THIRD BOUNDARY VALUE PROBLEM IN H*>?Q)
FOR A CLASS OF LINEAR
SECOND ORDER ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS (*)

by M4auRrizio CHIOOO (in Genova)(**)

SOMMARIO. - Si studiano certi problemi al conforno di derivata obliqua per
una classe di equazioni differenziali alle derivate parziali lineari ellittiche
del secondo ordine, in cui i coefficienti delle derivate seconde sono (uniforme-
mente) continui e gli altri appartengono ad opportune classi di sommabilita.

SUMMARY. - Some oblique derivative boundary value problems for a class of
linear second order elliptic partial differential equations are studied.
The coefficients of the second derivatives are supposed to be uniformly
continuous and the other ones to belong to suitable L, classes.

1. Introduction.

The present work is, in a certain sense, the natural continuation
of [3]. We consider the elliptic operator

n 32 n 9
1 L=— i ——— 2
(1) z “’axiax,*z”ax,*c

i, i=1 i=1

where the coefficients a; are uniformly continuous in the open set
£ and the other ones belong to suitable I, (£2) classes. Given
SJeL,(Q), with 1 <<p<-} oo, we look for sufficient conditions to
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solve the boundary value problem

Lu=jf a.e. in £,
u€H?2%P(8)

Z firg,+yu=0  on 04.
i=1

In the same way as in [3] for the Dirichlet problem, we prove
that if esspinfe>0 and y =0 (or also if p >n, ¢=>0, y > 0)
problem (2) has one and only one solution. The plan of the present
work is very similar to that of [3]; I must nevertheless mention
that here the important results of [1],[2],[6], ... are used, unlike in [3].

2. Notations and hypotheses.

In the following we shall always assume these hypotheses
without mention. Let £ an open bounded set in R", with n >3
(for the case n =2 see e. g. [9]). We suppose that the boundary of
Q (denoted by 62) can be represented locally by a function with
continuous gecond derivatives. Let p be a fixed real number greater
than 1; we put, for shortness :

n n
| %z [|z,0 = 2 llvallzye s || as |z 0 = Z, || 2oz ||z, -

We denote by H 17 (2), H7() the real Banach spaces obtained
by completing O (Q2) according to the norms

(3) [| w ||H1'1m> =l u ”Lp(Q) + [ %, ||Lp(.{2) i
(4‘) ” u ”HZnP\Q‘, = ” w ”Hly?(ﬂ) + “ “xm”LpI.Q) '

Let »v=(»;, »y,...,7,) denote the outward normal unit vector to
0025 let fi(i=1,2,..,n), y be fanctions such that B;, y€ 1 (3Q)
(t=12..,n),

n

n
SH=1 on 40, Zvifi>0 on 0.

=1 =1
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We denote by V the space
V = completion in H2? () of

_ n
vivE C¥(Q), I vy, 4 yv=0 on 8.
i=1

Let ay, b;, ¢ -be real valued functions defined in 2 such that:
—_ n

az€ C°(Q), a=au(i,j=1,2,..,n), 2 ajlit;=mg|t}
i, j=1

in Q, m, a positive constant, b;€L,(2) (i=1,2,..,n), ¢c€L (£2)
with r=nif1<<p<n,r>nif p=mn, r=p if p>n; s=mn/2
if 1<_p<n/2 s>n/2if p=mn/2, s=p if p>n/2. Let L be the
operator defined in (1). From the previous hypotheses and from
known theorems on the spaces H 22 (L) (see e.g. [5]) it follows that
L is a bounded operator from H 27 () in L, (£2) and in particular
from V in L, (2).

3. Preliminary lemmas.

LuEMMA 1. For any & > 0 therc exists two positive constants K,
and 2, (I, depending on 2, n, p, i, y, i, j=1,2,..,n) and 1,
also on & bi, ¢ (i=1,2,..,n) such that for any w€ V and uniformly
Jor any A= 4, it turns out

) el < E AT Dot 2wl o) + €27 [ g2 0, -

ProoF. From the hypotheses it follows that for example theo-
rem 4.1 of [6] or theorem 2.1 of [1] can be applied, obtaining the
existence of two constants K, and m, , depending on £, n, p, f:, 7,
a; (4, =1,2,..,n), such that

(6) || %

n
Ly(@) << Kzﬂ_] “ 2 @ N“ixj —I—- A

1, j=1

Ly(@)

for any w € V and uniformly for any 2 = m, . From known properties
of the space H?2? () (see e.g. [3] lemma 3) for any % > 0 there
exists a constant K, depending on 7, b;, ¢, p, n, 2 such that

|
(7)

n
51 biig, + cu

Lp(.Q) < n “ U ”]12,11(9) + K3 ” U I’p‘»-Q’
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for any w€ H>?(Q). Let us fix an arbitrary ¢ > 0 and choose n =
= ¢ (2K, in (7). So from (6), (7) it follows

