ON %-PATH HAMILTONTAN LINE-GRAPHS (¥)

by TUDOR ZAMFIRESCU (in Dortmund) (**)

SOMMARIO. - La nota riguarda principalmente i grafi di linee k-path hamiltoniani.
Si indicano delle proprietd del grafo di linee di un grafo k-path hamiltoniano
e si assegnano delle condizioni sufficienti affinché il grafo di linee di un
grafo sia k-path hamiltoniano.

SUMMARY. - The paper mainly concerns the k-path hamilfonian line-graphs. It
presents properties of the line-graph of a k-path hamiltonian graph and
sufficient conditions for a graph such that its line-graph is k-path hamil-
tonian.

Let G be an undirected graph, without loops or multiple edges,
and L (@) its line-graph. Our intentions in this note are: 1) to
give necessary conditions for L (G) such that G is k-path hamilto-
nian [1] (Chapters 3 and 4); 2) to give sufficient conditions for G
such that L (@) is k-path hamiltonian (Chapter 5). Also, sufficient
conditions for a line-graph to be hamiltonian, expressed in terms
of covering circuits, are presented in Chapter 2.

1. P(@) and F (Q) respectively denote the point-set and the
edge set of the graph G.

We say that the graph G’ is included in the graph G and write
¢c @ if P(@')c P(@) and E(G’)c E(G). In particular, G’ is a
subgraph of @ if G’c @ and for each G"c @G with P(G"')= P (@),
one has K (G'')c BE(G').

(*) Pervenuto in Redazione il 3 marzo 1972,
(**) Indirizzo dell’Autore : Mathematisches Institut der Universitit-Dortmund
(Germany).
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If A, Bc G, we write N, (B) for the set of points in P(4) —
— P(B) adjacent to some point in P(B). If B has only the point
x, we will write N4 (x) for N4(B).

In [2] we defined G’ G to be: 1) of type T, in @G if it has
at least three lines in common with every complete subgraph of @
on 4 points from P (G’); 2) of type T, in @ if it is of type T, in
G and card Ng (x) << 1 for every point z € P(G)— P (@)

Now, we define G’ to be of type Ty in @ if @ is of type T,
in G and there exist: a) a partition {P ]" *_, of all points in P(G)—
— P(G’), each of which is adjacent to the end-points of two non-
adjacent edges of G, both together belonging to no complete sub-
graph of G; b) the distinct points {p,)?r, in P(G)— P(@), with
Pi¢ P (j=1,..,n) and N (Py_,) == Ng (p2) (i =1, ... ,n), such
that each P;u {py—;, pa) is the point-set of a circuit in @, in which
P21 and p,; are adjacent.

A path of length k is called a k-path.

- A Fkoclique in a graph is a blique (maximal complete subgraph)
with &k points.

If the edges of the graph @ corresponding to the vertices of
the graph II, included in L (@) determine a circuit, then I7, will
be called a strong circuit in L (@).

2. Let I' be a line-graph, I], a strong circuit in I" and m,..,II
other circuits in I’

THEOREM 1. If P(I') = U:‘_O P (IIy), P (II;) — P (I1,) are disjoint,
and card (P(IL)NP(II))=1 (i=1,..,k), then I" is hamiltonian.

ProoF. Let {a; ]._] be the points of II,, written consecutively,
Then a;, @iy, (i=1,...,n — 1) and a,, a, are adjacent, but a;, iyo
(t=1,..,n—2), a4, a, a-nd an, @, are not adjacent (if » > 3). Consider
the point a; of II,. The set Np(a;)) may be divided into two sub-
sets A and B such that each of them determines a complete subgraph
of I. Let I, (m=1,..., o—t;-) be the circuits containing a; and no
point in B, Il (m=1,..., ,8_,-) be those containing a; and no point
in 4, and I7, (m=1,...,y; those containing a;, and at least omne
point from each 4 and B. Replace now a; by the path whose set
of (consecutive) points is:

(P (a) — {a}) v e u (P(Ua;j) = la}) u(P(IT,) — fa}) u ...

