CONNECTION BETWEEN THE *n*-DIMENSIONAL AFFINE SPACE $A_{n,q}$ AND THE CURVE C, WITH EQUATION $y=x^q$, OF THE AFFINE PLANE A_{2,q^n} (*)

by J. A. THAS (in Gent) (**)

SOMMARIO. - Indicata con C la curva di equazione $y=x^q$ nel piano affine $A_{2,\,q^n}$ $(n\geq 1,q=p^h)$, è definita una struttura d'incidenza I(C) nel modo seguente : i punti sono gli elementi di C, le C-rette sono gli insiemi formati da q punti allineati di C e l'incidenza è quella stessa di $A_{2,\,q^n}$. I(C) è lo spazio affine a n dimensioni su GF(q), e due C-rette sono parallele se e solo se le rette corrispondenti di $A_{2,\,q^n}$ sono parallele. Ne segue che la determinazione delle calotte di $A_{n,\,q}$ (n>2) è equivalente alla determinazione delle intersezioni di C con gli archi del piano $A_{2,\,q^n}$.

SUMMARY. - If the curve, with equation $y=x^q$, of the affine plane $A_{2,\,q^n}$ $(n\geq 1,\,q=p^h)$ is denoted by C, then an incidence structure I(C) is defined as follows: points are the elements of C, C-lines are the sets which consist of Q collinear points of Q, and incidence is that of Q, Q, Q. Q, Q is the Q-dimensional affine space over Q of Q, and two Q-lines are parallel if and only if the corresponding lines of Q, Q are parallel. Consequently the determination of the caps of Q, Q is equivalent to the determination of the intersections of Q with the arcs of the plane Q, Q, Q.

1. Introduction.

Let GF(q) denote the Galois field of q elements, where $q = p^h, p$ is a prime and h is a positive integer. Denote by $A_{n,q}$ the affine space of n dimensions defined over GF(q).

^(*) Pervenuto in Redazione il 30 ottobre 1970.

^(**) Indirizzo dell'Autore: Seminar of higher geometry — University of Ghent — J. Plateaustraat 22 — 9000 Gent (Belgium).

The field $GF(q^n)$ is an algebraic extension of GF(q), and each element of $GF(q^n)$ can be written in one and only one way in the form $a_0 + a_1 \alpha + a_2 \alpha^2 + ... + a_{n-1} \alpha^{n-1}$, with $a_i \in GF(q)$ and α a zero of a polynomial of order n which belongs to the field GF(q) and is irreducible in it [2].

The curve of A_{2, q^n} $(n \ge 1, q = p^h)$ with equation $y = x^q$ is denoted by C. It is seen at once that the curve C contains q^n points.

2. Lemma.

Every line of A_{2,q^n} which contains at least two distinct points of C, contains exactly q points of C.

PROOF: We consider two distinct points $P_1(x_1, x_1^q), P_2(x_2, x_2^q)$ $(x_1 \neq x_2)$ of the curve C. A general point P of the set $P_1 P_2 \setminus P_1, P_2 \setminus P_2 \setminus P_1$ has coordinates $(x_1 \ h - x_2) \ (h - 1)^{-1}, \ (x_1^q \ h - x_2^q) \ (h - 1)^{-1}$, with $h \in GF(q^n) \setminus \{0, 1\}$. The point P belongs to C if and only if

$$(1) \qquad (x_1^q \ h - x_2^q) \ (h-1)^{-1} = (x_1 \ h - x_2)^q \ (h-1)^{-q} \ .$$

Since $f: GF(q^n) \to GF(q^n)$, $a \to a^q$ is an automorphism of the Galois field $GF(q^n)$ [2], (1) is equivalent to

or
$$(x_1^q\ h - x_2^q)\,(h^q-1) = (x_1^q\ h^q - x_2^q)\,(h-1),$$

$$(x_1-x_2)^q\,(h^q-h) = 0.$$

So we conclude that $P \in C$ if and only if $h^q = h$ (2). The equation (2) has q-2 distinct solutions in the set $GF(q^n) \setminus \{0, 1\}$. There follows that the line P_1 P_2 contains exactly q distinct points of the curve C, and the lemma is proved.

3. Theorem.

An incidence structure I(C) is defined as follows: points are the elements of C, C-lines are the sets which consist of q collinear points of C, and incidence is that of A_{2,q^n} . Then I(C) is the n-dimensional affine space over the Galois field GF(q).

