VECTOR-VALUED MEASURE SPACES
WITH COMPATIBLE TOPOLOGIES (*)
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SOMMARIO. - In questo lavoro si studiano alcuni legami tra risultati di teoria
della misura e proprieta topologiche associate allo spazio vettoriale (VS)
M ($,S;Y,T) di misure a valori vettoriali definite in uno spazio misura-
bile (2,8) e a valori in uno spazio vettoriale topologico di Hausdorff
(T, VS) (Y, T) con duale continuo Y’. Due topologie normate associate in
maniera naturale con M (2,S;Y,|| ||) vengono introdotte nelle sezioni 2, 3
‘e un certo numero di conseguenze piuttosto sorprendenti emerge dall’intrec-
cio delle loro proprieta con le topologie sviluppate precedentemente in [6],
[8]1 e [11]. Inoltre questi risultati generalizzano ulteriormente ed estendono
considerevolmente parte del lavoro di [12]. Nella sezione 4 si presentano
alcune ulteriori topologie assieme ad alcune rappresentazioni interessanti
e piuttosto inabituali di topologie studiate in precedenza. Viene poi data
risposta anche ad alcune domande formulate in [6]. Lo studio delle
topologie vaghe O,, V,, e della topologia seminormata P & in special
modo notevole perché O,, V,, sviluppano ulteriormente e collegano il
lavoro di [12] con i risultati qui ottenuti in [6], [8] e [11]1, mentre P
mette in relazione esattamente queste topologie con le topologie di tipo
seminormato { P} indotte da misure, studiate in [11, [71, [9] e [10] mel
caso in cui Y sia una Q-algebra completa LMCT,. Questo lavoro, assieme
ai risultati di [1] e [6] - [12], d& percid un fruttuoso approccio -algebrico,
topologico e misuristico allo studio delle Q-algebre complete LMCT, in
generale, ed alla teoria delle algebre di Banach in particolare.

SUMMARY. - In this paper, we study the interplay between the measure-theoretic
results and the topological properties associated with the vector space
(VS) M(£,S;Y,T) of vectorvalued measures from a measurable space
(2,8) into a Hausdorff topological vector space (T,VS) (Y, T) with
continuous dual Y’. Two normed topologies naturally associated with
M (£, S;Y,||||) are introduced in sections 2, 3 and a number of somewhat
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suprising consequences emerge as a result of interweaving their pro-
perties with the topologies developed earlier in [6], [8] and [11]. These
results moreover, further generalize and considerably extend some of the
work of [12]. In section 4, we present several additional topologies
together with some interesting and rather unusual representations of topo-
logies studied earlier. Some of the questions raised in [6] will also be
answered. Our study of the vague topologies O,, V., and the seminormed

topology ? is also rewarding since O,, V,, further develop and

combine the work of [12] with our own results in [6], [8] and [11],
whereas P nicely interrelates these topologies to the measure-induced
seminormed {P|- type topologies explored in [1], [71, [9], and [10]
when Y is a complete LMCT, Q-algebra. This paper, together with the
results of [1] and [6] - [12], therefore yields a fruitful algebraic, topo-
logical, measure-theoretic approach to the study of complete LMCT, Q-
algebras in general and to Banach algebra theory in particular.

1. Introduction.

In this paper all signed measures will be assumed to be finite
valued. The notation to be used will be that of [6], [8]. Briefly,
let o be a family of linear transformations from a VS X into a TVS
(Y, T) with continuous dual 'Y’ (This will be denoted by & € L (X, Y)).
We denote by O,r (Owr) the weakest topology on X under which every
Ae oA (every gAeY’'A) is continuous. If Y is commutative Banach
~algebra with identity (H will denote the collection of homomorphisms
from X onto C), then O., is the weakest topology on X under which
every hAeH o is continuous. Both (X, O.r) and (X, O.) are locally con-
vex topological vector spaces (LCTVS ps), whereas (X, Osr) is a TVS
which is locally convex whenever (Y, T) is a LCTVS.

Central to the theme of this paper will be the system o =
={Ag: E€eS}:: M (2,S; Y, T)— (Y, T) with Ae (u)=p (E). It can be
shown [6], [9] that Oup and Owy are LCT; topologies on M (£2, S; Y,T)
if and only if (Y, T) is an LCT, VS, whereas O., on M (£2,5;7Y,]| ||
-is T, if the Banach algebra Y is semisimple. »

We round out this introduction with the following definition and
several rather useful results.

DEFINITION 1.1. A family o € £L(X,Y), where X and Y are
VSps will be called adequate if Ax=0 for every A€ o implies that
x=0. (Note, for example, that a Banach algebra Y is semisimple if
and only if H is adequate).

