A FIXED POINT THEOREM IN STRICTLY CONVEX BANACH SPACES (*)

by Alfredo Bellen (in Trieste) (**)

SOMMARIO. - Si dà una estensione di due teoremi di punto fisso dovuti a U. Barbuti - S. Guerra ed a S. P. Singh - M. I. Riggio.

Summary. - Two fixed point theorems of U. Barbuti - S. Guerra and S. P. Singh - M. I. Riggio are improved.

It will be usefull to recall some definitions. Let (X, δ) be a metric space. The measure of noncompactness of the bounded set $A \subset X$, denoted by $\alpha(A)[6]$, is the infimum of $\epsilon > 0$ such that A admits a finite covering consisting of subsets with diameter less than ϵ . We will use the following properties of α :

$$\alpha(A) = 0 \iff A \text{ is precompact}$$

$$\alpha (A \cup B) = \max \{\alpha (A), \alpha (B)\}.$$

A continuous mapping $T: X \to X$ such that

$$\alpha$$
 $(TA) < \alpha$ (A)

for any bounded subset A with $\alpha(A) > 0$, is called densifying.

(*) Pervenuto in Redazione il 2 luglio 1973.

Lavoro eseguito col contributo del C. N. R. nell'ambito del Gruppo Nazionale per l'Analisi Funzionale e le sue Applicazioni.

(**) Indirizzo dell'Autore: Istituto di Matematica dell'Università - Piazzale Europa 1 - 34100 Trieste (Italia).

Let (Y, || ||) be a Banach space and T a continuous mapping $T: Y \to Y$. T is called generalized contraction on Y if:

$$|| Tx - Ty || \le a || x - y || + b [|| x - Tx || + || y - Ty ||]$$

for all x and y in Y, where a and b are positive and $a+2b \le 1$. Let us finally recall the following theorem due to J. B. Diaz and F. T. Metcalf [2].

THEOREM A. Let f be a continuous selfmapping of the metric space (X, δ) such that:

- a) the set $F(f) = \{x \in X : f(x) = x\}$ is nonempty;
- b) for each $y \in X$ such that $y \notin F(f)$, and for each $u \in F(f)$ we have

$$\delta(fy, u) < \delta(y, u).$$

Then one, and only one, of the following properties holds:

- c) for each $x \in X$ the Picard sequence $\{f^n x\}$ contains no convergent subsequence;
- d) for each $x \in X$ the sequence $\{f^n x\}$ converges to a point belonging to F(f).

Let us prove the following theorem:

THEOREM. Let C be a bounded, closed and convex subset of a strictly convex Banach space X, and T a generalized contraction on X which is also densifying. Then, for each $x \in X$, the Picard sequence $\{S^n x\}$, where

1)
$$S = \lambda_0 I + \lambda_1 T + \lambda_2 T^2 + \dots + \lambda_k T^k$$

with

$$\lambda_i \ge 0$$
; $\lambda_1 > 0$; $\sum_{i=1}^k \lambda_i = 1$ (1)

converges to a fixed point of T.

(1) Such a transformation S, with T contraction, was recently introduced by W. A. Kirk [5]. Let us observe that S is a selfmapping of C, being C convex.

4

PROOF. Let us prove that S is densifying. Let A be a bounded nonprecompact subset of C. We have

$$SA \subset \lambda_0 A + \lambda_1 TA + ... + \lambda_k T^k A$$

and hence

$$\alpha(SA) \leq \lambda_0 \alpha(A) + \lambda_1 \alpha(TA) + ... + \lambda_k \alpha(T^k A).$$

Being T densifying,

$$\alpha (TA) < \alpha (A)$$

$$\alpha (T^2 A) \le \alpha (TA) < \alpha (A)$$

$$\alpha (T^k A) \le \alpha (T^{k-1} A) \le \dots < \alpha (A)$$

(the equality in the *n*-th row holds iff $\alpha(T^{n-1}A) = 0$) and therefore

$$\alpha (SA) < (\lambda_0 + \lambda_1 + ... + \lambda_k) \alpha (A) = \alpha (A).$$

By a theorem of M. Furi and A. Vignoli [4], S admits at least one fixed point, so the property a) of theorem A is proved for the tranformation S. The verification of the property b) is a part of the proof of the theorem of U. Barbuti and S. Guerra in [1]. In the same paper the authors proved that F(T) = F(S), hence, to attain our thesis, it will be sufficient to exclude the property c) of theorem A. To this purpose, we shall use an idea introduced by Furi and Vignoli [3], and followed by S. P. Singh and M. I. Riggio in [7].

For $x \in C$, let be

$$A=\bigcup_{n=0}^{\infty} S^n x.$$

We have $SA = \bigcup_{n=1}^{\infty} S^n x \subset A$, and since $A = \{x\} \cup SA$

$$\alpha(A) = \max \{\alpha(\{x\}), \alpha(SA)\}$$
$$= \max \{0, \alpha(SA)\} = \alpha(SA)$$

Because S is densifying, $\alpha(A) = 0$ and hence A is precompact. Since X is a complete metric space, \overline{A} is compact and therefore the sequence $\{S^n x\}$ contains a convergent subsequence.

The theorem proved above improves the theorem of U. Barbuti and S. Guerra [1] in which TC is required to be compact (such a transformation is obviously densifying for it is completely continuous). On the other hand we have improved the result of S. P. Singh and M. I. Riggio in [7] where the same thesis is proved for the transformation

$$T_1 x = \lambda Tx + (1 - \lambda) x \quad 0 < \lambda < 1$$

which is of the type 1) with k=1.

BIBLIOGRAPHY

- [1] U. BARBUTI e S. GUERRA, Un teorema costruttivo di punto fisso negli spazi di Banach, Rend. Ist. di Matem. Univ. Trieste. Vol. IV, fasc. II (1972), 115-122.
- [2] J. B. DIAZ and F. T. METCALF, On the set of subsequential etc., Trans. Amer. Math. Soc., vol. 135 (1969), 459-485.
- [3] M. Furi and A. Vignoli, A fixed point theorem in complete metric spaces, Bollettino Unione Matem. Italiana, n. 4 (1969), 505-509.
- [4] M. Furi and A. Vignoli, On α-nonexpansive mappings and fixed points, Rend. Accad. Naz. Lincei, 48 (1970), 195-198.
- [5] W. A. Kirk, On successive approximation etc., Glasgow Math. Jour. 12, part 1 (1971).
- [6] C. Kuratowski, Topologie, Warsawa (1952), vol. 1, pag. 318.
- [7] S. P. Singh and M. I. Riggio, On a theorem of J. B. Diaz and F. T. Metcalf, to appear in Rend. Accad. Naz. Lincei.