FREE PRODUCTS OF COMMUTATIVE RINGS WITH AMALGAMATION (*)

by FAWZI M. YAQUB (in Beirut) (**)

SOMMARIO. - Si dimostra un teorema che dà condizioni sufficienti sopra una classe $\mathcal K$ di anelli commutativi affinchè esistano in $\mathcal K$ prodotti liberi con amalgamazione. Questo teorema viene poi usato per mostrare l'esistenza di prodotti liberi con amalgamazione nella classe di tutti gli anelli che soddisfano all'equazione $x^n=x$. Nel caso speciale n=2 si ritrova un risultato noto per gli anelli di Boole.

SUMMARY. - We prove a theorem giving sufficient conditions on a class $\mathcal K$ of commutative rings in order that free products with amalgamation exist in $\mathcal K$. This theorem is then used to show that free products with amalgamation exist in the class of all rings satisfying the equation $x^n = x$. The special case where n = 2 gives a known result for Boolean rings.

Let \mathcal{K} be a class of commutative rings and let $\{A_t\}_{t\in T} \subseteq \mathcal{K}$. Let $B \in \mathcal{K}$ such that for every $t \in T$, there exists a monomorphism $f_t \colon B \to A_t$. The free product of $\{A_t\}_{t\in T}$ in \mathcal{K} with amalgamated subring B is a pair $(A, \{g_t\}_{t\in T})$, where $A \in \mathcal{K}$ and for every $t \in T$, $g_t \colon A_t \to A$ is a monomorphism and the following conditions are satisfied:

- (i) For every t_1 , $t_2 \in T$, $g_{t_1} f_{t_1} = g_{t_2} f_{t_2}$.
- (ii) A is generated by $\bigcup_{t \in T} \mathcal{G}_t(A_t)$.
- (iii) If $R \in \mathcal{H}$ and $h_t \nmid_{t \in T}$ is a set of homomorphisms such that $h_t \colon A_t \to R$ and for every t_1 , $t_2 \in T$, $h_{t_1} f_{t_1} = h_{t_2} f_{t_2}$, then there exists a homomorphism $h \colon A \to R$ such that $hg_t = h_t$ for every $t \in T$.

^(*) Pervenuto in Redazione il 7 ottobre 1971.

^(**) Indirizzo dell'Autore: Department of Mathematics — American University of Beirut — Beirut (Lebanon).

We say that free products with amalgamation exist in \mathcal{K} if the free product of $A_t \in \mathcal{T}$ in \mathcal{K} with amalgamated subring B exists for every $A_t \in \mathcal{T} \subset \mathcal{K}$ and $B \in \mathcal{K}$.

The existence of free products with amalgamation in the class of all Boolean rings (with unity) was proved in [1], and free products with amalgamation in classes of universal algebras are discussed in [5]. In this note we prove a theorem (Theorem 1) giving sufficient conditions on a class \mathcal{K} of commutative rings in order that free products with amalgamation exist in \mathcal{K} . We then use this theorem to show (Theorem 2) that free products with amalgamation exist in the class of all rings satisfying the equation $x^n = x$ (for all x and a fixed integer n > 1). The case where n = 2 gives the result for Boolean rings which we referred to earlier in [1]. Finally, we consider the existence of free products with amalgamation in the class of all rings A with the property that for every $x \in A$ there exists an integer n(x) > 1 such that $x^{n(x)} = x$ (See Theorem 3).

Free products with amalgamation are closely related to the following amalgamation property. A class $\mathcal K$ of commutative rings has the amalgamation property if for every A_1 , A_2 , $B \in \mathcal K$ and for every monomorphisms $f_1: B \to A_1$ and $f_2: B \to A_2$, there exist $A \in \mathcal K$ and monomorphisms $g_1: A_1 \to A$ and $g_2: A_2 \to A$ such that $g_1f_1=g_2f_2$.

The amalgamation property has been investigated for a number of algebraic systems and a detailed discussion of this property with references to the literature is given in [4]. Clearly, if free products with amalgamation exist in a class $\mathcal K$ of commutative rings, then $\mathcal K$ has the amalgamation property. The converse, however, does not hold: The class $\mathcal F$ of all fields has the amalgamation property [4] but free products with amalgamation do not exist in $\mathcal F$ (not even free products exist in $\mathcal F$ [5]). It is not difficult to show, however, that if $\mathcal K$ is a variety (i. e. an equationally defined class), then $\mathcal K$ has the amalgamation property if and only if free products with amalgamation exist in $\mathcal K$ (see Lemma 2).