U (P (T, ) — () U fas] U (P (I) — (@) U o U (P Iy ) — (o)
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Doing this in all the points of II,, we get the desired hamiltonian
circuit of I.

Using a proof technique not different from the preceding one,
we are able to establish the following stronger result too.

THEOREM 2. Let I be a line-graph, II, a strong circuit in I'
including the path IT and II,,..,II; other circuits in I' such that:
P(I')=ut_, P(I1), the sets P(U)— P (M) are disjoint, card (P(II)) N

P( 0)).-—1 and PUIT)NPI)= Qg (i=1,..,k). Then I' has a
hamiltonian circuit including II.
Even stronger:

THEOREM 3. Suppose the hypotheses of Theorem 2 are satisfied.
Moreover, consider the path IIc II, with P(IT) = P(IT) u Ny, (IT),
the end-points x, ,x, of IT and the points y,, y2¢P(I_I ) respectively
adjacent in IT, with w,,x,. Suppose there exists at most one circuit
II;,(1 < js<< k) such that %, € P(II;,) (s =1,2) and, in the existence
case, suppose that a point z,€ P (II;,) — {x,) may be found such that
the subgraph of I' with point-set {x;,9,,2,} is complete. Then T' has
a hamiltonian circuit including II.

3. THEOREM 4. If G is L-path hamiltonian, then each (k+-1)-
path of type T, in L (G) is extendable to a hamiltonian circuit of L(G).

ProoF. Let IT be a (k- 1)-path of type Ty in L (@). Then the
set of edges {€,, ..., €r4o}C B (G) corresponding to the vertices of II
is such that ¢; and e;;, are adjacent (¢ ._] ., k4 1). We consider
the minimal set of natural numbers (n}l_, (lgk + 2) such that

l=ny<..<my=k42

and such that the edges €njy Cnit1 s eees Onjy , have a common end-
point (j =1,...,1 — 1). Clearly, €n; and e,, 41 are adjacent (j = 1,...

,1—1) and no three consecutive edges in (e,,] Ji_y form a star.

To prove that {e,|!_} determines a path in @, we have only
to show that no four edges €ngs Cngyyr Cngy €npyy (I<a<<pf—3<1—4)
form a star. Indeed, if it were not so then the corresponding points
Day Patis Pp» Ppr of P (L (@), which belong to P(II), would be
such that: 1) all the six edges determined by them are in E(L(G)),
2) E (IT) contains from these six edges at most the edges (Pa,Ppat1)

and (pg,Pp1) Gf Map1 = ne 4 1 and ngy, = ng+ 1) ; this contradicts



126 TUDOR ZAMFIRESCU

the fact that II is of type T, in L (G). Now, since {en; )23 deter-
mines a path W of length at most k, we can extend it to a hamil-

tonian circuit ©, whose edges, written consecutively, are
Cngyoeylny_i s Sy y oo s Sm

Since IT is of type T, in L (@), there exist: a) a partition {Piiy
of all points in P (L (@) — P (II), each of which is adjacent to the
end-points of two non-adjacent edges of II, both of them belonging
to no complete subgraph of L(@); b) the distinct points { p,-]?ll in
P(L(G) — (P(I1)U Uj1 P) With Ny (pyiy) == Ny (pa) (i =1, .., ),
such that P;y {pai—1, py} form circuits II;, in which pg;_; and p,; are
adjacent. Obviously, the set of points of L (@) corresponding to
the edges in @ determines a strong circuit 11, of L (@)