Let A={As: a€e @} L(X,Y) be adequate, where Y is a vector
subspace of the VS X. Then X is finite dim if and only if both [«]
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(the VS spanned by o{) and Y are finite dim. Indeed, the mapping
@: X—® (X)CNY with @ (x)={A.x} is an isomorphism ({A. x} is
Q

the @-tuple in which the a th coordinate has the value Asx€Y). These
remarks can be used to prove.

THEOREM 1.2. Let A €2 (X,Y) be adequate, where X is a VS
and Y is a LCT,VS {a semisimple Banach algebra}. Then X is finite
dim if Ow{Ow, } is normable.

Proor: [6] (X, O,) {(X, Oy,)} is normable if and only if Y’ o
{HA} is adequate and dim [Y’'A] {dim [H«{]} is finite.

DerFINITION 1.3. For wef2 and yeY, let po,eM (2,S;Y,T) be
the measure Uy (E)=Yy x» (E) (EES), where x. denotes the charac-
teristic function of w. For fixed wef, the VS {f.y: yeY} will be
denoted by D, (2, S; Y). We shall let D (2, S; Y)={g D.,(£2,S;Y)}.

THEOREM 1.4. Let X be any vector space satisfying [D (2, S; Y)] <
CXCM.(£2,S;Y,T), where M. (2,S;Y,T) is the vector space of
additive set functions from (2,S) to (Y, T). Then dim X is finite if
and only if both S and dim Y are finite.

Proor. If S and dim Y are finite, then dimI7Y is finite. Since
s

Me(®,5; Y, 1)~ 1Y is an isomorphism, M. (2, S; Y,T) and X are
[ ~—')' }l‘(EhS
finite dim. If X is finite dim, then [D (%2, S; Y)] and D, (£2,S;Y) are

finite dim. Since Y- D,(£2,S;Y) is an isomorphism for weEe€S,
Yy ~—+ﬂw,y

dim Y is finite. Furthermore, S is finite. Otherwise, there is a countably
infinite collection {E.#+@: ne N} of pairwise disjoint sets in 8.
Taking w.€E, and any y+@ in Y, we obtain an infinite linearly
independent set {u.,: ne R }c [D (2, S; V)].

REMARK: Note that [D (,S; Y)]CM (2,S; Y, T)S M. (2.5: Y.T).

2. The || [l, and || ||, topologies on M (2,8; ¥, || ||).

Since every ueM (£2,S; Y, T) has a bounded range if (Y T) is a
LCT, VS ([21, 161), every ueM (2, S; Y, [| [) is norm bounded.

DEFINITION 2.1. Let (Y, || ||) be a normed linear space (NLS).
Then a norm || ||o is defined on M (2, S; Y, || ||) by llullo=sup ||z (E)||-
S
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In fact, (M (22, S; Y, || ||| |lo), is a Banach space if S is a o-ring and
(Y, || |]) is a Banach space.

It was shown [6] that O, = Os, v, ) € O C || Ho on
M(£2,S;Y,]|| ||). We extend these results in

THEOREM 2.2. O.,, O; and || ||o enjoy the following properties on
M@ S Y, D:

@) Ow=0, if and only if (Y, || ||) is finite dim
() Ow=]|| ||o if and only if M(2,S; Y || |) is finite dim

(iii) The following pfoperties are equivalent:

a) S is finite
) Os=|[ [lo
¢) O is normable

d) O, is metrizible

ProoF: To prove (i), apply Corollary 3.1 a and note that a NLS
(Y, || | is finite dim if and only if ¢ (Y, Y’) is normable. The proof
of (ii) follows from the fact that O, is T, together with an application
of Theorem 1.3 and (iii). Since [8], [11] O on M (£2,S;Y,T) is
metrizible if and only if S is finite and (Y, T) is metrizible, the proof
of (iii) and of the theorem will be completed by demonstrating that
O.=|| ||, whenever S is finite. To this end, let S={E,...,E.} and
consider any || [lo—nbd-S) ,,:(0) on M(L2,8S;7,]|| H) Then the

Os-base nbd- v(O)—‘ ﬂAE Sy 11,.:(0)) satisfies v (0)SS) ,, (O).

Thus, || |l.E0O: and 1t follows that || |,=0; (note that O,< || |l
since Ag is continuous for each E€S).

ReMark: If (Y, || ||) is a Banach space the property of O; being
barrelled may be included in (111) above.

For a signed measure u, the upper, lower and total Varlatlon of
p will be denoted respectively by u*, u~ and ||u||. It is well known
(see [31, 123 for example) that u*,||u|| are non-negative measures
on S. Furthermore, an application of the Riesz Representation Theorem
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shows that the VS Mz (2,S; C) () with ||u|| = [lull () is a complex
Banach space whenever §2 is a compact, T, space.

