LOCALLY CONVEX TOPOLOGIES ON RINGS
OF CONTINUOUS FUNCTIONS (*)

by A. G. A. G. BaBIKER (in Khartoum) (**)

SoMMARIO - Si esaminano quattro topologie convesse g, T, B, & sullanello

C* (X) delle funzioni reali continue e limitate definite su uno spazio X
completamente regolare. Nella g, C* (X) ha come spazio duale quello delle
misure con segno su X, mentre nelle ¢, B e ¢ i duali sono rispettivamente
gli spazi delle misure di Baire con segno net-additive, compatte regolari e
discrete.
Vengono stabilite varie relazioni fra tali topologie, e fra esse e la to-
pologia di X. Fra Ualtro, si prova che B & completa se e solo se ogni fun-
zione limitata continua che sia continua su ogni sottoinsieme compatto di X
e continua in X; e che § é completa se e solo se X é discreto.

SUMMARY - In this paper, four locally convex topologies g, 7, B and §, on
C* (X), the ring of alla bounded continuous real functions on a completely
regular space X, are considered. Under g, C* (X) has, as a dual space, the
space of all signed Baire measures on X, while the duals of Cr(X) under
7, B and § are the spaces of alla net-additive, all compact regular and
all discrete signed Baire measures respectively.

The bulk of the work establishes various relations among these topolo-
gies, and between them and the topology of the underlying space X. For
instance, it is shown that B is complete iff every bounded function which
is continuous on compact subsets of X is continuous on X; and that § is
complete iff X is discrete.

§ 1. Introduction.

Let X be a completely regular Hausdorff space and let O*(X)
denote the ring of all bounded continuous real-valued functions on

(*) Pervenuto in Redazione il 15 dicembre 1972.
(*) Indirizzo dell’Autore: Department of Mathematics - University of Khar-
toum, Khartoum (Sudan). )



96 A. G. BABIKER

X. Under the uniform norm topology O*(X) is a Banach space.
When X is compact, the maximal ideals in C*(X) are in one-to-one
correspondence with points of X; i. e. X has a « faithful» repre-
sentation within the algebraic structure of C* (X). Furthermore, the
Banach space (*(X) gives as dual the vector space of all signed
Baire measures on X. When X is not compact, the simplicity in
the relation between X and C*(X) breaks down. Indeed, as a Ba-
nach space, C*(X) is isometrically isomorphic to C* (8X), where
BX is the Stone-Cech compactification of X. So X does not have
a «faithful » representation in O* (X); and elements of the dual of
C* (X) give rise to signed measures which may be -purely finitely
additive.

In a previous paper by the author, a locally convex topology
o on O*(X) was introduced. There it is shown that, under o,
O*(X) has the space of all signed Baires as dual and that, when
X is realcompact, points of X are in one-to-one correspondence
whith the closed maximal ideals in C€*(X). In this note, three
more locally convex topologies z, # and é are defined on C* (X).
In § 3 and § 6 it is shown that the duals of O*(X) under 7z, § and 4
are the spaces of all net-additive signed measures, all compact-re-
gular signed measures and all discrete signed measures respectively.
It follows from this that, under 7, § and &, the multiplicative linear
functionals on C*(X) correspond, via valuation, to points of X. In
§ 4 some necessary and sufficient conditions for the completeness of
the topologies o, f and 4 are given. Various properties of these
topologies and their relation to X are discussed in § 5. §7 contains
alternative definitions of the above topologies together with the
compact-open topology ». Of particular interest is theorem (7.3)
where the description of g appears as a natural generalization of
the definition of the strict topology as introduced by Buck for
locally compact spaces.

§ 2. Preliminary Material.

Throughout, X will denote a completely regular Hausdorff
space. We denote by C*(X b, or just O* when no ambiguity can
arise, the ring of all bounded real-valued continuous functions on
X. All unexplained notions concerning this ring are those of [6];
other topological ones are those of [9]. As for the measure theory,
we adopt the terminology of [7].
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For fe C* (X), write,
Z(f)={x€X: f(x) = 0}, called the zero set of f;

P(f)=\{x€X: f(x) > 0}, called the positive set of f.

The Baire (Borel) sets are defined to be elements of the smallest
o algebra of subsets of X containing all the zero sets (all the -clo-
sed sets). By a Baire measure we mean a totally finite non-negative
countably additive set function defined on the Baire sets. A signed
measure is a difference of two measures. We remark that the coun-
table additivity of a Baire measure p implies the regularity of u
in the sense of inner approximation by zero sets and outer appro-
ximation by positive sets.

Let M denote the vector space of all signed Baire measures
on X. u€9 is said to be net additive if for any decreasing net
$Z.4 of zero subsets of X such that QZa= D (Z,\ D), we have,

| #|(Z) — 0, where | u| is the total variation of u (cf. [12]). u is
said to be compact-regular (discrete) if for each ¢>03 a compact
set (finite set) K < X such that, |pu|, (X \ K)<e. Clearly, p is
discrete =—> u is compact regular—> u is net additive. On the
other hand a net additive signed measure u is discrete if and only
if | x| has no non-trivial non-atomic minorant.

A subset A< N is said to be tight (discretely tight) if for each
€> 03 a compact (finite) set K c X such that |u|,(X\ K)<e
for all u€ A. We say that X is essentially discrete (essentially com-
pact) if every Baire measure on X is discrete (compact-regular).

