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SOMMARIO. - Si dimosira un teorema che dd condizioni sufficienti sopra una
classe K di anelli commutativi affinché esistano in K prodoiti liberi con
amalgamazione. Questo teorema viene poi usato per mosirare [l’esistenza
di prodotti liberi con amalgarhazione nella classe di tutti gli anelli che
soddisfano all’equazione xn = x. Nel caso speciale n=2 si ritrova un
risultato noto per gli anelli di Boole.

SUMMARY. - We prove a theorem giving sufficient conditions on a class K of
commutative rings in order that free products with amalgamation exist in K.
This theorem is then used to show that free products with amalgamation
exist in the class of all rings $atisfying the equation x»=x. The special
case where n=2 gives a known result for Boolean rings.

Let X be a class of commutative rings and let } A7 < XK.
Let B €< such that for every t€ 7T, there exists a monomorphism
Ji:B— A,. The free product of YA 4icr in K with amalgamated
subring B is a pair (4, }g:lcc7), where A€ and for every t€T,.
g:: Ar—14 is a monomorphism and the following conditions are
satisfied :
(i) For every t,, t, €T, gy ft, =gt fr, -
(ii) A is generated bytPTgt (4.
(iii) If Re€X and } hyfier is a set of homomorphisms such
that h,: A,— R and for every t,,t,€ T, hy, f,, = hy, fi,, then there
exists a homomorphism #: A — R such that hg, = h, for every t€ 7.

(*) Pervenuto in Redazione il 7 ottobre 1971.
("*) Indirizzo dell’Autore: Department of Mathematics — American University
of Beirut — Beirnt (L.ebanon),
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We say that free products with amalgamation exist in X if the
free product of } 4,47 in K with amalgamated subring B exists
for every } A ;e r € K and B €.

The existence of free products with amalgamation in the class
of all Boolean rings (with unity) was proved in [1], and free pro-
ducts with amalgamation in classes of universal algebras are discussed
in [5]. In this note we prove a theorem (Theorem 1) giving sufficient
conditions on a class K of commutative rings in order that free
products with amalgamation exist in . We then use this theorem
to show (Theorem 2) that free products with amalgamation exist in
the class of all rings satisfying the equation «® = x (for all # and
a fixed integer » > 1). The case where n = 2 gives the result for
Boolean rings which we referred to earlier in [1]. Finally, we con-
sider the existence of free products with amalgamation in the class
of all rings A with the property that for every x€ A there exists
an integer n(x) > 1 such that #"® =« (See Theorem 3).

Free products with amalgamation are closely related to the
following amalgamation property. A class ) of commutative rings
has the amalgamation property if for every 4,, A,, B€ and for
every monomorphisms f,:B— 4, and f,:B— A,, there exist
A €Y and monomorphisms g,: A, — A and g,: 4, — A such that
9, f1 = [P I 9 -

The amalgamation property has been investigated for a number
of algebraic systems and a detailed discussion of this property with
references to the literature is given in [4]. Clearly, if free products
with amalgamation exist in a class X of commutative rings, then
‘X has the amalgamation property. The converse, however, does not
hold : The class & of all fields has the amalgamation property [4]
but free products with amalgamation do not exist in F (not even
free products exist in & [5]). It is not difficult to show, however,
that if X is a variety (i.e. an equationally defined class), then K
has the amalgamation property if and only if free products with
amalgamation exist in X (see Lemma 2).

Throughout the following, <K will denote a variety of commu-
tative rings. Moreover, for every }4.},cr C N and B €K such that
for every ¢€ T, there exists a monomorphism f;: B— 4,, we define
the ideal I(}Alicr,B) as follows. Let (,}4.{;.7) be the free pro-
duct of } A {cr in XK ([6], p. 103), and for simplicity of notation
identify each A, with i;,(A4,). Then I(}A;{;cr, B) is the ideal of E
generated by }f, (x) — fi,(2) |, , t, € T,z € BY.
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The following two lemmas follow eagily from the preceding
definitions.

LEMMA 1. The free product of } A licr in K with amalgamated
subring B exists if and only if I (3 A bcr,B)N A,=(0) for every
tel.

ProoOF. Let (I} A¢{er, B)=1I. To show the necessity of the
condition, let (4,3}g¢tc7) be the free product of } 4,{; r in K with
amalgamated subring B. Since F is the free product of 4.4 r,
there exists a homomorphism g: F— A such that for every ¢€ T,
9| A¢=g:, where g| A4, denotes the restriction of g to 4,. Let J be
the kernel of g. Then for every x€ B, ¢(f (%) — fi, (%)) =0, ant it
follows from the definition of I that I CJ. But for every t€ T,
Jn A, = (0), hence In A, =(0).