We construct now a circuit 77’ in L(@), with P(I1")=VUi— P(IT;).
Consider some 4€(1,...,n). Since for every point 7€ P;, there
are two nonadjacent edges in II belonging to no complete subgraph
of L (@), each of their 4 end-points being adjacent to =, it follows
that the edge ¢ in @ corresponding to x is adjacent to four edges
€y €i+15 €k, €rt1, Where j 41 <k and not every two of these 4
edges are adjacent. It follows that & joins two points of W (the
path determined by {e,,}I—}). Because P;y {psi_;, py) is the point-set
of a circuit, each of the points py_;, py is adjacent to some point
in P;, hence each of the edges v, and », corresponding in @ to
P21 and py; has an end-point in P(W). Since py_;, P2 ¢ Ujmy Pj,
neither », nor », has both end-points in P (W). Because Ny (poi) ==
=F Np (px), the end-points in P (W) of v, and », are different. But
Dai—1 and p,; are adjacent; therefore », and », have a common end-
point, not in P(W). Since pu_;, py ¢ P(IT), the edges vy, v, do not
belong to E(W). Suppose now »,,v,€ B(60). Then Vi Vo€ fiyesSfm)y
but since », and v, are adjacent, and each of them is adjacent to
some edge of W, it results m = 2 ; then {f, ,f,} = (e, , ex15}, whence
{v1 s »;}) = e, , exy2), which contradicts py; ¢ P (IT). Therefore {vy, 7} &
& B (0). Since », and v, have a common end-point w not in P(W),
and since {f),...,fu} 3= {¢; ; exs2), there exists an edge f;€ B (6) —
—f{€4y ey €y, fi ) fm}], With @ as an end-point. Let @ be the point
in L (@) corresponding to f;. Since each edge corresponding in @
to some point of P; joins two points of W, but is not itself an
edge of W (otherwise P; would have a point in P (IT)), it follows
that P;n P(Il) = . Let us construct the ecircuit I in L(@)
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such that card (P(II))n P(II) =1, P(II)n P(II)= @ and also
the other hypotheses of Theorem 3 are satisfied (i =1, ...,n).

CasE L. (»,n)nE(@O)%F @. From (v ,»}¢E E(O) and
{7 ,9,) N B (O) &= @, it follows that exactly one edge from ({y, ,»,)
belongs to E(O), hence card (P ([I)n P(Il))=1. On the other
hand, pgi—;, P ¢ P (II), whence P (Il)Nn P (II)= @. Further, if
v, € B (0), then px_, is an end-point of the path IT having as point-
set that set of points which correspond in L (@) to the edges of
E (W) plus f,, fm, and no circuit from {Pj);—; except P; has py1
as a point. Moreover, Py_;, P2, @ are the points of a complete
subgraph of L (@). Thus, the hypotheses of Theorem 3 are verified
and we may take IL~§= II;.

OasE IL (»,,7)Nn E(O)= . The points of Py {p2i—1y Pai)
determine a circuit I7° in L (@), such that card (P(Hf) nPIl))=1
and P (II3)n P (IT)= @, because P;NP (II)= &, {»,,7) N B(O)=0,
and ¢ € P (I1,) — P (I).

Now, following Theorem 3, Uj—, P (II;) is the point-set of a
circuit II’ in L (@), including II.

‘We consider now the edges

€nyy ey €ny_1 9 1301519y fm € B (Q)

corresponding to the points of II’. Since {f,,...,fa} = (e, €rs2),
we have r &= 0. The circuit II’ of L (@) could (and is supposed to)
be constructed so that for each point not in P (W) there are two
consecutive edges in {f,, 0, .y 9r,fm}, both of them having this
point as an end-point. This fact cannot be derived from Theorem 3
and is a consequence of the fact that in the case II considered
before there are two edges in {f,,...,fm} having w as an end-point
and therefore the points in L (G) corresponding to them, plus pyi ,
pgi , form the point-set of a complete subgraph of L (&). From the
construction of I1’, it is also clear that :

E(G) —{egy .. 7Gk+2vfugn"-9gr’fm}

may be partioned into the (possibly empty) sets {H, jr4+1 such that

=1
all edges of H; have a common point, which is not in P (W) and

therefore is the common end point of two consecutive edges from
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{f1, 915,89, fn), Damely of f, and g, if j =1, of g;_, and g; i

2<j<r and of g, and fn if j=1r -4 1. Consequently, if H;=
= [k }}2, (where y; is possibly zero, i. e. H;= (; also possibly f,=ex4s

or f.==e,), then the points in L (G) corresponding to
€y ey Cipr, f1 gy sy s g0y Ry, .. 3 oy 5

Gos s r—1y Pryoiyly s gy Rogryenn,s hw,.+1 y Jm
form the desired hamiltonian circuit of L (@).