Let M., WM. and W; denote, respectively the subspaces of
all net-additive, all compact - regular and all discrete signed measures
on X. The operation of integration enables us to identify W, N(,, N,
and 9; with subspaces of the vector space of all norm bounded
linear functionals on O* (X). These subspaces are characterized
in the following proposition [12, part I).

PROPOSITION 2.1. Let L be a norm bounded linear functional on
O* (X). Then,

(i) LEN if and only if for each sequence $fuds of elements
of CO*(X) pointwise decreasing to zero (f, \ 0), we have, | L | (fu)— 0.

(i) LENW, if and only if for each net §f.4 in C*(X) point-
wise decreasing to zero (fa X\ 0), we have, | L |(f.)— 0.
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(iii) L €W, if and only if for each wuniformly bounded net
} fot such that f,— 0 wuniformly on compact subsets of X, we have
| L|(fz)— oO.

(iv) LE€Nga if and only if for each uniformly bounded net } £
such that f,(x) — 0 for all » € X, we have | L|(f,)— 0.
Denote by u, » and s the uniform norm topology, the compact-open
topology and the simple convergence topology, respectively, on
C*(X). fa -~>f if and only if f, — f uniformly on compact subsets

of X. f,— f if and only if f, (#) — f () for all € X. The proof of

the following proposition is straightforward.

PROPOSITION 2.2. The dual of C*(X) under x(n) is the space
Ny (M) of all signed measures with compact ( finite) supports. Further,
Ny (M) is norm demse in W, (Ma).

Let & be the family of all monotonic s-convergent sequences,
in O*(X), together with their limits. We define the topology o,
(see [1]), to be the finest locally convex topology on O*(X), which
agrees with » on each A € o{ (i.e. o is the topology of localization
of » on elements of o). Clearly »<<o<u (where «<» means
«coarser than »). We give some properties of ¢ in the following
proposition. (See [1] for proofs).

. PROPOSITION 2.3.

(i) M is the dual of (C*, o).
(ii) o =u if and only if X is pseudocompact.

(iii) If X is realcompact, then the o-closed maximal ideals in
C* are in one-to-one correspondence with points of X, i.e. (C* o) de-
termines X uniquely. ‘

For a locally compact X, the strict topology B, introduced by
Buck [2], has recently received considerable attention. See [3], [4]
and [5]. This topology is defined by the family of seminorms,
Ul llwtweoox), where Co(X) is the set of all continuous functions
vanishing at infinity, and,

17l =l w71 =sup | v @ 7@,

for all f€ C*. Under the strict topology, C* is a complete locally
convex space having . as a dual space [2, p. 98]



LOCALLY CONVEX TOPOLOGIES ON RINGS ETC. 99

§ 3. The Topologies 8 and 6.

Let X be any completely regular Hausdorff space. Define the topo-
logies  and §, on C*(X), to be the finest locally convex topologies
which agree with, respectively, » and = on all uniformly bounded
sets. Clearly d <<f<<o< u; and, when X is locally compact, f
agrees with the strict topology [5]. A neighbourhood base at 0 for
the topology f(d) is the family of all circled convex and radial
sets U containing 0, such that for any uniformly bounded set B
containing 0,3 a # (x)-neighbourhood V of 0 such that Vn B c U.
More useful and smaller neighbourhood bases at 0, for § and J,
are given in the following proposition.

ProrosiTION 3.1. The family of all sets obtained by taking the
closed convex hulls of sets of the form.

YAl < m, and sup |7@)| < eat,

Jfor some increasing sequence JK,{ of compact (finite) subsets of X and
a sequence of positive numbers et with e, X 0, form a neighbourhood
base at 0 for the topology f (6).

PrOOF: We prove the proposition for the topology f. The
proof for & is similar.
Let }K,{ be an increasing sequence of compact subsets of X

and }¢,{ be such that 0 <e, for all » and &, \ 0. Clearly the clo-
sed convex hull U, of the set

G707 <n, and aup | 70| < o

is circled and radial. Let B be a uniformly bounded set containing
0. Then for some integer m, ||f|| << m for all f€ B. Thus,

Uaif:|f|l <m, and xs:t;{p|f(m)|<sm§:Bn%f:xseulg|f(w)|<em§.

Hence U is a f neighbourhood of 0.
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Conversely, let V be any closed convex g neighbourhood of 0.
Then for each n3 a x-neighbourhood U, such that

V3 Tanisi s < b

U, can be chosen to have the form,

$f:8up | f(2)] < enl,
ze Ky

for some compact set K, and some &, > 0. By replacing K, with
" 1 3 . .
lilK.- and e, with 76,’., where e; = infle;: i << n{, we may assame

that }K,} is increasing and 3&,,} is decreasing to zero. Clearly,

VouU Wl fll <m, and sup]f(w|<s"§

n=1

As V is closed and convex, the proposition is proved.
We now characterize the dual spaces of O* under § and é.

THEOREM 3.2.

(i) The dual of (C*, B) is the space WM. of all compact-regular
stgned Baire measures on X,

(ii) The dual of (C*,d) is the space Ny of all discrete signed
Baire measures on X,

Proor : (i) Suppose that u is a compact-regular signed measu-
re on X. It follows from (2.1 (ii)) that the corresponding functional
L is =-continuous on all uniformly bounded sets. Hence, by the
definition of 8, L is B-continuous.

