‘wse L? (Q) also. |

DEMONSTRATION. Clearly W, the linear:“spéce of functions w
“having w, w; in L2(Q) is |||« - closed. Also WCW, whence Ws cW.
But again WCWx; since any weW can be approximated in ||-|-
norm by smooth functions belonging to W, such w being ‘therefore a
“1imit point of W, hence 'conta‘iﬂ%ed"in W «. For such smooth approxima-

tions we may take truncated Fourier series of w. Hence W=Wx.

1.3. A PRIORI ESTIMATES.

Given the hypotheées in section 1.1 aﬁy generalized solution ueW
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of U satisfies the following:

.y | AluaP=( fou )

1.2) —p |lw|P+{ oot u: )=(fu)

(1.3) [l < Ci[l1]P

(14) |luel P<C [[£

(15 [leawe] < Cs [ ]2

where ||-|| is the L? (Q)-norm and (-, - ) here denotes the corresponding

scalar product. The constants C; are positive and independent of u.

Proor. In U;* put

~

U=u=w:

| _QﬁuﬁJrffo(um)uxHHuﬂuz—fffu=0- ] '

1 , ~
Since f f Ust Up= — ] f —gt— u’=0 from the construction of W, equa-

tion 1.2 follows. ~
To obtain the rest of the estimates we engage a mollifier (Steklov
averaging operator) g, with the kernel J, such that

then

0, |[t|=e¢
J ()=
>0, |t<e,
f Jef)dt=1, J,()=J,(—t) MR, J, e0>(R).

As usual we define g.w=],*»w= [Js(- —T)w(r)d~.

R .

Then g.,w is of the same periodicity in ¢ as w. g.? w will denote

8+(gw). It is easily shown that g™w—>wel?(Q) as ¢—>0 for

m=0, 1,2, (cf. KaANTOROVICH et al 2, p. 295). For other properties
of g c f LADYZHENSKAYA [3, pp. 15-6].
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Now put w=g2u, in Us*. il’hus LT el T g T

o f [= e wlgiud+ oo <ye uoz+1um (9ude — fglu] = 0. -

fu,(g, u”_fdmfu, (9% we)e dl——fdwfu,g, ((geue)) =

= [d-'v /.tmu 9.uz)¢dt*-~f[yeut 1 — (geudi=]dw =0 '

periodicity of g.u. |
Also
fuxt (gez 'ut)a: = f“mt 9;2 gt —> ” Uyt ”2 as & —-+ 0.
Q ¢ 1 ‘
Further

f 6 (Ug) (92 U)e = | 0 (Uz) 0.2 e —> [ (U Uy 8BS &—>0.

But [ o (u,) U, can be shown to vanish, hence |
e

'fa (uz) (ga’z’utbm;} O Cas £— 0.
] |

Thus the 1. h. s. of eqn (1.6) = lf(u x,—fu,) as ¢ —> 0 yielding eqn (1.1).

Finally putting w=g.* /. m U,* we have (g.° uxer*)

(1.7) f{ — QU (9.2 ua:x)t —da ('uz) um gsz Ugr + Ay (932 uxz)t -_— fge-2 um} == 0,
Cons1der .

f (g2 ) = f (92 U)er = ]cu [u:(g,zuac), = — f et (9.2 0 db] »

Q ¢
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== - /"umt 932 “zt —> — ” ua;t ”2 as 8——) 0.
5 : Tt
Consider also,

f Uz (952 Uge)y = f Uzz e ((§e Uaz)t) = f (9s Uzz) (g. u:cx})t =0
¢ @ ‘ @ b

from the periodicity of g, . '
Hence from eqn (1.7) in the limit as e——>O

(1 -8) f(P uzxt —0’ (ux) uéxx_ fuxx) =0

We have also that u, u; both satisfy Poincarés inequality in the
form:

a9 bll = L

(1.1) and (1.9) give
a0 lHuerI = lfl].

From whlch agaln by (1 9)
i 2] = 1A

From (1.2), Z; and Young’s -inequality:
'wwwamm+mw
. 8": .
sﬁwm+gwm+gwmg>o
being arbitrary. From which by (1.9)
M%W( Mww L

Choosmg §<2 k we finally obtain:

(e = %) el < o+ )0
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which is (1.4). (1.3) follows 1mmed1ate1y by (1.9) in (1.4). Z;3 and
(1.10) in (1.8) give:

ll P < NP 145 e |

from which on using Young’sg inequality:

0 1 L8
7”““”23l_zllf“z"}"}z‘;;”f“z+72”“m”2’ &g >0 and =

arbitrary.
If we now choose & so that 2 v>& we obtain

£ ; 0 '
(r= 2ol < (& )11
which is (1.5), and thus confpletes the a priori estimates.

9. Existence of a Generalized Solution.

THeorREM 2.1. Subject. tbthe hypotheses Fi, F2, 21, 25, Z3 there is
in W a function 2 which is a generalized solution of U.

Proor. Existence of u jwill be proved via the Galerkin-Faedo
method. |

Let {x;}, i=0,1,2, ..., = be a complete’set, i'in’ﬁjiz"”(fi, of smooth
functions with compact suppoi*t in I. If WN is given the W.'(Q)-norm,
then the linear envelope of | W ={(cos2 mit+ sin2rit) x;}; i,j=

=0,1,2,.., o« is dense in W. To simplify computations let us assume
L%orthonormality of ‘the elements of W.