K £ K, K.
@ |l ”Lp(.e) = 72 (| L + 2w ”Lp(g) + 27 ]|z ro T _3—3 1K ”Lp(.Q)

valid for any u € V and any A=m; . If now in (8) we choose 1=
= 1y = max (m, , 2K,K,), we get easily

2K, € )
(9) [ w ”Lp(g) = _i-z | L + 2u Ly(2) + T [| w ”52.1’(9)

for any w€ V and any A= 1,. { ‘

LemmA 2. There exists a positive constant K, depending on £,
n, p and the coefficients of L such that

(10) [| w Hﬂzng) <K, }| Lu ”Lp(!)) + | ”Lp(!))%

Jor any we vV,

PROOF. From the fundamental results of [2] it turns out

n
z A uz‘xj
i, 1=1

(11) [| « ||H2,1’49)£K5

L) F el

for any n€ V, where K, depends on p, n, 2, B, y, ai(i,j =1, 2,...,n).
From (7), (11) we deduce

A2) lwllgeng < K} Ll 0 1 1wl om0, + g+ 1) [|ul]y
for any w€ V and any 5 > 0. It is sufficient to choose in (12) N =
= (2K5)~" and (10) is reached with K, = 2K, (K, 4 1).

4. Main results.

THEOREM 1. There exists two positive constants 1, K, depending
on n, p, P, y, 2 and the coefficients of L such that

(13) 2,0y < B || L + Zu ||,

Jor any w€V and uniformly for any ) = /’1\
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PRrooOF. From (10) it follows

10) ||l = Kol Tu 2l g+ G D e, g

valid for any # € V and any 1>=0.
From (14) and lemma 1 we get

(15) ” u “Hz-P(g) =

+1

SIQ%(I—F——— )“Lu—l—iu l—*—l

LQ)+

& “ w HH%P(Q)

for any w € V and uniformly for any 1> 1/,.
By choosing in (15) ¢ = (4K,)~! it turns out

(16) [| ”32.?\9) < 2K, (1 4 2K,) || Lu 4 4u ”LP(Q)

valid for any w€ V and any 1> max (1,, 1). §

s
COROLLARY 1. Let f be given in L, (), let A= A where i\is
the constant introduced in the preceding theorem. Then the boundary

value problem

Lu+u=f a.e in 9,
(17)

uevV

has one and only one solution.
ProoOF. Let L™ (m =1, 2,..) be the operators defined by

n (2)2 n m) 8

18 LW = — 3 gy — ™

(18) i, j=1 7 o 0%; —1 +

where 5™, (™€ 0”(Q) (i=1,2,...,n) and

(19) lim |35 — b, iz + || €™ — ¢z = 0.

m —+ 4 oo (i=1

It is easy to check that (13) is verified for the operators L™ also,

with K; and 4 independent on m. Besides from the results of [1]
(theorem 2.1) and [6] (theorem 4.1) the operators L™ have non
empty resolvent set, therefore countable spectrum. From these facts
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and from (13) (applied to the operators L™) it follows that the
boundary value problems

L0 ytm 4 Julm) = £ a.e. in Q,
(20) (m=1,2,..)
u(m) EV

have one and only one solution «™ ag soon as 222\ and f€ L, (9).
Moreover it turns out
(21) [| wim ”HM_Q) < K, ||,fl|me) (m=1,2,..)

A
with 4 and K; independent on m.

From (21) there exists a sequence extracted from ju(™{, .y
which converges weakly in H?2?(£}) to a function u€ V. It is easy
to verify through (20) that w is a solution of problem (17); its
uniqueness is immediate from (13).

The next theorem is the main result of the work; we suppose
temporarily p > n.

THEOREM 2. Suppose p > n, essinfec = 0, min y =0, ess infc¢ -+
2 X o

+ 1gion y >0, feL,(Q). Then the boundary value problem

s Lu=f a. e. in 8,
(22)
( uevV

has one and only one solution. Moreover if essinff << 0, esssupf<< 0
2 I}

it turns out max u < 0.
2

Proor. We begin to show that if f<< 0 a.e. in Q it follows
%<0 a.e. in £, whence the uniqueness of the solution #. From
corollary 1 the operator L has non-empty resolvent set and there-
fore its spectrnm is discrete and countable. So from the Riesz-
Fredholm theory the uniqueness of the solution u will imply its
existence.