Conversely suppose that L is f-continuous. Then I is x-conti-
nuous on every uniformly bounded set. So, by (2.1 (ii)), the corre-
sponding signed measure is compact-regular. This completes the
proof of (i); and (ii) can be proved similarly.

The following theorem shows how X can be recaptured from
either (C¥*, d) or (C* ).

THEOREM 3.3. Let v be either B or d. Then points of X are in
one-to-one correspondence with the set of all z-closed maximal ideals.
Thus, if X and Y are such that (O*(X),t) and (C* (Y), 7) are isomor-
phic then X and Y are homeomorphic.
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PRoOOF: For € X, the maximal ideal I,=1}f:f(x)=0} is
clearly z-closed.

Conversely suppose that I is a z-closed maximal ideal. Then
3 a z-continuous multiplicative linear functional L such that

I = L-1(0). By (2.1) 3u€ N, such that L(f)=ffd,u. As L is
x

multiplicative, u is two-valued. Since u is compact-regular 3z€eX
such that u*(}x{)=u(X). Therefore I=1}f:f(x) =0} As the
space of all such maximal ideal equipped with the Stone topology,
[6, p. 58], is clearly homeomorphic to X, the proof is complete.

‘We conclude this section by giving a Stone Weierstrass theorem.
In [1] it is shown that if X is essentially compact then a separating
subalgebra, of C*(X), which contains a constant function is ¢-dense
in C*(X). The same method of proof which depended only on the
fact that the dual space is N, can be used to show the following.

THEOREM 3.4. Let A be a subalgebra of O*(X) which separates
points of X and contains the constant function 1. Then A is B-dense,
and hence also d-dense, in C* (X).

§ 4. Completeness Theorems.

We say that X is a k-space if X satisfies the condition: if a
subset A of X intersects each compact set in a closed set, then A
is closed. X is called a k*-space if X satisfies the condition: a
bounded real-valued function f is continuous whenever it is conti-
nuous on each compact set.

We now give a completeness theorem for the topology p.

THEOREM 4.1. B is8 complete if and only if X is a k*-space.
For the proof we need some lemmas. The following characterizes
equicontinuous subsets of the dual of (C*, g).

LEMMA 4.2. A subset E of the dual of (O* B) is equicontinuous
if and only if E is norm bounded and tight.

Proor. Suppose that E is equicontinuous. Then FE is bounded
for the strong topology of uniform convergence on f-bounded sub-
sets of C* [11, p. 141]. By theorem (5.4) of the next section, every
p-bounded subset of C*(X) is norm-bounded. Thus F is bounded
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for the topology of uniform convergence on norm bounded subsets
of C* Hence F is norm bounded. So 34 > 0 such that | u|(X)<M
for all u€ E. Since ¥ is equicontinuous, E°, the polar of K, is a
B-neighbourhood of 0. By (3.1) E° contains a set of the form :

(0 U s Il < and sup |f (o) | <ent

n=1

where } K, | is an increasing sequence of compact sets and 0 < e, 0.
Suppose that F is not tight. Then 3&>> 0 such that for any com-
pact subset K of X3u€F such that |ul,(X\ K)>e Choose n

1
large enough so that &, << 3 and . < e&. Now consider the cor-

responding K, in («). 3u€E such that |u|, (X \ K.) > e Since
HE€N,, p has a Borel extension » which satisfies,

v (@)= nl. (&)

for all open G X[10,p. 144]. Thus |» |[(X\ K,) > e.
Let » =9+ —»— be a Jordan decomposition of ». Find two
digjoint compact subsets ¢, and C, of X \ K, so that,

+(0) = »=(0,) =0,

[#](Oyu Og) > e
and

: 1
[P XN\ (KU Oy u O] < o

Let f€ C*(X) be such that f(K,) )=, f(C)=n, f(G)=—n
and ||f| = n. Then f€ E°. Now,

[fdv—jfdv—{—[ fdv-{-[fdv
Ky 0u0,;
where D = X\ (K, u O, u Gp).
C]early,[ fdv> 2, ‘jfdv

AT
| 1
‘]fdv = —

D

En 1
M= _
< 2<2

and
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Thus > 1. i.e. f¢ E° and we have a contradiction. So E

’l{fdv

is tight.
Conversely suppose that F is tight and is norm bounded. We
want to show that E° is a f-neighbourhood of 0. For each n 3 a

1
compact subset K, of X such that, | u|, (X \ K,) <§:n_ , for all
u€ E. Clearly we can choose } K.} so that K,c K,4;. Write,

. 1
n={reeisisn wma 7@ <55,

where M is such that || u|| << M for all u€ E. Now, let f€ A, for
1
some n. Then, Iffd,u|<%, and [ fd,u‘ﬁ%;:;, for all

Ky X\ Kp
ffdu

closed and convex, it follows from (3.1) that E° is a # neighbourhood
of 0. This completes the proof of the lemma.
The following lemma is found in [8, p. 248].

nEERE.

So <1 for all u€E. Thus E°=nl_JlA,,. As E° is

LeMMmA 4.3. Let F be a locally convexr Hausdorff space, F’ its
dual, and A a closed convex circled subset of F. Let w be a linear
form on F whose restriction to A 4is continuous on A. For every
e> 03 a linear form x’ € F’ such that |w (x) — (&', 2) | < & for all
rv€A.