PROOF: Each element of $GF(q^n)$ can be written in one and only one way in the form $a_0 + a_1 \alpha + a_2 \alpha^2 + ... + a_{n-1} \alpha^{n-1}$, with $a_i \in GF(q)$ and α a zero of a polynomial of order n which belongs to the field GF(q) and is irreducible in it. With the point $P(x, x^q)$ of $C, x = \sum_{i=0}^{n-1} a_i \alpha^i$, we let correspond the point $P^*(a_0, a_1, ..., a_{n-1})$ of $A_{n,q}$. In this way we obtain a bijection g of the pointset of C onto the pointset of the affine space $A_{n,q}$. Now we prove that every C-line of I(C) is mapped by g onto a line of $A_{n,q}$.

For this purpose we consider two different points $P_1(x_1, x_1^q)$ and $P_2(x_2, x_2^q)$ of C, where $x_j = \sum\limits_{i=0}^{n-1} a_i^{(j)} \, \alpha^i \, (j=1,2)$. The points of the C-line $P_1 \, P_2$ are the point P_1 and the points with coordinates $(x_1 \, h - x_2) \, (h-1)^{-1}, \, (x_1^q \, h - x_2^q) \, (h-1)^{-1}, \,$ with $h^q = h$ and $h \neq 1$ (see 2.). We remark that $h^q = h$ is equivalent to $h \in GF(q)$. Consequently, the points of the C-line $P_1 \, P_2$ are mapped onto the points $P_1^* \, (a_0^{(j)}, a_1^{(j)}, \ldots, a_{n-1}^{(j)}) \,$ and $((a_0^{(1)} \, h - a_0^{(2)}) \, (h-1)^{-1}, \, (a_1^{(1)} \, h - a_1^{(2)}) \, (h-1)^{-1}, \ldots, \, (a_{n-1}^{(1)} \, h - a_{n-1}^{(2)}) \, (h-1)^{-1})$, where $h \in GF(q) \setminus \{0, 1\}$. We conclude that the C-line $P_1 \, P_2$ is mapped by q onto the line $P_1^* \, P_2^*$ of the affine space $A_{n,q}$.

Conversely, every line of $A_{n,q}$ corresponds with a C-line. Indeed, from the preceding there follows immediately that the line $Q_1^* Q_2^*$ of $A_{n,q}$ corresponds with the C-line $Q_1 Q_2$, where $Q_i = g^{-1}(Q_i^*)$ (i = 1, 2).

So we conclude that I(C) is the *n*-dimensional affine space over the Galois field GF(q).

4. Theorem.

Two C-lines of I(C) are parallel if and only if the corresponding lines of $A_{2,q}$ ⁿ are parallel.

PROOF: We consider two C-lines P_1 P_2 and P_3 P_4 , where P_j has coordinates x_j , x_j^q (j=1,2,3,4). If $x_j=\sum\limits_{i=0}^{n-1}a_i^{(j)}$ α^i (j=1,2,3,4), then from 3. it follows immediately that the C-lines P_1 P_2 and P_3 P_4 of I(C) are parallel if and only if there exists an element $\varrho\in GF(q)\setminus\{0\}$ for which $a_i^{(3)}-a_i^{(4)}=\varrho$ $(a_i^{(1)}-a_i^{(2)}),\ i=1,2,\ldots,n-1$. Consequently the C-lines P_1 P_2 and P_3 P_4 are parallel if and only if $GF(q)\setminus\{0\}$ contains an element ϱ for which $x_3-x_4=\varrho$ (x_1-x_2) .

The lines P_1 P_2 and P_3P_4 of $A_{2,\,q^n}$ are parallel if and only if there exists an element $\varrho' \in GF(q^n) \setminus \{0\}$ such that $x_3 - x_4 = \varrho' (x_1 - x_2)$ and $x_3^q - x_4^q = \varrho' (x_1^q - x_2^q)$. So these lines are parallel if and only if $GF(q^n) \setminus \{0\}$ contains an element ϱ' such that $x_3 - x_4 = \varrho' (x_1 - x_2)$ and $\varrho'^q = \varrho'$. Consequently the lines P_1 P_2 and P_3 P_4 of $A_{2,\,q^n}$ are parallel if and only if $GF(q) \setminus \{0\}$ contains an element ϱ' for which $x_3 - x_4 = \varrho' (x_1 - x_2)$.

So we conclude that the C-lines $P_1 P_2$ and $P_3 P_4$ of I(C) are parallel if and only if the corresponding lines of A_2 , q^n are parallel.

COROLLARIES: a) The points at infinity of the affine space I(C) can be identified with the points at infinity $(1, x^{q-1}, 0), x \in GF(q^n) \setminus \{0\}$, of the affine plane A_{2,q^n} .