4. THEOREM 6. Let @ be k-path hamiltonian, and II a (k4 1)-
path of type T, in L (@), with the property that if a point in P(L(Q)) —
— P(II) is adjacent to the end-points of two nonadjacent edges of 11,
then these edges belong to a clique of L (Q). Then II is extendable to
a hamiltonian circuit of L (@).

This result is a consequence of Theorem 4, since every path
of type 7, in L (@) with the mentioned property is obviously of type
T, in L(G). A further simplification of the statement of Theorem 4
(but with smaller degree of generality !) leads to

THEOREM 6. If G is k-path hamiltonian, then each (k 4 1)-path
IT of type T, in L(G) such that card Ny (x)<<3 for every point
2€ P (L(G))— P(II) is extendable to a hamiltonian circuit of L (G).
As an immediate consequence we obtain :

COROLLARY [2]. If @ is 'k-path hamiltonian, then each (k- 1)-
path of type T, in L (G) whose (k — 1)-subpath obtained by removing
its end-points (and adjacent edges) is of type T, in L (G), is extendable
to a hamiltonian circuit of L (G).

Theorems 5 and 6 are weaker forms of Theorem 4. In order to
obtain a stronger (and more natural) form of Theorem 4, we shall
use instead of the types 7, and T,, new types 7} and T, defined
as follows :

A graph @’ included in @ is of type T in @ if E (GQ’) con-
tains at least k — 1 edges of every k-clique of G with points in P(G’).
Also, let T3 be the type we obtain if, in the definition of T,, the
type T, is replaced by 7y

By replacing T, and T, with the new types 74 and 73 in the
statements of Theorems 4, 5, and 6, we obtain the stronger Theorems
4’, 5/, and 6’ respectively.
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5. THEOREM 7. If G is k-path hamiltonian and has no circuit
of length at most k + 1, then L (@) is (k - 1)-path hamiltonian.

ProoOF. Let IT be a (k4 1)-path in L (@) and use further the
notations of the proof of Theorem 4. We prove that the hypotheses
of Theorem 5’ are satisfied. First, suppose II is not of type 7T in
L (@). Then there exists a k-clique of L (@) on k points in P (II),
such that at most only &k — 2 of its edges are in E (II). It follows
that the edges of F (@) corresponding to the points of the clique
form a star, but are not consecutive in {e,,...,ér4s}. Then they
may be divided into sets {E.L-}f~=1, with ¢t = 2, such that for each
i <<t there exists f(i)<<1— 1 with

Bi= ns )5 Onpiy 410 005 Enpiiy -

But in this case the edges

ns )41 Enpay ot s Enppy

from E (O) form a circuit of length at most I — 2, hence at most
L, which contradicts the hypothesis.

Now, suppose there exists a point in P (L (@) — P (IT) which
is adjacent to the end-points of two nonadjacent edges of II, but
these edges do not belong to -any clique of L (G). Then there are
four edges e;, €sy1, s, €41 Which do not form a star, but are all
adjacent to some other edge b of E(G). Let j’ <j’" <<, with the
property that ny<<l, ¢4+ 1<<njp1, npr<<§ &4 1<myy;. The
edges

€nyyrs Enjrpgy e s Enjor s b

determine a circuit of length at most & 4 1 in @, again contradicting
the hypothesis.

Following Theorem 5’, II may be extended to a hamiltonian
circuit of L (G).
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