Throughout the following, \mathcal{K} will denote a variety of commutative rings. Moreover, for every $\{A_t\}_{t\in T}\subseteq \mathcal{K}$ and $B\in \mathcal{K}$ such that for every $t\in T$, there exists a monomorphism $f_t\colon B\to A_t$, we define the ideal $I(\{A_t\}_{t\in T}, B)$ as follows. Let $(E, \{i_t\}_{t\in T})$ be the free product of $\{A_t\}_{t\in T}$ in \mathcal{K} ([5], p. 103), and for simplicity of notation identify each A_t with $i_t(A_t)$. Then $I(\{A_t\}_{t\in T}, B)$ is the ideal of E generated by $\{f_t\}_{t\in T}$ and $\{f_t\}_{t\in T}$ and $\{f_t\}_{t\in T}$ are $\{f_t\}_{t\in T}$.

The following two lemmas follow easily from the preceding definitions.

LEMMA 1. The free product of $A_t \nmid_{t \in T}$ in \mathcal{K} with amalgamated subring B exists if and only if $I(\{A_t \mid_{t \in T}, B\}) \cap A_t = (0)$ for every $t \in T$.

PROOF. Let $(I \ A_t \ \xi_{t \in T}, B) = I$. To show the necessity of the condition, let $(A, \ g_t \ \xi_{t \in T})$ be the free product of $\ A_t \ \xi_{t \in T}$ in $\ \%$ with amalgamated subring B. Since E is the free product of $\ A_t \ \xi_{t \in T}$, there exists a homomorphism $g: E \to A$ such that for every $t \in T$, $g \ A_t = g_t$, where $g \ A_t$ denotes the restriction of g to A_t . Let J be the kernel of g. Then for every $x \in B$, $g(f_{t_1}(x) - f_{t_r}(x)) = 0$, ant it follows from the definition of I that $I \subseteq J$. But for every $t \in T$, $J \cap A_t = (0)$, hence $I \cap A_t = (0)$.

Conversely, suppose that $I \cap A_t = (0)$ for every $t \in T$, and let g_t be the restriction to A_t of the natural homomorphism of E onto E/I. Then it can be shown, in exactly the same way as in ([1], p. 228), that $(E/I, \{g_t\}_{t \in T})$ is the free product of $\{A_t\}_{t \in T}$ in \mathcal{K} with amalgamated subring B.

LEMMA 2. Let K be a variety of commutative rings. Then free products with amalgamation exist in K if and only if K has the amalgamation property.

PROOF. Suppose first that the amalgamation property holds in \mathcal{K} . Let $\{A_t\}_{t\in T}\subseteq \mathcal{K}$ and $B\in \mathcal{K}$ such that for every $t\in T$, there exists a monomorphism $f_t\colon B\to A_t$. Let $I=I(\{A_t\}_{t\in T},B)$. We shall show that $I\cap A_t=(0)$ for every $t\in T$. Suppose $I\cap A_{t_0}\neq (0)$ for some $t_0\in T$, and let $a\in I\cap A_{t_0}$, $a\neq 0$. Clearly I is also generated by $\{f_{t_0}(x)-f_t(x)\mid t\in T,\ x\in B\}$. Hence

$$a = \sum_{i=1}^{n} r_{i} \left(f_{t_{0}}(x_{i}) - f_{t_{i}}(x_{i}) \right) + n_{i} \left(f_{t_{0}}(x_{i}) - f_{t_{i}}(x_{i}) \right), \dots (*)$$

where $r_i \in E$, $x_i \in B$, and n_i is an integer. Since the amalgamation property holds in \mathcal{K} , there exist $C \in \mathcal{K}$ and monomorphisms $g_i : A_{t_i} \to C$, such that $g_{t_i} f_{t_i} = g_{t_j} f_{t_j}$ for all $i, j, 0 \le i, j \le n$. For every $t \in T$ such that $t \neq t_i$, $0 \le i \le n$, let $g_t : A_t \to C$ be the zero homomorphism. Since E is the free product of $A_t \setminus \{t \in T\}$, there exists a homomorphism $g: E \to C$ such that $g \mid A_t = g_t$ for every $t \in T$. Then

from equation (*),

$$\begin{split} g\left(a\right) &= \sum_{i=1}^{n} g\left(r_{i}\right) \left(gf_{t_{0}}\left(x_{i}\right) - gf_{t_{i}}\left(x_{i}\right)\right) + n_{i}\left(gf_{t_{0}}\left(x_{i}\right) - gf_{t_{i}}\left(x_{i}\right)\right) \\ &= \sum_{i=1}^{n} g\left(r_{i}\right) \left(g_{t_{0}} f_{t_{0}}\left(x_{i}\right) - g_{t_{i}} f_{t_{i}}\left(x_{i}\right)\right) + n_{i}\left(g_{t_{0}} f_{t_{0}}\left(x_{i}\right) - g_{t_{i}} f_{t_{i}}\left(x_{i}\right)\right) \\ &= 0, \text{ since } g_{t_{i}} f_{t_{i}} = g_{t_{i}} f_{t_{i}}. \end{split}$$

On the other hand, since $a \in A_{t_0}$ and g_{t_0} is a monomorpism, $g(a) = g_{t_0}(a) \neq 0$. This contradiction shows that $I \cap A_t = (0)$ for all $t \in T$. Hence, by Lemma 1, free products with amalgamation exist in \mathcal{K} . The converse is obvious.