Since w€ H?? (Q) and p > n, for known properties of the space
H?*7(Q) (see e. g. [5]) the first derivatives of u exist in every point

of £ (and are Holder continuous in £). This is sufficient to apply
the maximum principle: I give a sketch of proof for the sake of
completeness.
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Let us put M = max« and suppose M =0 in order to find a
2
contradiction. First of all, if w =M in Q it follows M = 0 and the
result is proven. If w is not identically equal to M but u(x) = M
for some « € 2, then it is possible to find an (open) ball S contained
in yo:aw€, u(x)< M{ such that there exists x,€ 2N 48 with
u(x,) = M. This is a contradiction because obviously u,, (g) =0
(1=1,2,..,n) while from known results (see e. g. [7] page 67) it
ou

turns out (W) (®,) > 0 where [ is the outward normal direction to

48 in x; .
Therefore the maximum 3 is attained only in points of §Q. If
w €902 is such that w(¥) = M, since w€ V we have

(23) > Bi (@) ug;, + 7 () M = 0.

i=1

n _ _
As M =0, it follows 2 fitx) ug () < 0, a contradiction for the

1=1
already mentioned results ([8], [7] page 67): in fact any outward
derivative of u in # must be strictly positive. So we get I < 0.
In conclusion from the hypothesis f<C 0 a.e. in 2 we have
deduced that one of the following alternatives is satisfied :

) u=0 in Q;
(ii) max u < 0.
Q

Since w =0 a. e. in 2 implies f=10 a.e. in £, the last assertion
of the theorem easily follows. [
In the following corollary the assumption p > n is dropped.

COROLLARY 2. Suppose essinf ¢ >0, min y = 0, f€ L, (2)
2 20

(1<p< -+ o). Then there exwists one and only one solution w of
the boundary value problem (22). Besides if f<< 0 a e. in 8 it follows
u<<0 a.e in Q.

ProoF. Let § L™ {, .y be the sequence of operators defined in
(18), (19). It is easy to verify (see e. g. lemma 2 of [3]) that

(24) ’ lim max || Lw — L™ w |, @ [| 20 “szmm = 1}{==0.
m -+ 4 oo »
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From (24) one deduces that the eigenvalues of §Lm{, .y converge,
when m — -+ oo, to the respective eigenvalues of L (see e. g. [4]
page 1091). Let mns prove now that the real numbers less than

ess inf¢ cannot be eigenvalues of any of the operators L (m —
Q .

=1,2,..). ‘
It will follow that the real eigenvalues of I also are not less

than ess infe, therefore 0 is not an eigenvalue of L.
2

So let us suppose that 1 < essinfe. Obviously the coefficients
0

$etmt, . x of the operators Y L™}, .y can be chosen in such a way
that ¢™ =>essinfe¢ in 2. Let we V and L™ w — lw a.e. in 0Q°
2

in order to prove that 0 is not an eigenvalue of L™ it is sufficient
to show that w =0 a. e. in Q.
Since

n n
(25) — 3 agws + b w4+ [™ —Jw=10 a.e in Q
i, j=1 i=1

and ™ — 1> 0, theorem 2 can be applied : in fact ™, ¢™ € ¢* (D)
(i =1,2,...,n) and therefore w€ H2¢(Q) for all ¢ > 1.

From theorem 2 we get w =0 a.e. in 2, so 1 is not an eigen-
valne of the operators L™ (m =1, 2,...). This means that the reai

eigenvalues of L are not less than essinfe, whence 0 is not an
2

eigenvalue of L and problem (22) has one and only one solution.
We have to prove now that if f<<0 a.e. in £ it turns out
<0 a.e. in Q. Let }f, {mexr be a sequence of functions such that

fm€0%(Q), fn=<0in Q (m=1,2,..),
(26) 0.

lim || f — fu ||z,0) =
m — 4 oo

Denote by $umimey the sequence of the solutions of the boundary
value problems
Lt wy = f,,  in 2,

(27) (m=1,2,..)
U EV

It is easy to check through (24), (26), (27) that

(28) im [l — wn |z, = 0.
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On the other hand the maximum principle ([7], [8]) can be applied
to the functions u, (m = 1,2, ...) as before.

If M, = max Uy = Uy, (Tm) (@m € §82), since u, € V it turns out
Q

(29) Zn Bi (®m) (W), (€2a) ~+ Yim Mo == 0 (m=1,2,..).

=1
So one of the following alternatives must be verified :
() 4, = constant in £. In this case, since
¢™ — ) > 0, necessarily u, =0 in Q.
(ii) M, <O0.

(i)  Mp==0 and from (29) 5 f; (@m) (ttme, () < 0.
i=1

The third alternative is impossible because of [7], [8]. Therefore

in any case it turns out w, <0 (m=1,2,...) in 2. From (28) we
conclude that v << 0 a.e. in Q.
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