DEFINITION 2.3. For a measurable space (2,S) and NLS (Y, || |,
let || llve: M(2,S;Y,|| |p—>RU ~ be the extended real valued set

function defined by ||u|lz= supg 2 || (E)||: EicE for disjoint E:€S
i=1

If Sisa o-algebra, the total variation || ||, of ueM (2, S; Y, || | is

defined as || ||o, 0 -

Mrv (2,S;Y,|| |) will denote the vector subspace of M (£2,S;Y.|l |)
whose members have finite total variation. || ||, is cleatly a norm on
M (2,S; Y, | ). In addition, [12] (Me (2,S; Y, || ID,]] |Iv) is a
Banach space if S is a c-algebra and (Y, || ||) is a Banach space.

REMARK: ||p|lo=<||u||s for every peMr (2,S;Y, | ||). For Y=C,
lells = llello and Mev (2, 8; Y, || [D=M (£, S; ).

Clearly, [D (£2,S; V)ISMmw (2, S;Y || DEM W, S; Y, || ). If 2
isaT;space and (Y, T)isa T. VS, then [D (22, S; Y)ICSMr (22, S; Y, T) S
EM,S;Y,T).

THEOREM 2.4. (i) [D (2, S; Y)] is O ¢p-dense in both M (2, S; Y, T)
and M.(2,S; Y,T). Therefore, M(2,S; Y,T) is O,,-dense in
M.(2,S;Y,T).

() [D@ S NE=Mw 2.5 Y,[| Dé=M @S Y, [ for
each topology = || ||, Oep and Owy, on M (2, S;Y, || |)).
(i) If S is finite, then [D(R2,S;Y)] =M@R,S;Y,T) =
=M. (£2,S; Y, T). Moreover, (M. (R2,S;Y,T), Os) and I1 Y are topolo-
S

gical isomorphs under p~—{u (E)}s.

Proor: (Suffel, [11]). For each {EyE,, ..,E.}cS and each
VEM. (L2, S; Y, T), there is some pe[D (2, S;Y)] satisfying v (E)=
=p (E) for i=1,2, ..., n. Thus, each O, -base nbd.v(v; Ap,...Ag,; U)
of veM.(£2,S; Y, T) contains some u€[D (2, S; Y)] and (i) holds. (iii)
too is now clear. Finally, O.,< || ||, and the proof of (ii) follows from
[D 2, S; V)] le=M (2, S; Y, || ||) (For any £>0, take y=40 in Y and

let |a] < ﬂ-;—“. Then @ pa,y €S 1 41, « (0)N [D (2, S; )1).

(1) Let 2 be a topological space, R a ring of subsets of 2 and Y a
T, VS. An additive set function p: (9, S§)— Y is said to be regular with respect
to Ec S if for each nbd. v (0)€ Y, there is a compact set KSE and an open
set U2 E such that u(A)— p(E) €v(0) for every set A€R satisfying
K cAcU. The additive set function u is called regular if it is regular with
respect to every E € S,

Mp(9, S;Y) will denote the VS of regular measuresfrom (£, S) to Y.
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REMARK. If 2 is T}, then Mz (82, S; Y, T) oz =:M (2, S; ¥, T) and
Mz (£2,S;Y,|| ||) can be included in (ii) above.

3. 0., Oypand || ||, on the VSps M(2,8; ¥, T) and D,, (2, 8; ¥, T).

The mapping ¢: (¥, T) = (Do (2, S; Y, T), Osy) With ¢ (5) =fta, y
is [6] a topological isomorphism. This leads to.

THEOREM 3.1. Let Ti, T, be compatible Hausdorff topologies on
a VSY and let weS Then (D (82, 8;Y), Oup,)=(Dw (82, S; Y), Osy,)
if and only if T1=

Proor: (Y, T (i=1,2) is 3topologica11y isomorphic to (D, (£2,S;Y)
O,T‘_) and the proof follows from the fact that the property of being
homeomorphic for topological spaces is transitive.

CoroLLARY 3.1a. Let (Y,T) be a LCT,VS and let T, T, be
any two topologies of the dual pair (Y,Y’). Then the following
Statements are equivalent:

@) Oup =0.p on M(2,5:Y,T)
(i) O.; =0,y on Du (2,5;Y)
i) =T,

Proor: Since (Y, T) is a LCT, VS, clearly (Y, o (Y, Y'))’=Y' and
it follows that M (2, S; Y, T)=M (2, S; Y, T) (i=1,2).

The following developments will extend the properties of ¢
(and therefore of D, (£2,S;Y)) when (Y,]| |) is a normed linear
algebra (NLA). Multiplication will be defined by letting (Ko, 3, * . y,) (E) =
=,y (E) Mo,y (E) for every E€S and Uw,y s [o,y €EDo (2, S; Y).