Conversely, suppose that IN A4,=(0) for every t€ T, and let
g: be the restriction to 4, of the natural homomorphism of E onto
E/I. Then it can be shown, in exactly the same way as in ([1],
p. 228), that (E/I,}¢.lic 1) is the free product of } 4.4/ 7 in N with
amalgamated subring B.

LeMMA 2. Let X be a wvariety of commutative rings. Then free
products with amalgamation exist in K if and only if X has the
amalgamation property. ’

ProOF. Suppose first that the ainalgamation property holds
in K. Let  Ailecr €K and BeK such that for every t€T, there
exists a monomorphism f;:B— 4,. Let IT=TI(Aler,B). We
shall show that IN 4,=(0) for every t€T. Suppose I A4, = (0)
for some t € T, and let a€ In4,, a == 0. Clearly I is also generated
by }fu (@) —fi(x)|tE€T, x€ B} Hence

& = 2 13(fi ) — Fi ) + mi iy (2) = Fi (@) - (%)

where ;€ B, x,€ B, and «; is an integer. Since the amalgamation
property holds in 9, there exist C€9 and monomorphisms
gi+ Ay, — C, such that g fi, = ;gtjftj for all 4, j, 0 <<i, j << n. For every
t€T such that t ¢, 0 <<i<n, let g,: A,— C be the zero homo-
morphism. Since X is the free product of } 4.} r, there exists a
homomorphism ¢ : B —> C such that ¢| A4, = g, for every ¢ € T. Then
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from equation (*),

g(a)= f 9 () (afs, (@) — e (@) + na (afe, (@) — afs, (v2))

=i§1 9 (ri) (g1, fr, () — gr.-f (i) = nige, Jo, (@3) — ge, /1 (22)

= 0, since g, /i, = g,jf,j .

On the other hand, since a€Ad, and g, is a monomorpism, g(a)=
= ¢i, (a) 5= 0. This contradiction shows that I n 4, = (0) for all t€T.
Hence, by Lemma 1, free products with amalgamation exist in 9.
The converse is obvious.

We now prove the main theorem.

THEOREM 1. Let ) be a variety of commutative rings satisfying
the following two conditions :
(1) For every A €K, A is semisimple (i.e. the Jacobson radical
of 4 s (9)).
(2) For every A €K and every subring B of A, a proper ideal
M of B is maximal if and only if M= BN M' for some maximal
ideal M’ of A.
Then free products with amalgamation exist in C}{

Proor. By Lemma 2, it suffices to show that the’ amalgamation
property holds in K. Thus let A4,, A,, B€ and suppose that
there are monomorphisms f,: B— A4, and f,: B— A,. Let (B, }i, ,i,!)
be the free product of A, and 4, in °X and for simplicity of nota-
tion identify A; with 4;(4;),i =1, 2. Let I be the ideal of F gene-
rated by 3f, (x) — f,(x)|x€ B{. We shall show that In 4;=(0),
i=1, 2. Suppose that 1N 4, == (0), and let a € I N 4,, a 3= 0. Since
A, is semisimple, there exists a maximal ideal M, of A, such thaf
a¢ M,. Let Ny=M, nf,(B). Then by condition (2), N, =f, (B) or
N, is a maximal ideal of f,(B). Suppose that N, = f,(B). Let
hy:A,— A,/M, be the natural homomorphism, and let hy: A,—A4,/M,
be the zero homomorphism. Since F is the free product of 4, and
A, , there is a homomorphism h: E — A,/M, such that h|A; = h;,
i=1,2. Now since a€ I,

