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SOMMARIO. - Si dimostra che se uno spazio di Banach B non ¢ debolmente
sequenzialmente completo, esistono funzioni f:R B debolmente quasi-
periodiche non debolmente relativamente complete. Si dimostra ancora che
le ipotesi poste da L. Amerio per due altri teoremi sono necessarie.

SUMMARY. - In this paper we prove that if the Banach space B is not weakly
sequentially complete, then there exists a weakly almost-periodic function
f:R —~ B which is not weakly relatively complete. We also prove the necessity
of the conditions of two other theorems of L. Amerio.

&
§ 1. Introduction.

In this paper we are concerned with weakly almost periodic
function (w. a. p. f.), precisely we discuss some results of L. Ame-
rio [1]. The first of these results ([1] p. 45) says that if the Banach
space B is weakly sequentially complete, then the w. a. p.f. are
weakly relatively compact (w. r. c.) (). Secondly, let L; be the set
of all sequences S =1}8,{ regular with respect to f(¢) (i. e. such
that the weak limit Lim*f(t + S,) = fs(f) uniformly). Then if the

Banach space B is weakly sequentially complete, and if w,.*—nv,
then || @, || — ||« || implies #, — . Furthermore, if || f5(?)|| is almost
periodic (a. p.) for each S€ L, then f(t) is a. p. ([1] p. 48). Finally,
L. Amerio [2] proved that in the Banach space !, the w. a. p. f.
are a. p. (see also [3]).

(*) Pervenuto in Redazione 1’8 agosto 1972,

(**) Indirizzo dell’Autore: Departmnent of Mathematics, Fac. of Sciences,
University of Cairo — Cairo (Egypt).

(1) We call the function w.r. c. if its range is w. r. o.
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§ 2. Results.

In this section we state t’he results of this paper which extend
those of L. Amerio.

THEOREM 1. If the Banach space B is not weakly sequentially
complete, then there exists a w. a. p. f. f: BR— B which is not w.r. c.

THEOREM 2. If the Banlach space B contains a sequence }x, !
which satisfies the following conditions :
i) $a.{ converges weakly to an element x € B,

||w,.||=||w||=1, n=1,2,..

if) Yol is not a strongiy convergent sequence, then there exists
a w.a.p.f. f: R— B such thuat, »

i) || fs®) | is a.p. for dach S€ Ly,

ii) f(t) is not an almost periodic function.

THEOREM 3. If the Banach space B has a weakly convergent
sequence }w,{ which is not strongly convergent, then there exists a w.
a.p. f. f: BR— B which is not a. p..

We conclude this section by proving a needness lemma needed
in the next section. To this jend, let us consider the W. Veech’s
[4] construction, which says that:

if ZD G2 G,>... iz a |properly decreasing sequence of sub-
groups of the group of integers Z, then one can choose a sequence
of integers }a,!{ in such a way that if Ay = a; + Gy, then

i) Ax N Al @, k=1
ii) kLJI Ay == Z.
Let £=1}b,{ be a convergen& complex valued sequence. We asso-

ciate to it a function ¢ = =n{ on Z defined by @ (n)=1b,, n€ Ay.
Then we prove the following |

LeEMMA. The function @ (n) =1by, n€ Ay is almost periodic.

ProOOF. Let lim b, =b. Then, for each ¢ > 0 there exists an

k —+ oo

integer k, such that
: b — 0| <e k> E.
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Define the function

pn), |ph)—b|=¢
@, (n) =
b lo@)—b|<e.

One can verify that
sup | (n) — @, (n)| <e
nez

and that ¢, (n) is a periodic function such that

Qe+ 9) =@.(n), g€ Gk,-

Moreover ¢ (n) is an a. p. f..

§ 3. Proofs.

Proor OF THEOREM 1. Since B is not weakly sequentially
complete, we can find a weakly fundamental sequence }z,{c B
which is not weakly convergent. Define the function :

o) =umx, n€Ay, neZ

Using the lemma of § 2 we can prove that ¢ (n) is a w. a. p. f. on
Z. Since }x,}{ is not a weakly convergent sequence, the function
@ (n) can not be w.r. c.. Consider the function f: R — B,

Sy=¢m+(t—npnr+1)—pm), n<t<n-+41, neZ
One can verify that the function f(t) is w.a.p. but is not w.r. c..

PROOF OoF THEOREM 2. Choose a sequence }z,{ of B with the
properties i), ii) and define the function ¢ (n)=wx;, n€ A;, n€Z.
The function ¢ (n) is w.a.p. and | @s(n)||=1 for each S€L,.
Consider the function f: R — B,

1 1
f(t)= ¢ (n)|cos tx|, n—<tznd4 .

One can show that f(f) is a w. a.p. f. and that ||fs(¢)|| is a. p. for
each S¢€ L;. Moreover f(t) is not an a. p. f..

Finally theorem 3 can be proved by the same method as theo-
rem 1.
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