THEOREM 3.2. Let (Y, || ”;) be a NLA and let weS2. Then:

i) D, (2, 8;7),| ”o)?l’S a NLA for multiplication defined aé
above. Moreover, ||po,yllo= [|y]| for every yeY.

- (i) For weEeS (in pdrticular, if S is a o-algebra on ), the

mapping g: (Y, || |) = (Do @, 8; V), || llo) is an algebra congruence,
i, e., an isometric, algebra isomorphism,
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Proor: The proof of (i) is straightforward. To prove (ii), consider
any yi, y:€Y. Then (Lo 4 *lo,y) (E) = lo,y (E): o,y (E) for every
EeS so that ¢ (y1y2)=¢ (y1) ¢ (y2). Moreover, weE for some E€ S
s0 that ||fe,y|lo= [ly]| for all yeY.

REMARK: In both (i), (ii) above, (Y, || ||) has an identity e if and
only if g, . is the identity in D, (2, S; Y). Furthermore,
D, (2,8; Y), |l llo) is semisimple if and only if (Y, || ||) is semisimple.
These remarks follow from the more general case in which ¢ is an
algebra isomorphism from an algebra X onto an algebra Y with Hx, Hy
denoting the respective families of homomorphisms from X, Y onto C.
Indeed, HxSHy ¢ and Hx ¢"'C Hy so that Hx is adequate if and only
if Hy is adequate (Definition 1.1).

For a compatible topology T on a VSY having a nbd. base U, let
¢ (T) denote the topology on D, (2, S; Y) (weS) having a nbd. base
YU ={U: UeU}. Similar notation will be used for ¢~ (T). Since
each Apde A J={As¢: Y>D—Y, where Ac¢ (¥) = lo y (E):
EeS} satisfies Ar¢) =0 (E Pw) or Ap¢ = 1(E 3w), we prove the
following interesting result

THEOREM 3.3. Let weS and let (Y,T) be a T.VS. Then:

i (Y,O0, )=, T) is topologically isomorphic to
Do (2,8;Y),0:,)=Do (2,8;Y), Y (T)), where Osp on Y is defined
by the family Ay L(Y,Y). |

(i) (Y,Ouwp) = (Y,0(Y,Y") is topologically isomorphic to
(Do (£2,S;Y), Ouy), where Oy, on Y is defined via Ay L(Y,Y).

ProOOF: (i) Cléarly, O, =T since A ¢={0, 1}. Moreover, since
the topological isomorphism ¢: (Y, T) = (Do (22, S; Y), Oy ) becomes
a homeomorphism between (Y, T) and (D, (£2, S; Y), ¢ (T)), one obtains
Do (2,8:Y), 0, )=(Do (2, S; Y), ¢ (T)). |

() Since A¢Y={0,1}, Ou, =0 (Y,Y’) on Y. Next, note that
for any Ouy,-nbd. v, (0) = v (O; AEa1 § ey AEan; 8prsery Bhp s 8
(={ltwy: ]gﬁj Lo,y(Ea;)| <&, i=1,2,..,n; j=1,2,..,m}) of O in
D, ®,S;Y), one has ¢1v, (O)=v (O; AEa,’ ’AE-n 58853883 E)
which shows that the mapping ¢! is open. One similarly proves that ¢
is open and that ¢ is a homeomorphism.

Remark: (Y, O,,,_,.)=(Y,¢7'(§)) is topologically isomorphic to
Dn(2,8;Y),8)=D(£2,S;Y), O'w—l(e)) for every compatible T, topo-
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logy ¢ on D, (82, S;Y). To see this, note that ¢~ ': (Do £, S; Y), &) —

=Y, 1) is a topolog1ca1 isomorphism and the required equalities
follow as in (i).

For S infinite, Osc|| H on M(2,S;Y, | |) (Theorem 2.2) and
one would not generally assume that O;=]|| ||, on D, (2, S; Y) even

if Do(£2,8S;Y), Os)were a Banch space. The following theorem may
therefore prove suprising.

THEOREM 3.4. (D, (%2, é Y, 1 1D,05) = D@, S: Y, || D] [lo)
for each weS. |

PROOF: ¢/ is both a topological isomorphism befween VIEN;
and (D~ (2, S;Y,|| ||),Os) and a congruence between (Y, || ||) and
Do 2,8 Y, 1D, || o).

THEOREM 3.5. Let (Y, || ||) be @ NLS and let S be a o-ring of 2.
For each weS, the following statements on D (82, S; Y) are equivalent:

() Y is finite dim
(ii) Ow:” ”o

(ili) O, is bornological

ProoF: (i) clearly implies (ii) since O, is T: and dim Do, (2, S; Y)
is finite. (ii) follows from (i). Since [6] every Are oA is O.-bounded,
O..=O0; if O, is bornological and the proof is completed by an appli-
cation .of Corollary 3.1 a.