We now prove the main theorem.

THEOREM 1. Let % be a variety of commutative rings satisfying the following two conditions:

- (1) For every $A \in \mathcal{H}$, A is semisimple (i.e. the Jacobson radical of A is (0)).
- (2) For every $A \in \mathcal{H}$ and every subring B of A, a proper ideal M of B is maximal if and only if $M = B \cap M'$ for some maximal ideal M' of A.

Then free products with amalgamation exist in K.

PROOF. By Lemma 2, it suffices to show that the amalgamation property holds in \mathcal{K} . Thus let A_1 , A_2 , $B \in \mathcal{K}$ and suppose that there are monomorphisms $f_1 \colon B \to A_1$ and $f_2 \colon B \to A_2$. Let $(E, \{i_1, i_2\})$ be the free product of A_1 and A_2 in \mathcal{K} and for simplicity of notation identify A_i with $i_i(A_i), i=1,2$. Let I be the ideal of E generated by $\{f_1(\mathbf{x}) - f_2(x) \mid x \in B\}$. We shall show that $I \cap A_i = (0), i=1,2$. Suppose that $I \cap A_1 \neq (0)$, and let $a \in I \cap A_1$, $a \neq 0$. Since A_1 is semisimple, there exists a maximal ideal M_1 of A_1 such that $a \notin M_1$. Let $N_1 = M_1 \cap f_1(B)$. Then by condition (2), $N_1 = f_1(B)$ or N_1 is a maximal ideal of $f_1(B)$. Suppose that $N_1 = f_1(B)$. Let $h_1 \colon A_1 \to A_1/M_1$ be the natural homomorphism, and let $h_2 \colon A_2 \to A_1/M_1$ be the zero homomorphism. Since E is the free product of A_1 and A_2 , there is a homomorphism $h \colon E \to A_1/M_1$ such that $h \mid A_1 = h_1$, i=1,2. Now since $a \in I$,

$$a = \sum_{j=1}^{n} r_{j} (f_{1}(x_{j}) - f_{2}(x_{j})) + n_{j} (f_{1}(x_{j}) - f_{2}(x_{j})), \dots, (*)$$

where $r_i \in E$, $x_i \in B$, and n_i is an integer. Thus

$$h(a) = \sum_{j=1}^{n} h(r_j) (h_1 f_1(x_j) - h_2 f_2(x_j)) + n_j (h_1 f_1(x_j) - h_2 f_2(x_j)) = \mathbf{0},$$

since $h_i f_i(x) = 0$ for all $x \in B$, i = 1, 2. On the other hand, since $a \notin M_1$, $h(a) = h_1(a) \neq 0$. This contradiction shows that $N_1 \neq f_1(B)$. Thus N_1 is a maximal ideal of $f_1(B)$. Hence the ideal $N_2 = f_2 f_1^{-1}(N_1)$ is maximal in $f_2(B)$. Hence by condition (2), there is a maximal ideal M_2 of A_2 such that $M_2 \cap A_2 = N_2$. Let $h'_i : A_i \to A_i/M_i$, i = 1, 2, be the natural homomorphism. Then it follows from condition (1) that for every $i = 1, 2, A_i/M_i$ is a field and $f_i(B)/N_i$ is a subfield of A_i/M_i . Since the amalgamation property holds in the class of all fields [4], there exists a field F and monomorphisms $h''_i : A_i/M_i \to F$, i = 1, 2, such that $h''_1 h'_1 f_1 = h''_2 h'_2 f_2$. Moreover F can be chosen such that $F \in \mathcal{H}$. Since F is the free product of F and F are F and F and F and F are F and F and F and F are F and F are F and F and F are F and F and F are F are F and F are F are F are F and F are F and F are F and F are F are F are F are F are F and F are F

$$h(a) = \sum_{j=1}^{n} h(r_i) (h_1''h_1'f_1(x_j) - h_2''h_2'f_2(x_j)) + n_j (h_1''h_1'f_1(x_j) - h_2''h_2'f_2(x_j)) = 0.$$

On the other hand, since $a \notin M$, $h(a) = h_1(a) \neq 0$. This contradiction shows that $I \cap A_1 = (0)$. Similarly $I \cap A_2 = (0)$.