Finally we need the following corollary of Grothendieck’s
completeness theorem [8, p. 250].

LEMMA 4.4, Let F be a locally convex Hausdorff space and F’

its dual. Then the completion 7 of F can be identified with the vector
space of all linear forms on F’ whose restrictions to equicontinuous
subsets of F’ are continuous for o (F’, F).

PROOF OF THEOREM 4.1. Suppose that X is a k*space, and
let w be a linear form on 9, which is continuous on each f-equi-
continuous subset relative to o (W, C*). Define f on X by: f(x) =
= w (d,), where J, is the measure induced on X by placing a unit-
point-mass at x. We first show that f is bounded. Suppose that f
is'not bounded. Then for each n 3, € X such that f(x,) > 2". Let
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1
””=_”—6“’n' Clearly, the set }0, u,, u,,...} is tight and is norm
bounded. It follows from (4.2) that it is p-equicontinuous. Thus w
is o (M., C*)-continuous on 30, u,, py,...}. A8 pu,— 0 relative to
1
a (M,, C*), and w(,un)--—--; f(®,) — oo, we have a contradiction.

So f is bounded.
Now let K€ X be compact. Write,

A=}peM,.: supp(u) C K{niu:|pl <1i

where supp (u) is the support of u. Clearly A is convex, circled
and closed relative to o (W, C*. By (4.2) A is B equicontinuous.
By hypothesis w is o (W(,, 0*)-continuous on A. By (4.3) we have,
for each ¢ > 03g€ C* such that,

lwm)—— [ gd,u‘ < e
x

for all p€ A. In particular, |f(x) — g (x)| <e, for all 2€ K. Thus
S is continuous on K. As X is a k*space, f€ O*(X).

‘We now show that w(,u)::ffd,u for all u€Nl.. By (2.2) the

vector space i, of all signed measures with compact supports,
is the dual of (O%x). As w is o (W, C*)-continuous on each x-
equicontinuous subset of Wi, ,fthe restriction of w to Y, is in the
completion of (C* x»). But, the completion of (C* x) is the space
C(X) of all real-valued functions whose restrictions to each compact
subset are continuous. Thus 34 € C (X) such that f h dp = w(u) for

x
all €. It follows that h = f€ C*. Hence, we have

[fdp=w(}4), for all u€ N.
x

Now let u€ N, and » its Borel extension. For each »3 a com-
pact set K, such that |u| (X \ K,) < —11;- Define », (E)=v» (E" K,,),

for all Borel Fc X, Let u, be the Baire restriction of vn . Clearly,
pn—> p relative to o (W, 0*), and, by (3.2) the set }u, p,,..} is
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p-equicontinuous. So, w (un) —> w (u). But,

w(ﬂn)=ffdﬂn—>ffdﬂ-

Therefore, f fap=w (u) for all u€N,. It follows from (4.4) that

(C*, B) is complete.

Conversely, suppose that g is complete. Let f be a bounded
function which is continuous on each compact subset of X. Then
3 a net }f,! of bounded continuous functions such that f, —— f.

k4

Since f is bounded we can assume that ||f.|| <[ f|| for all a. It
follows that }f,}{ is f-Cauchy. As (C* g) is complete, f€ C*(X).
Thus X is a k*space. This completes the proof.

The following theorem characterizes those spaces for which ¢
is complete. '

THEOREM 4.5. & is complete if and only if X is discrete.

ProoF : Suppose that X is discrete. Then % = x, and so éd=4,.
By (4.1), (C* ) is complete.

Conversely suppose that (O* 8) is complete. Let f be any
bounded real-valued function. 3 a net }f,{ such that f,——f.

b4
Clearly, we can assume that ||f.| <||f]|| for all a. Therefore }f,}
is 4-Cauchy and so f, ———5—>h for some he€ C* as f,——>f, h=/,.
JT

Thus every bounded function on X is continuous. i.e. X is discrete.

From theorem (4.1) we can obtain a more general result. Let
E be a locally convex Hausdorff space and E’ its dual. A locally
convex topology ¢ is said to be compatible with the pairing (E,E’)
if B equipped with ¢ has E’ as a dual space. Among all locally
convex topologies on F compatible with the pairing (E, E’) there
is a finest element called the Mackey topology and is denoted by
(B, E’). A locally convex space F is called a Mackey space if the
topology of E is z(E, E’). ©(E, E’) is the same as the topology of
uniform convergence on all circled, convezx, ¢ (E’, E)-compact subsets
of B’ [11, p. 131]. We now give the extension of (4.1).

THEOREM 4.6. Let X be a k*-space and suppose that t is a
locally convex topology on C* (X) such that p <<t <<z (C*, N.). Then
t is complete. In particular if X is an essentially compact k*-space
then o is complete.
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PROOF: By hypothesis the dual of (C*, t) is W,. Let w be a linear
form on N, which is ¢(W., 0*)-continuous on each t-equicontinuous
subset of W(,. Since f<t, w is o (W, O*)-continuous on each p-
equicontinuous subset of M,. By (4.1) 3f€ C* such that w(u) =

= [ fdu for all peN,. It féllows from (4.4) that ¢ is complete.
X

Since in an essentially compact space B << o << 17 (0%, Y,), the

theorem is proved.