RemArk: If (Y, || ||) is' a Banach space, then (M (2, S;Y, || |,
l| |lo) is a Banach space and the property of O, being barrelled may
be included above (Use the Open Mapping Theorem together with the
~ fact that a Banach space is both barrelled and fully complete).

o) =Y, [ D
has ||AE” =1.1In fact AE/(D(A({)',S, ), 1l ilp) has ”AEH —1 (wES) Some
additional properties of o{ are given in

THEOREM 3.6. Let weS and let (Y, T) be a T, VS. Then:

(G YAc: (M2, S; Y, T),0s) > Do (2,85;Y),04) is a re-
traction for each E€S such that weE. Moreover, Agp, 0, 5;7) =¢
so that Ag: (D, (2,S;Y), 0% )—> (Y, T) is a nonzero topological (VS)
isomorphism if E 9 w.
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Gi) If (V.|| |) is @ NLS, then ||Apj,c 5;m), 110 [|=1. If
in addition (Y, || ||) is a NLA, then Ag|, @ s;x) in (i) is an algebra
congruence. Furthermore, ||hAg o, @ 5; 1)l < 148/, @ 8: 7)1 = 1
(E€S) for every heH.

Proor: (i) follows from the fact that each ¢ Ar is continuous and
Y Ag)p,@ s;7)=1 when E3w. To prove (i), first note that
lAz;p, @57l =|[¢7Y] =1 when (Y,]| ||) is a NLS. For the case
in which (Y, || |]) is a NLA, use the fact that ||h|| = 1 for every heH.

A retract is always a closed subspace of a T, space. Since [6]
O,,is T, Theorem 3.6 demonstrates that D.(£2, S; Y) is an O, -closed
subspace of M (2,S;Y,T). If Oy, is T, (in particular, if (Y, T) is
a LCT.VS) and each ¢ Az (E€S) is O, -continuous, then O, can
replace O,, in the results of Theorem 3.6 as well as in the fact that
D,(£2,8;Y) is an Oyp-closed subspace of M (£2,S;Y,T). The pre-
ceeding remarks indicate that every closed hereditary {topologically
invariant} property of O,, on M(R,S;Y,T) is also shared by
(Do (2,S;Y),0:;) {(Y,T)}. This leads to our next

THEOREM 3.7. A NLS (Y, || ||) is reflexive if O on M (2, S; Y, || |}
is quasi-complete.

ProoF: O.=0O, y 5, being quasi-complete on M (£2,S; Y, Il
implies that (D, (52, S;Y), Os,v. 74> therefore (Y, o (Y, Y")) is quasi-
complete which is equivalent to (Y, o (Y,Y’)) being semi-Montel.
Since both || || and ¢ (Y, Y’) are topologies of the dual pair (Y,Y’),
it follows that S; (O)={y: |lyl|<1} is o (Y, Y’)-compact.

For some additional related results, we state, without proof, the
following useful theorem

THEOREM 3.8 [11]. Let (2,S) be a measurable space and let
(Y,T) be a T.VS. Then (M (82,S;Y,T),Osy) is metrizible, Fréchet,
normable, Banach if and only if S is finite and (Y, T) is respectively
metrizible, Fréchet, normable, Banach. If, in addition, (Y,T) is a
LCT, VS, then he properties of being barrelled, semi-Montel, Montel -
may be included above. For a shorter version and some-what different,
approach to some of the above proofs, the reader is referred to [8].

It is well known that being bornological, barrelled and infra-
barrelled are not closed hereditary properties. We now introduce some
criteria for these O,;, O, properties on M (2, S; Y, T) to hold on
D,(2,8;7).
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THEOREM 3.9. Let weS2 and let (Y, T) be a T, VS. Then:

(i) A%'(0) (weE) is the topological complement of D.,(2,5;Y)
M@, 8;Y,T), Ouyp), i €, (M(2,5;Y,T),01p)=(Doy (2,5;Y),00,)®
® (A7 (0), Oup).

Gi) ¢ Ar is OwT - continuous for every E €S whenever
M@, S:Y,T), Ow,) is bornological. If (Y, T) is a LCT,VS, then

(M (ﬂ, S, Y: T)’ ‘wr)—(Dw (Q: S: Y): OwT)C'D(AE (O)a OwT)-

PrROOF: (i) ¢ Ar: (M, O,p) > (Y, T) = (Do, O,,) is a continuous
linear surjection satisfying (J Ae)’= ¢y Az on M (£2,S;Y,T) so that
M(,8;Y,T)=D, (2,S;Y) @ Az' (0). The proof of (i) follows from
the fact that (Y Ar)~' (O)={peM (2,S;Y,T): Ju (E)=0}=A%" (0).