Now let C = E/I, $g: E \to E/I$ be the natural homomorphism, and $g_i = g \mid A_i$, i = 1, 2. Since $I \cap A_i = (0)$, each g_i is a monomorphism. Moreover, since $f_1(x) - f_2(x) \in I$ for every $x \in B$, $g(f_1(x) - f_2(x)) = 0$. Hence $g_1 f_1 = g_2 f_2$. This shows that the amalgamation property holds in $\mathcal K$ and completes the proof of the theorem.

We now apply Theorem 1 to the equationally defined class \mathcal{L} which is defined as follows. Let n > 1 be a fixed integer, and let \mathcal{L} be the class of all rings A satisfying the equation $x^n = x$ for all $x \in A$. It is known [3] that for every $A \in \mathcal{L}$, A is commutative and semisimple. Moreover, it is shown in [2] that for every $A \in \mathcal{L}$, A has the congruence extension property; that is, for every subring B of A, if I is an ideal of B, then $I = B \cap I^*$ for some ideal I^* of A.

THEOREM 2. Free products with amalgamation exist in the class L.

PROOF. We show that conditions (1) and (2) of Theorem 1 hold in \mathcal{L} . As we already noted, condition (1) holds. To show that condition (2) holds, we first observe that if J is an ideal of $R \in \mathcal{L}$,

then the intersection of all the maximal ideals of R/J is (0). Hence every proper ideal of R is the intersection of all the maximal ideals of R containing it. Now, let B be a subring of $A \in \mathcal{L}$, and suppose first that M is a maximal ideal of B. Since B has the congruence extension property, there exists an ideal M^* of A such that $M^* \cap B = M$. Moreover, M^* is proper. Hence M^* is the intersection of all the maximal ideals of A containing M^* . Thus we can find a maximal ideal M' of A such that $M' \supseteq M^*$ and $M' \cap B$ is proper in B. By the maximality of M, $M' \cap B = M$.

Conversely, let M' be a maximal ideal of A. Since $A/M' \in \mathcal{D}$, A/M' is a field. Let $x \in B/M' \cap B$, $x \neq 0$. Then $x^n = x$ Hence $x^{n-1} = 1$, and the multiplicative inverse of x is in $B/M' \cap B$. Hence $B/M' \cap B$ is a field and $M' \cap B$ is a maximal ideal of B. Thus condition (ii) holds and the proof is complete.

The following two corollaries follow immediately from Theorem 2. A ring A is called a p-ring, where p is a fixed prime, if for all $x \in A$, $x^p = x$ and px = 0.

Corollary 1. The class \mathcal{L} has the amalgamation property.

COROLLARY 2. Free products with amalgamation exist in the class of all prings.

We now consider the class \mathcal{L}^* consisting of all rings A with the property that for every $x \in A$, there exists an integer n(x) > 1 such that $x^{n(x)} = x$. Members of \mathcal{L}^* have the congruence extension property [2], and for every $A \in \mathcal{L}^*$, A is commutative and semisimple [3]. However, we cannot apply Theorem 1 to \mathcal{L}^* since it is not a variety. On the other hand, the proof of Theorem 1 can be used to show that \mathcal{L}^* has the amalgamation property (although the free product of an arbitrary subset of \mathcal{L}^* need not exist in \mathcal{L}^* , the free product of a finite number of members of \mathcal{L}^* does exist in \mathcal{L}^*). Moreover, the argument used in the proof of Lemma 2 can be also used to show that if \mathcal{K}' has the amalgamation property and \mathcal{K}' is a subclass of the variety \mathcal{K} , then the free product of $A_t \wr_{t \in T} \subseteq \mathcal{K}'$ and $B \in \mathcal{K}'$. Thus we have the following

THEOREM 3. Free products with amalgamation need not exist in \mathcal{L}^* . However, if \mathcal{R} is the class of all commutative rings, $A_t|_{t \in T}$

 $\subseteq \mathcal{L}^*$, $B \in \mathcal{L}^*$, and for every $t \in T$, there exists a monomorphism $f_t \colon B \to A_t$, then the free product of $A_t \setminus_{t \in T}$ in \mathcal{R} with amalgamated subring B exists.

REFERENCES

- [1] DWINGER, PH. and F. M. YAQUB, Generalized free products of Boolean algebras with an amalgamated subalgebra, 25, 225-231 (1963).
- [2] ISKANDER, A. and F. M. YAQUB, Commutative rings with the congruence extension property, Notices Am. Math. Soc. vol. 18, No. 5 (1971).
- [3] JACOBSON, N., Structure of rings, Am. Math. Soc. Colloq. Publ., 37 (1964).
- [4] Jónsson, B., Extensions of relational structures, Symposium on the theory of models, N. Holl and Publishing Co., Amsterdam (1965).
- [5] PIERCE, R. S., Introduction to the theory of abstract algebras, Holt, Rinehart and Winston, New York (1968).