Q
lMs

75 (fy (=) — So (25)) + n5 (fy (75) — Sy (3)) 5 o5 (%)
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where ;€ F, x;€ B, and n; is an integer. Thus

h (a) =j§1 b (1) (hy fy (25) — Ry fo (@5)) =+ 05 (R, Sy (5) — Ry fo (w5)) = O,

since h;fi(x)=0 for all € B, i=1,2. On.the other hand, since
a¢M,,h(a)=h,(a)==0. This contradiction shows that N, == 1, (B).
Thus N, is a maximal ideal of f, (B). Hence the ideal N, = f, /7 (,)
is maximal in f,(B). Hence by condition (2), there is a maximal
ideal M, of A, such that M, N A, = N, . Let hi: A;— Ay/M;, i =1,2,
be the natural homomorphism. Then it follows from condition (1)
that for every i =1,2, 4;/M; is a field and f;(B)/N: is a subfield
of A;/M;. Since the amalgamation property holds in the class of
all fields [4], there exists a field ¥ and monomorphisms k{ : As/M; —
—F,i=1, 2, such that &'k} f1 = h3 kyfy . Moreover F can be cho-
sen such that Fe€). Since F is the free product of 4, and 4,,
there is a homomorphism & : B — F such that h | A; = hi' hi,i=1,2.
Now from (¥),

h(a) = '21 b (1) (Ri' Ry fy (@5)— Ry kg fo (@) +n; (R ki 11 (205)—ho'hy foxc;))=0.
=

On the other hand, since a ¢ I, & (a) = h, (a) == 0. This contradiction
shows that TN A4, = (0). Similarly In 4, = (0).

Now let C = HE/I, g: E -+ H/I be the natural homomorphism,
and g;=g| 4;, i =1, 2. Since TN 4; = (0), each g; is a monomor-
phism. Moreover, since f, (x) — f, () € I for every z€B, g¢(f,(x)—
— f, (x)) = 0. Hence g, f, = ¢, f, . This shows that the amalgamation
property holds in <X and' completes the proof of the theorem.

‘We now apply Theorem 1 to the equationally defined class .2
which is defined as follows. Let n>1 be a fixed integer, and let
L be the class of all rings A satisfying the equation a» =« for all
x€A. It is known [3] that for every 4 €.2, A4 is commutative and
semisimple. Moreover, it is shown in |[2] that for every A € .2, A has
the congruence extension property; that is, for every subring B of
A, if T is an ideal of B, then I = B N I* for some ideal I* of A.

THEOREM 2. Free products with amalgamation exist in the class L.
ProoF. We show that conditions (1) and (2) of Theorem 1 hold

in 2. As we already noted, condition (1) holds. To show that con-
dition (2) holds, we first observe that if J is an ideal of R¢€ .C,
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then the intersection of all the maximal ideals of R/J is (0). Hence
every proper ideal of R is the intersection of all the maximal ideals
of R containing it. Now, let B be a subring of A €2, and suppose
first that M is a maximal ideal of B. Since B has the congruence
extension property, there exists an ideal M™* of A such that
M*n B= M. Moreover, M* is proper. Hence M* is the intersec-
tion of all the maximal ideals of 4 containing M*. Thus we can
find a maximal ideal M’ of A such that M D M* and M’ N B is
proper in B. By the maximality of M, M’ N B = M.

Conversely, let M’ be a maximal ideal of 4. Since 4/M’¢€ .2,
A/M’ is a field. Let x€ B/M’N B, #==0. Then a"=2a Hence
2”1 =1, and the multiplicative inverse of « is in B/M’n B. Hence
B/M’n B is a field and ¥’ n B is a maximal ideal of B. Thus
condition (ii) holds and the proof is complete.

The following two corollaries follow immediately from Theo-
rem 2. A ring A is called a p-ring, where p is a fixed prime, if for
all € A4, x» = and pxr = 0.

COROLLARY 1. The class 2 has the amalgamation property.

COROLLARY 2. Free products with amalgamation exist in the
class of all p-rings.

We now consider the class £2* consisting of all rings A with
the property that for every x € A, there exists an integer n(x)>1
such that z"@ = z. Members of .2* have the congruence extension
property [2], and for every A€ £2* A is commutative and semisimple
[3]. However, we cannot apply Theorem 1 to .2* since it is not a
variety. On the other hand, the proof of Theorem 1 can be used to
show that £2* has the amalgamation property (although the free
product of an arbitrary subset of .2* need not exist in .2*, the free
product of a finite number of members of 2% does exist in .2%).
Moreover, the argument used in the proof of Lemma 2 can be
also used to show that if -’ has the amalgamation property and
K’ is a subelass of the variety <, then the free product of § Al r
in K with amalgamated subring B exists for every } A die r € N/
and Be€K’. Thus we have the following

THEOREM 3. Free products with amalgamation need not exist in
L*. However, if R is the class of all commutative rings, } Alycr €
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c.L*, Bel*, and for every t€T, there exists a monomorphism
Ji: B— A, then the free product of $ Aydicr in R with amalgama-
ted subring B exists.
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