An n™ approximate solution of U is defined as a function u" of
the form

(2.1) u*(x,t) = 2‘ a"ok X () + 2 {a i cos 2n]t + ﬂ 2 8in 27 jt) Zk(w)
‘ { T
in which the constant coefficients a,f are dete,rmmed by the condition

1 1
2.2) , f f (Lu™ (x, 1)) w (x, t) dx dt=0
I
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for every we W = W where

CW" ={x, (x), (cos 2 7w jt) xx (x) (sin 2 7 j£) xi (x); ], k=1, 2,.

;only By successwely applying the 1ndependent elements of W “in
equation (2.2) we obtain the system of equations in a, f viz.:

Yom r(“;uﬂ) — Jom =0
(2.3) = 272"k + vk (2, B) 4 A% Bm Qi ==
| A — 2n% j2f" + B (2, ) — I j o» jm Gk — Sl =

The new symbols are defined thus:

‘Pom(“ B) = ffo(u” a:)da:dt
v (a, B) =[f0(u”m) cos 2x jt % (x) do dt

D% (a, B) =ffo (w"z) 8in 27 jt %} (x) due dt

@4 5= [ [ 110 % @) 2z = s
me f A dwdt
Sk ._fffcos Zn]tlk(w)dxdt

]k—f[fsul 2njtxk(x)dwdt

If the set {a"om, a%t, B2}, mj, k=1,2,..,n is arranged in ‘some
fixed linear order it may be regarded as a vector in R?, p=n(2n4+1).
Let ze R? be arbitrary then the system (2.3) can be written briefly as

@5 . F@=9 where 9={fom fu fu}.
- By imbedding (2.5) in the more general problem

Q6 . z4p(F @ —z—p)=0; 0=Zp<1 -
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(2.5) has a solution if we can" show that v
(1) F _is . continuous on some open bounded set in iR? and

(11) all solutlons of (2 6) lare un1formly bounded w. . to nelo,n].

This is a* consequence of the 'invariance of topological degree urder
homotopy (cf. CRONIN [4, pp.!31-2, thms 6.4, 6.6]) and the fact that
the degree of the identity map is 1.

We shall adopt the euclidéan norm in R?.

To prove (i) it is enough t6 prove that voom , %) &°; are conti-
nuous in (a, ﬁ) which follows 1mmed1ate1y from the continuity of Z i. e.
hypothesis Zi. To prove (i) we first rewrite (2.6) in the form

(2.7) (1-—-.u)z+uF(Z) uco—O 0<u<1

Observe that (2.7) is the .,eqtnvalent of (2.5) corresponding to the
problem U-modified, where L2 u is replaced by

= utp Lu.
Observe also that an n™ apprbximate solution of U satisfies the esti-

mates (1.1), (1.2). oy
It follows that a generahzed solutlon u* of U-modlﬁed satisfies

ull Huxi*llz—( f,u*)1=0

(A=) P+ [lat{P-+H( 0 0, ) — (fw)] =0

Hence .

(1.1)* AMux*|P=( 1, u*)

and | S

(1.2)* —p llut*l|2+( oo u, ux*) = (fu*),
therefore, SR o

A e o llu*llz<011|f||2

“from' Wthh follows that a sdlutlon z of (2 7) is umformly bounded
~for all pe[0,1]. N

Hence the system (2.3) has a solution for each n.

Further u” for all n satisfies the other estimates (1.4), (1.5), (1. 10),
(1.11). In fact only (1.8) remains to be satisfied, and for this it is
enough to choose the appropriate trigonometric functions for {y;}
so that y’e€{y;}. It follows that the sequences {u"}, {u".}, {u"},
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{u"w}, {u"«} of elements of L?(Q) are uniformly bounded for all n,
hence weakly compact in L?(Q). Therefore each of the sequences
has a weakly convergent subsequence which will be denoted by the

same symbols. In particular U — 7 2 (Q), which in consequence of
(1.3-1.5), (1.10); (1.11) and a theorem in SOBOLEV [5, p. 36]
implies that in L? (Q): B

~ ~ "~ ~o
(28) u, — U, uH— U, U'ex— Urr, U'st = Ux.

Also, u,eW41(Q) and u",— 1. in W' (Q).

Hence by the imbedding theorem of SoBoLEv [5, p. 69] U —> U,
strongly in L?(Q).
- Let w™ be an element of W, then for m fixed and a11 n>m, eqn.
2. 2) 1mphes :

2.9) f {—p U w40 (") @+ A Uy " —f 0™} =0.

From (2.8), the strong convergence of u", in L?(Q), and the
property X, when n—> o the 1. h. s. of (2.9) tends to

f{ —p 171 W'+ o (ax) wmx+l ;xt wmx;fwm}

- for each m. Hence for each w in W, W being separabie:

2.100 f{—p&}wtw(ﬁxmgﬂzthx—fw}:o.

, That u is of perlod 1 in ¢ is eas11y shown Whlch therefore
concludes the proof of the theorem. '

3. Comments.

The condition X; (r. h. s.) implies Z has a positive definite
first Fréchet derivative in L? (Q), which implies that this derivative
is self-adjoint (cf. KanTOROVICH [2, p. 188]) and hence that Z is
strongly potential (cf. VAINBERG [6, p. 56]). In continuum mechanics,



|
;
68 _ €.|0. A SOWUNMI

this means that Z is a hyperelastic response functional. Furthérmore
by a weak form -of the mean value theorem, Z’ positive = Z is
-strictly monotonic mcreasmg 'Hence X5 (rh.s.) = Z is strinctly mono-
-tone increasing. ‘ |
_ The questlon of uqueness was attempted but remamed up
till this moment unresolved either way, i. e. neither uniqueness nor
nonuniqueness was provable.

Finally, it is significant that the "a priori’ estimates no longer
hold when A=0. , |
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