§ 5. Farther Properties ofcfi g and é.

A locally convex space E is said to be strongly Mackey if
every o (E’, E)-compact subset of B’ is equicontinuous. Obviously
a strong Mackey space is Maékey, but the converse is false unless
the closed convex hull of a o (E’, E)-compact subset of E’ is com-
pact. The following theorem Charactenzes weakly compact subsets
of Y and implies that under o, C* is strongly Mackey.

THEOREM b5.1. Let H bé a subset of W(. Then the following
conditions are equivalent :
(i) H is oc-equicontinuous.
(i) H is o (M, O*)-relaiively compact.
(iii) For each sequenceiz Sfnl of elements of C* with f,\ 0,

we have

ff,,dl,u|i—+0 uniformly in we H.

(iv) For any sequence }Z,! of zero subsets of X such that
Zy # X, and for each n3 a positive set P, such that Z, € P, C Z,,,,
we have, | u|(X \ Zn) — 0 uniformly in u€ H.

PrOOF: (i) ==> (ii) is obvious. (ii)==> (iii) <==> (iv) follows
from [12, th. 28]. It remains to show that (iii)==> (i).

Suppose that H satisfies }(iii) and let } f,{ be a sequence in C*
such that f, \ f. Write 4 = if,fi, «.{, and suppose 0€ A. If 0 == f
then 3 a x-neighbourhood V of 0 such that Ve A =}0{c H° Now

suppose that f = 0. By (m):-IN such that, ff,.dlmgl for all n>N

and all u€H. Hence, ff,,d,d‘gl for all n >N and all u€H.




LOCALLY CONVEX TOPOLOGIES ON RINGS ETC. 107

Find a »-neighbourhood V of O such that f;¢ V for all ¢ such
that ¢t << N and f; == 0.

If follows that ¥V N Ac H° Since the same conclusion is simi-
larly valid if }f.{ is increasing, H° is a o-neighbourhood of 0. i.e.
H is c¢-equicontinuous. This completes the proof.

The above theorem implies that ¢ is Mackey and the conditions :
(i) B is Mackey, (ii) # is strongly Mackey, and (iii) f = o, are equi-
valent when X is essentially compact. It follows from (4.2) and
from [12, th. 29 and th. 2 (appendix)] that these conditions are im-
plied by essential compactness when X is either locally compact
or metrizable. Whether the same is true when X is just a k*-space,
or even a k-space, is not known.

To establish the relation between f and 6 we need the follo-
wing proposition whose proof is similar to that of (4.2).

PROPOSITION 5.2. A subset Hc Ny 8 d-equicontinuous if and
only if H is norm bounded and discretely tight.

COROLLARY 5.3. The conditions :
(i) o s strongly Mackey,
(i) &=4,
(iii) Every compact subset of X is finite,

are related by : (i) =—> (ii) <= (iii). Furthermore if X is a k*space
any of the above conditions is equivalent to (iv) X is discrete.

Proor: Let K be an infinite compact subset of X and let
Hc M; be defined by: H = }0,4,ex. Clearly H is ¢(Ny, C*)-com-
pact and by (4.2) and (5.2) H is f-equicontinuous but not §-equi-
continuous. It follows that (i)=—> (iii) and (ii) => (iii). As (iii)=> (ii)
is obvious, the first part is proved.

If X is a k*space, then obviously (iii)==> (iv), and by [4, th.
2.6] (iv) => (i). This completes the proof.

The following theorem generalizes theorem (1 (iii)) of [2].

THEOREM b5.4. The topologies 8, B, o and u have the same
bounded sets.

PROOF: As d << f << o <w, it is sufficient to show that every
d-bounded set is u-bounded.
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Suppose that Bc O* is é-bounded but not norm bounded. Then
for each n3x,€ X and f, € B 'such that f, (z,) > 2*. Write

yee M,

and let W be the convex hull of glA,,. By (3.1), W is a dneigh-

| 1
bourhood of 0. So 3% > 0 such that I—cB cW. Let n be such that

fn

on
—,-{->k. Since <~€ W, 3nyy..c ey by, ., by and 4, , ..., 4, such that

hi€An, 0<h<1,i=1,..,r S =1 and,

i=1

In 3 Ak

i i=1

We may assume that n, < g oo < Ny . Therefore

-]%" ” < n,. Thus

n<n,.. So,
fn (xn) r<l
n< < gzlh(x,.+1 <N |2 4|+ 4.
L] i=1
Hence,
—_ r—1
=l Y=l
—‘1 =1

Therefore n << n,_;. Thus |h,_;(#,) | << 1. By backward induction
we obtain,
hi(e,) <1, for t=1,..7.

fn (xn)

Thus << 1. This contradiction completes the proof.

\
As an application of the above theorem we prove:

THEOREM 5.5. The follou;ing conditions are equivalent.
(i) X is compact ( ﬁnkte).
(i) B (8)=mu.
(iii) B (8) 48 metrizable.

(iv) B(0) is bornological.
Furthermore, if X is a k*-space then any of the above conditions
Jor B, 18 equivalent to: (v) B is barrelled.
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ProoF: (i)=> (ii) and (ii)==> (iii) are obvious. (iii)=> (iv)
follows from [11, p. 61]. It remains to show that (iv) => (i).