(i) Let {u.}eM (2,S;Y,T) be Oup-convergent to O, i. e.,
[6] gAr(un) = gu.(F)—> O for every gAreY’o{. Moreover, for
{4 As pn}={Vo, uy ) }€Do (2, S; Y). one has v, @) — O (relative
Ouwy) if and only if gAr Ve, pu,m)—> O for every gAr Y’ oA/D.(2,8; Y).
O, wé¢F
g i« (E), weF
gent to O in D,(2,S;Y) whenever {u.} is Owgp-convergent to O
and [6] ¢ Az (E€S) is therefore O, p-continuous.
The second statement follows from (i) and from the fact that
Ouy is T, (Corollary 3.1a also shows that Ow, =O,,).

Since gAr Vo, u, ) ={ y clearly ¢ Ag p, is Ouwg-conver-

COROLLARY 3.9 a. Let wef and (Y,T) be a LCT,VS. Then:

(i) Da(®,S;Y), O, is bornologzcal if M(2,S;Y,T), OwT)
is bornological

Gi) If some & Ag is w‘T-continuous then (Do, (2, S;Y), Ouy,)
is barrelled (infrabarrelled) whenever (M (2, S; Y, T), Ouwy) is barrelled
(infrabarrelled)

(iii) (Y, 7T) is bornologzcdl infrabarrelled, fully complete, com-
plete, quasi-complete whenever M(2,8;Y,T), 081.) has these respec-
tive properties

(iv) If S is finite, then (M ($2,S; Y, T),Osyp) is bornological,
infrabarrelled, complete, quasi- complete whenever (Y, T) shares these
respective properties.
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ProoF: (i), (ii) follow from the fact that (D (82, S;Y), Ouy) is
topologically isomotphic to (M (2, S; Y, T), Ouy)/AZE' (O) (w€eE) which
is bornological, barrelled, infrabarrelled if (M (22, S; Y, T), Owy) has
these respective properties. (iii) is clear since the remaining properties
are closed hereditary and topologically invariant. To prove (iv), note
[8] that S is finite if and only if (M (£, S;Y,T), Os,) is topologically
isomorphic to ITY. Each of the properties of (iv) moreover, is product

s

invariant.

A Dbarrelled (semi-Montel, mertizible) LCT, VS need not remain
barrelled (semi-Montel, metrizible) under a finer topology and it is
therefore not apparent (c. f. Theorem 3.8) that S will be finite if Ouwp
on M(2,S;Y,T) is barrelled (semi-Montel, metrizible).

TueoREM 3.10. For a LCT,VS(Y,T), S is finite whenever Ouwq
on M(2,S;Y,T) is barrelled (semi-Montel, metrizible).

Proor: Let OM be barrelled and let v (O)= f; v (O; gAg; S. (0)).

Then v (O) is absolutely convex, absorbent (since peM (12, S;Y,T)
has a bounded range) and O,,-closed. Since v (O) is an Oup-barrel
and therefore an Oy ,-nbd., there is an Oup-base nbd. v (O; g1 Ag -

v s8n Az, 3 S5(0)) = v (O; Ag,, ... ,Ag,; N gi Ss(0)) contained in
j=1

v (O) and this [11] means that S is finite. The remaining proofs, with
appropriate modifications, parallel those in [11] for O,,.

4. Some additional topologies and representations.

Let F(2, Y)={f: (2,S)— Y}, where (£2, S) is a compact, T, Borel
measurable space and Y is a Banach space. T { Fom, Fum | will
denote the collection of measurable {strongly measurable, weakly
measurable} functions in F(R2,Y) and % { Fom} will denote the
bounded {bounded m-type measurable} functions in ¥ (£2,Y).

Let B; (2, Y; v) denote the functions fe (2, Y) which are Bochner
integrable relative to veM (82, S; C) {we abbreviate M (£, S; C) and

M@,S; Y) by Mc and My when convenient}. Then N B =
, Y’MY
= N B (RY;v) and NB= N B (R,7Y;v) with similar
veE Y’My Mg ve Mgy

notation used for U B; and U B; Similar notation will also be
Y'My Mg
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used for L (£, C; v), the space of functions fe F (82, C) which are L-
integrable relative to veM (£2,S; C) or to M (2, S; Y).