- b) If P_{2, q^2} is the projective plane defined over $GF(q^2)$, then the $q^2 + q + 1$ points (x, x^q, a) $(x \in GF(q^2), a \in \{0, 1\})$, a and x not both zero) constitute a Baer subplane [1] of P_{2, q^2} .
- c) If A_n , $n \ge 3$, is a finite *n*-dimensional affine space then there always exists a finite Desarguesian affine plane A_2 satisfying the following conditions
 - 1º the pointset of A_n is a subset of the pointset of A_2 ;
- 2^0 the intersection of a line of A_2 and the pointset of A_n is a line of A_n , a point or the void set;
 - 3^0 every line of A_n is subset of a line of A_2 ;
- 4^0 two lines of A_n are parallel if and only if the corresponding lines of A_2 are parallel.

5. k-arcs and k-caps.

A k-arc (resp. k-cap) of $A_{2, q}$ (resp. $A_{n, q}, n > 2$) is a set of k points of $A_{2, q}$ (resp. $A_{n, q}$), no three of which are collinear.

The caps of the affine space $A_{n,q} = I(C)$ (n > 2) evidently are the intersections of C with the arcs of the affine plane A_{2,q^n} .

Three distinct points $P_1(x_1, x_1^q), P_2(x_2, x_2^q), P_3(x_3, x_3^q)$ of the curve C are not collinear if and only if

(3)
$$\begin{vmatrix} x_1 & x_1^q & 1 \\ x_2 & x_2^q & 1 \\ x_3 & x_3^q & 1 \end{vmatrix} \neq 0.$$

Since

$$\begin{vmatrix} x_1 & x_1^q & 1 \\ x_2 & x_2^q & 1 \\ x_3 & x_3^q & 1 \end{vmatrix} = (x_1 - x_3)(x_2 - x_3) \begin{vmatrix} 1 & (x_1 - x_3)^{q-1} & 0 \\ 1 & (x_2 - x_3)^{q-1} & 0 \\ x_3 & x_3^q & 1 \end{vmatrix} =$$

$$= (x_1 - x_3) (x_2 - x_3) ((x_2 - x_3)^{q-1} - (x_1 - x_3)^{q-1})$$

and since x_1, x_2, x_3 are distinct elements of $GF(q^n)$, (3) is equivalent to

$$\left(\frac{x_1-x_3}{x_2-x_3}\right)^{q-1} = 1.$$

So we conclude that P_1, P_2, P_3 are not collinear if and only if

$$\frac{x_{1}-x_{3}}{x_{2}-x_{3}}\notin GF\left(q\right)\subset GF\left(q^{n}\right).$$

Consequently the determination of the k-caps (k-arcs when n=2) of $A_{n,q}$ ($n \ge 2$) is equivalent to the determination of the sets $\{x_1, x_2, \dots, x_k\}$, $x_i \in GF(q^n)$, with

$$\frac{x_i - x_l}{x_i - x_l} \notin GF(q) \subset GF(q^n),$$

 $\forall i, j, l \in \{1, 2, \dots, k\}$ and i, j, l distinct.

Other interpretation: the determination of the k-caps (k-arcs when n=2) of $A_{n,q}$ $(n\geq 2)$ is equivalent to the determination of the pointsets $\{Q_1,Q_2,...,Q_k\}$ of the affine line A_{1,q^n} , for which

$$\frac{Q_i \ Q_l}{Q_i \ Q_l} \notin GF(q) \subset GF(q^n),$$

 $\forall i, j, l \in \{1, 2, ..., k\}$ and i, j, l distinct.

REMARK: If q=3 then the three distinct points $P_1(x_1, x_1^3)$, $P_2(x_2, x_2^3)$, $P_3(x_3, x_3^3)$ of the curve C of the plane $A_{2,3}n$ $(n \ge 2)$ are not collinear if and only if

(4)
$$\frac{x_1 - x_3}{x_2 - x_3} \notin \{0, 1, -1\}.$$

Since x_1 , x_2 , x_3 are distinct elements of $GF(3^n)$, (4) is equivalent to

$$\frac{x_1 - x_3}{x_2 - x_3} + -1.$$

So we conclude that P_1, P_2, P_3 are not collinear if and only if

$$x_1 + x_2 + x_3 \neq 0$$
.

BIBLIOGRAPHY

- [1] P. Dembowski, Finite geometries, Springer-Verlag, Berlin-Heidelberg New York (1968).
- [2] B. SEGRE, Lectures on modern geometry, Edizioni Cremonese, Roma (1961).