Suppose that § is bornological. i.e. every circled convex subset
of C*(X) which absorbs every f-bounded set is a neighbourhood
of 0. By (5.4) every p-bounded set is u-bounded. Hence g = u. It
follows from (3.2) that every norm bounded linear functional is
compact regular. So X is compact [10, p. 145]. Similarly, X is
finite whenever 8 is bornological.

Now suppose that X is a k*-space. The unit ball B, =}f:
If]l=<<1{ is clearly convex, circled and radial. As X is a k*space,
B, is #-closed and hence pB-closed i.e. B, is a barrel in (C* f).
Therefore f = u whenever g is barrelled. This completes the proof.

By (2.3), we have ¢ =wu if and only if X is pseudocompact.
So it follows from (5.4) that the conditions: (i) X is pseudocompact,
(ii) o = u, (iii) ¢ is metrizable, and (iv) ¢ is bornological, are equi-
valent; and, if X is a k*space any of the above conditions is
equivalent to: (v) ¢ is barrelled.

§ 6. The topology <.

Let D be the family of all subsets D of C*(X) such that
(i) o=<h<1, for all h€D, and

(ii) D can be indexed so as to form a net }h,{ with &, £ 1.

For each D€ denote by tp the locally convex topology defi-
ned by the family of seminorms }|| ||s{scp, Where

[ fla=|SfR]| = :l:g){ | f (@) k() |, for all fe C*(X).

Clearly tp << u. Furthermore, the fact that sup A (x) = 1 for all z€ X,

heD

implies that tp is Hausdorff and that » Sstp . Let 7;, be the finest
locally convex topology which agrees with tp on uniformly bounded
sets. It follows that <<z, < u. A base for the z,-neighbourhoods
of 0 is obtained by taking the convex hulls of sets of the form :

UArect:||fl|<n and || fh || < e,
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‘where }h,{ is an increasing sequence of elements of D and }¢,! is
a decreasing sequence of positive numbers.

We define the topology ¢« on C*(X) to be the finest locally
convex topology coarser than 7, for all DeD. ie 1= infD 5
where the infimum is taken %in the lattice of all locally Dceonvex
topologies on C*(X). Since B <17, for all D€, we must have
g < In the following theoréem we characterize elements of the
dual of (C*, 7).

. THEOREM 6.1. The dual bf (C*, ) is the vector space N, of all
net-additive measures on X.

PROOF : Suppose that 0 == u€ W(,. To show that u€(C* 7), it
is sufficient to prove that the set,
fruf=1}.

is a 7, neighbourhood of O for all D€ .
Let D€®@. It follows from the net-additivity of u that for each
positive integer n 3%, € D such that,

weiseo

‘ 1
f(l—h,,)dl,u|<4—n.

Clearly }h.{ can be chosen 8o that by < bpys -
‘Write,

oo ‘ 1
0= 7 l7] <0 and 1) <

anflpll ¥
The convex hull of U is a t,-neighbourhood of 0. Suppose that

1 .
F€U. Then for some n, ||f||<<n and || fh. || SW' Write

Z = wEX:h,,(x)g—:-lz—}, and

P=§w€X:‘hn(x)>%—§.
Then,
= [t ulf .
de/t'sﬂfldlﬂl-!hn el all+ [ 1110
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Clearly | u|(Z )g%, 80 that

de"‘spf"?‘lhnf|d|u|+%,nf||s%+§-_—1.

Thus, UcW. As W is convex, W is a 7, -neighbourhood of 0.

Conversely, suppose that L is a z-continuous linear functional
on C*(X). Then L is norm bounded. By [12, Th. 6] 3 a finitely
additive set function u defined on the algebra of subsets of X gene-
rated by the zero sets, such that

L(f)=ffd,u, for all fe C*.

Suppose that u is not net-additive. Then 3% > 0 and a net } P,
of positive subsets of X such that P, /# X and |u|(X\ P.)>19
for all «. Let ut and u— be the positive and negative parts of u.
Find two disjoint zero sets Z+ and Z— such that

pHZ) = pm (B H =0,
|/"‘|(X\Z)<%’ and,

[ (XN Pa)" 21> 75

where Z = Z+ v Z—. Write,

D=}he0*: 0<h<1, and, for some a, h(X\ P, =04
Index D as follows: D =1}h;{scq 80 that A>41" if and onmly if
hy = Ry . Clearly h; A 1. ie. DeD.

Since L is v-continuous, it is 7, continuous, and so 3k € D and
>0 such that |L(f)| < —?27— whenever || f|l<<1 and |fh| <e.

By definition of D, 3« such that h (X \_ P, = 0. Now, it is possible
to find g€ O* with ||g||=1 and such that

glZ+n (XN PJ)]=1,
JlZ— (XN Po) = —1,

g () = 0 whenever h (x) = ¢,
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and

gdp=0.
P, n (X\2Z)

Clearly, || gh || < ¢ but
the proof.

f gdu ‘ > % . This contradiction completes

REMARKS : (i) As W, €N, and since by (5.1), o is a Mackey
topology, it follows from (6.1) that z<<o. In fact the topology o
can be defined in exactly the same way as z but with @ replaced
by the family of all monotone sequences of non-negative functions
pointwise increasing to 1.