THEOREM 4.1. 7,,CS N BCS N B S %uwn S F. For each
Mg Y’ My

1€ Fowm, ¥y f€ N L, for every y 'eY’. I} Y is separable, then N Bi=

My ¥ iy
- g’bwm-

PROOF: Let fe SFowm, suppose that sup ||f (w)|] =M and let wyeSN
Q2

be such that f(wum)=yueY, Where [lym|| =M. For each n, the sets

E, = {we[l f(w) = O}Ek = {O)G.Q = f(w)eSkM/n (0)— S(k—])M/n (O)}
(k=1,2,...,n) are measurable disjoint and have union £2. The simple

functions ¢. = 1/n E kyu X Ek and @, = 1/n Z (k—1) yu X g, satisfy
==(

[[f (@) — D ()|| < ||¢n () — 1B, (W)|| < M/n on £2. Moreover, since

f If (@)—D. (w)|| dv<M/nv (.Q) and since n may be taken arbitrarily

large, hm[llf @,|| dv=0 and f€Bi (2, Y; v) for every veM (2, S; C).

If fe ﬂ B,, then Hfl]eL1 (£2, C; y' n) for every y' neY’' M (2,S; Y)'
My

so that HfH is bounded (Indeed, if [|f (w,)|] = oo, then for yeY and
Y'eY’ with y' (y) =1, one has[llflld{y’ﬂmo.y}= |If (@o)]| and

j 92
f€Bi(2,Y;Y Mo, y)). The proof that N BiC Fpwm now follows

Y’ My

from the fact that strong measurability implies weak measurability.
If Y is separable, then ([5], p. 73) strong and weak measurability
are equivalent. Moreover, since y’p is finite for every y' u €

€eY'M(2,S;Y), one has [llfﬂl d{y'p}<oo and feB; (2,Y;y u) for

2
every y ueY' M (22, S; Y).

DEFINITION 4.2. Let (£2,S) be a compact, T. Borel measurable
space and let Y be a Banach space. On M (2, S; Y) we now define.
The vague topology, O, as the topology having a nbd. base

éonsisting of sets of the form v (uo; fi, ..., fu; s):%ueM R, S;Y):

gﬁﬂ-d{y’u}— fﬁfid{y'.uo}
Q2 Q2

<eg i=1,2,..,n f,eC (.Q)} ().

(*) The circle appearing in the middle of the sign f should be interpreted
as a capital B (note of the typist).
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The- strong vague topology, Vs has a nbd. base 'given by U =
= Vs (Lo} f1y vory fri Yi'seee, Y'ms €): i€ N By and y/€Y’, where vs (uo)=
Y My

nEM (L2, S; Y):”{]Sfid{yi'ﬂ} —{}Sfid{y’ Ho}
fol -2

<e i=1,2,..,m

i=12,.. ,m§ .

The weak vague topology,V, will be defined as having a nbd.
base U = 1w (o) = Viw (Uhos f1y wve s fui Vs ens ¥'ms €): i€ Fowm, where

Vi (o) ={u EM@R,S;Y): Uy,-’ffd{yk’ﬂ?} —fy/ffd{yk’uo»} <,
Q 2

i=1,2,..,n jk=1,2,.. ,m% .

The weak vector vague topology, V. has nbd. base U ={v. ()=
= Vv (Uo; fis e s fr3 Y1y oo s Y'ms €): ¥/ i€ N Ly, y/ €Y'}, where vy (o) =
M

Y

<e i=1,2,..,n;

=i,ueM(52,S;Y):“fy;’fid.u—f)’i'fidﬂo
Q0 Q
i=1,2, mg

REMARK: M (£2,S;Y) is a LCT, VS relative to each of the topo-
logies O,, Vs, V,, and V..

~ THEOREM 4.3.'Vw:Ov:Vszowgos_—_vag” ”o on M('Q; S; Y)-

Proor: Given any Vu-nbd. v (0)=vw (O; fi, ., fu; Y15 cve s Y'm3 €),
~let K= max sup |y/fi|. Then for y =0, the O,nbd. v(0) =

1<i<an O
1<jsm

= v( O; ”%HXQ; Vs oo s Vm; %) C vy (O) which proves that V,ZO,.
Clearly C(D)CS Fm (2,Y)S N B so that O,SV;0on M (£, S; Y).

Y'My .
If vs (O)=v; (O; Fio oo s fus Y1'seee, Y'ms €) is any Venbd. of O and
_ , i c Aol &
M--lrSniaS)Sl sgp [If: (w)]], then the O,-nbd. w(O, Ay yi’, e, ¥ ’"’M) Cvs (O)

which proves that VS O,.