(ii) Another consequerce of (6.1) is that theorems (3.3), (3.4)
and (6.5) remain valid when g is replaced by z.

(iii) Suppose that X is absolutely Borel measurable in its
Stone Cech compactification ﬁX. i.e. X is measurable with respect
to any Borel measure on BX. It follows from [10, p. 148] that
M. = N, 8o that, by (4.6) and (6.1), = is complete whenever X is
a k*space. 5

The following is a characterization of r-equicontinuous subsets

of N, .

THEOREM 6.2. Let H be a o (N, , C*)-closed subset of N, . Then
the following are equivalent:

(i) H 48 v-equicontinuous.
(ity H is o (WM, , 0*)-bompact.

(iii) For any net }fu{ of non-megative elements of CO% with
fa A 1, we have,

f(l—f.)d],ul—)() uniformly in w€ H.

(iv) For any net §Z,{ of zero subsets of X with Z,\ @, we
have,

| #|(Za) — 0 uniformly in pe€ H.

Proor: It follows from (5.4) that every z-bounded subset of C*
is uniformly bounded. Hence every z-equicontinuous subset of M,
is uniformly bounded. Using this fact and the method of proof of
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theorem (6.1) it can be shown that (iv) =—> (i). (i)=> (ii) is obvious
and (iii) ==> (iv) is standard. So it remains to show that (ii)==> (iii).

Suppose that H is ¢ (W, , C*)-compact, and let }f.{ be a net
of non-negative functions such that f, # 1. By [12, th. 28], the set,

| H|=1}|n|: peHY,

is o (M., O*) compact. Let e > 0 be given. For each a write,

Va= [

[a=raa

<el.

Vo is o (M., C*)-open and UV,>|H|. Since |H| is compact,
a
n
3}ay .. ;an{ such that U Ve |H|. Now let a be such o> a;
for +=1,...,n. Then clearly f(l —fod|p|<e for all ue H. It

follows that f (L—fud|pu|—>0 uniformly in u € H, and the proof

is complete.

An immediate consequence of the ahbove theorem is that = is
strongly Mackey. It also follows that B =7 if and only if 8 is
Mackey and X is absolutely Borel measurable in 8 X. In [4, p. 481]
it is shown that for the locally compact space X of all ordinals
less than the first uncountable ordinal with the order topology, g
is not Mackey. Thus absolute Borel measurability of X in X is
not sufficient for § to be identical with z. It is not known whether
the fact that f is Mackey implies g = 1.

§ 7. Alternative descriptions of %, 4,8 and o.

In § 6 the topology = was constructed first by localizing each
tp on uniformly bounded sets and then taking the inductive limit
of the resulting topologies. These two operations do not commute.
In the following theorem we show how the topology x can be defi-
ned as an inductive limit of the locally convex spaces }(C*, tp)ipe® .

THEOREM 7.1.
% =inf}tp: DeD},
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PRrOOF : Let »’ = inf }tp: D€ D{. Since » <1, for all DeD,
we must have » <<«’. Clearly »’ < v. So it is sufficient to prove
that every x’-equicontinuous subset of ), is »-equicontinuous.

Let H € 9N, be »’-equicontinuous. Clearly H is norm bounded.
Moreover, for each D€D3Ihp €D and ep >0 such that

(*) DléJ(D;fe O*:||fhy |l < epbc HO.

For each u€ H, let 8, denote the support of |u| Let S be the
closure of UH S,. We show that § is compact. Let } Gilic4 be an
ne

open covering of S. For each s€ §34€ 4, a zero set Z, and a posi-
tive set P, such that,
seP,cZ,c@,.

Let Z () be the family of all finite unions of §Z,4;cs (32 bscs),
and index Z(P) as follo#vs: E=13Zstaca (P =13Pslaca) 80 that
a = f if and only if Z, DZ; (P, D Ps). Write,

D=1}heC*:0<h<1, and for some a€4, h(X\_P,)=0!.

Clearly De@. So by (#) EﬂpED and ¢ > 0 such that,

|

(+0) }7E0: | 7] < efc HO.

By definition of D, 3¢ € 4 'such that h(X\ P,)=0. If for some
p€H, |pule(X\ P)>0, we can find a function f€ 0* such that

f(Py)=0 and I ff du l > 1, and thus obtain a contradiction to (x=).

It follows that | u |, (X \ P,) = 0 for all w€H. i.e. Sc P, the closure

of P,. Since P, € Z,, 3 a finite subfamily of } G4 which cover S.
Hence 8 is compact. ‘_

Let ¢ be a positive number such that ||u|<<e¢ for all u€ H.
Then ‘

| 1
fisup|f(s)| < — (€ HO.
8e S c

i.e. H® is a x-neighbourhood of zero; and so H is x-equicontinuous.
This completes the proof.
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We now give an alternative description of the topology o.
‘Write,
H=3heC*: 0 <<h<1}{.

For h € 9 let s;, be the topology on C* defined by the norm || [,
where,

| fllh=]l/k|  for all fe O™

Define o, to be the finest locally convex topology which agrees
with 8, on uniformly bounded sets. Then,

THEOREM 7.2.
o=inf}os: h€ 9.

PROOF : Let ¢’ = inflo, : h€ H{. We first show that the dual
of (0% ¢’) is contained in 9. Clearly o’ << u. Let L be a o’-conti-
nuous linear functional. Then 3 a finitely additive set function u
pefined on the field generated by all the zero sets such that,

L(f)==ffd,u, for all f€CO*

Let }Z,! be sequence of zero sets such that,
(i) Z, A/ X, and

(i) for each n» 3 a positive set P, such that Z,c P,c Z,4, .
Such a sequence is called a regular sequence [12, p. 168]. It
follows from [12, th. 13] that for some h€ C*, we have,

Zn=§m:h(x)2%;.

Clearly h€ H. Let ¢ > 0 be given. Since L is gj-continuous 35> 0
such that /f du | < e whenever ||fh| <<%, and ||f||<<1. Find

1
n such that ry <. It follows that for any f € O* such that ||f| <1

and f(Z,) = 0 we have f du | < e This implies that | u|(Z) <e

for any Z such that Zn Z,= @, hence |u|(X\ Znt1) <z, i.e.
| ] (X \\ Z,) — 0. It follows from [12, th. 19] that u€ (. Since o
is a Mackey topology we have proved that o’ <<o. It is now suf-
ficient to show that every o-equicontinuous subset of ) is o’-equi-
continuous.
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Let G be a o-equicontinuous subset of . Let he Y. Write,

Zn={ w=h(w)2%}-

Then }Z,} is a regular sequence. It follows from (5.1) that || (X \Zn)—
— 0 uniformly in u € G. Thus for each positive integer k 3 an integer
n (k) such that

1 1
I/l, | (X\ an(k)) < ﬂ for all FE Q.

As @ is norm bounded, there is no loss in generality in assu-
ming that | u||<<1 for all ue€ @G.

Write,
7= 0lreor: 17l <% and 73] < - (k)§
Clearly the convex hull of 7 is a o;-neighbourhood of 0. Suppose
that f€ V. Then for some £, ||f||gk and || fh]| <-—ic o (k) . Write,
Z={z:h(x 1
={X. )2 W
and
1
P.—_—%:x:.h(w)< 7 (%)

Then, for any u€ @ we have,
. 1
|[ran|=[1r1a1u1=[17013a1ul+ 171 4 1ul =
z P

1
SW”(’“)“/‘||+|/‘|(P)7CSL

Thus Ve G°% and hence G° is o;-neighbourhood of 0. As this is so
for all h€ %, @ is o’-equicontinuous. This completes the proof.

Finally, we show how the topologies # and & can be defined
and developed along the lines of the strict topology as introduced
by Buck for locally compact spaces.

For the completely regular space X let B(X) be the Banach
space of all Borel measurable real-valued function on X, with the
supremum norm. Denote by Bg(X) and Br (X) the subspaces of



LOCALLY CONVEX TOPOLOGIES ON RINGS ETC. 117

all functions with compact supports and finite supports respectively

and let Bx(X) and Br(X) be the closures of these subspaces. Let
B’ and &’ be the locally convex topologies defined by the families

of seminorms }|| ||, ¢ for v € Bk (X) and y€ Bp(X) respectively, where

I lle =1lwfll for all f&B(X).
Then,

THEOREM 7.3. The topologies induced by f’ and &’ on O*(X)
agree with f and & respectively.

PRrOOF : We prove the theorem for the topology p. The proof
for o follows similarly. For v € B (X ) write,

V,=1feC*: ||yfll<1i

Clearly }V,{, Bz (x form a neighbourhood base for the topology
B’ on C*(X). Let jy,{ be a sequence in Bg(X) such that y,—y
in norm. If A is a norm bounded subset of 0* (X), then v, f— yf
1
uniformly in f€ A and x€ X. Let ¢ be such that 0 <e&<C E.’l‘hen

3 N such that |||ya f|| — || wf||| <& for all n =N and all fe 4.
Let M > 0 and Ky a compact subset of X be such that ||y, | <M
and y, (X \ K,)= 0. Therefore,

1 1
H reva : " o V *
Anlf sp |f(w)|g2M§cAn§f IFval=5 <V

Thus, f’ < B.

To show that B << p’ it is sufficient to prove that every f-
equicontinuous subset of 9, is B’-equicontinuous. Let H < N, be
B-equicontinuous. By (4.2) 3.M >0, and an increasing sequence }K,}

of compact subsets of X such that | u|(X\ K,) < — and ||u||<<M

1
41!.
for all u € H. Write,
y, (v) = 2M, for x€ K,

= 0, otherwise ;

and for n =2 write,

Yn (&) = Pp—y (&), for w€ K, ;
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=1 for x€ K, \ K.

T gn—1
=0 ‘otherwise.

Clearly vy, € Bg(X) for all # and vy, — vy in norm where vy is
defined by, 5

y(x) = 2M, for x€ K,

1

= a1’ for € K, \ K,—;, for all n>2.

=0, for w€ X\ L_!lK,,.
Now let feV,. Clearly,
r)| < 1 jfrallacEK and
If( oM 0 1
| f(x)|<< 2" for all #€ K, \ K,—y, n=2.

For pu€ H, we have,

L{fdy‘skflfld|/A|=Kfllf|d|,,|+n§f If]d|ul<1.

Kp\ Kp—

Thus V,, ¢ HO. i.e. H® is a p’-neighbourhood of 0. This completes
the proof.
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