Given any O,-nbd. w (0)=w (O; Ag, , ..., Ag,; Y1's oo, Y'm; ©), let
{y1, ... ,ym}€Y satisfy y/ (y)=1 (i=1,2,..,m). Then the V,-nbd.
vw(0) = vw (O; ¥ Xm, oo s ¥iXm,5 Vs, Y €) with j=1,2,...,m
satisfies v, (O)Sw (0). This proves that O, &V, and, in view of the
above inclusions, one has V,=0,=V; =0, on M (£, 8S;7).
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For any Viwnbd. , v, (O)=vuy (O; f1, oo, fu; Y1’y o0 s Y'm; €) Of O,
the O.1ibd. w (O)=w(O;A0;§[-)§ku (0) 50 that Vi O,. On the other

hand, let w (O; Ag,, ..., Ag,; €) be any O.nbd. of O. Then for yeY
and y’ (y)=1, the Vurnbd. vy (O; y X g, ..., yX 5,3 ¥'; € Sw (O) which
proves that O,CV,,. |

REMARK: O0,=0,=0,ZC|| |, on M (£,S; C) since 0,=0; on
M, S; C). ‘

COROLLARY 4.4. Let u.eM (2,S;Y) and let Ly be a net in
M (£,S;Y). The following conditions are equivalent: :
(i) pe—>u. relative to O,
(i) ¥y e (E)—>y U, (E) for each E€S and y’eY’
(i) R{Y 1o BV} = R{y 1o (E)} for each EeS and y'eY’
i) I.{yu (E)}——}gm {y" 1. (E)} for each E€S and y'e€Y’
(v) For each E€S, sup ||y (E)|| < oo and y' py,(E)=y o (E)

bo

for every y'€G, where [G]1=Y"

(vi) gﬁfd{y’qu}—ﬂﬁfd{y’uo} for every feC (R2) and y’eY’
2 Q2

(vii) 95fd{y',u.,,}—>¢fd{y’,u.,}foreveryfe N Biand y'eY’
S 0 Y'MY

(vii) [ Y 1LY 1y} f y 1d{y 1} for every fe Foum and
Q2 [
yeyY'.

Proor: 0,=0,, and (i) - (v) are equivalent for O, on M (£, S; Y)
(see [6] for example). The equivalence of (i), (vi), (vii), (viii) follow
from Theorem 4.3 and Definition 4.2. ‘
|
CoRrROLLARY 4.5. The following conditions are equivalent:
(i) pe—> po relative to Os
(i) pe (E) =~ uo(E) for every E€S

(iii)‘, y’fd,u¢—>fy’fd,uo for each f such that y’feﬂp L.
. Y
o 2]
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For the case in which Y is a commutative Banach algebra with
identity e, a new topology can be defined on M (N, S; Y) (3. Indeed,
for each yeY, the mapping p,: M (W,S; Y)—=>R with p,(u) =

=”q£§(M>dy

the fainily of seminorms as well as the cdrresponding seminorm gene-
rated topology on M (N, S; Y).

is a seminorm on M (N, S;Y). Let P denote both

THEOREM 4.6. For Y as above, O,C PO, on M (N, S;Y).

Proor: For any O.=O0, nbd. v (O; f1, e, fu; Y1’y e s ¥Y'ms €), let
A= max |ly/|]| and B= max sup|y/f;(M)|. Then the P- nbd.
, xn

1<j=m 1<i<n
m

1<j<m

(O e; A B) C vy (0). Indeed, for any pev, (O), one has
l [}’i'fi (M) d{)’k'll}HS e(i=1,2,..,n;
o7

—”ﬂ (M =—5 5 50 that

i=1,2,..,m). Thus, O,SP. Next, let v,(O; y1, ..., y» € be any
P-nbd. of O and let K= max |[|yi]|. Then for y’€eY” and yeY with

1<isn

Y (=1, the O;=V., nbd. v,» (O; y X y's K) Cv, (O) which proves
that PCO,.

REMARK: O,= P =05 on M (WM, S; C).
DEefFINITION 4.7. peM (2, S;Y) will be called monotone if for

each E, FeS with ECF, one has || (E)|| < ||z (F)||. The collection of
monotone measures will be denoted by M, (2, S; Y).

THEOREM 4.8. P=0; on M, (M, S; Y).
Proor: In view of Theorem 4.6, it suffices to prove that each

Are A is @-continu_ous. This however, follows from the fact that
for any S.(0)CY, one has Az {v, (O; e; €)}=S, (O) for each E€S.

® (or,S) is the Gelfand-Borel measurable space, i. e., the o algebra of Borel
measurable sets on the Gelfand maximal ideal space 9.
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CoroLLARY 4.9. For each MeNM, one has P=0,=]| |, on
Dy (N, S; Y). ! '

ProoF: Theorem 3.4 together with the fact that Dy (M,S; Y)c
M, (M, S;Y) for each Me M.

A more detailed development of some related P-type seminormed
topologies on algebras may be found in [1], [7], [9] and [10].
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