AN ITERATIVE PROCESS FOR EQUATIONS
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SOMMARIO. - Si considera un procedimento iterativo di ordine superiore per la
risoluzione di equazioni funzionali negli spazi di Banach che non richiede
una valutazione esplicita delle derivate di ordine maggiore di 1. Si da un
teorema di convergenza. Si discute un’applicazione del procedimento alla

" risoluzione di problemi ai limiti con due punti e si da un esempio numerico
per le equazioni integrali di Chandraseckhar.

SUMMARY. - A higher-order process for the iterative solution of functional equa-
tions in Banach spaces is considered, which requires no explicit evaluations
of higher derivatives. A convergence theorem is given. An application to
the solution of two point boundary value problems is discussed and a
numerical example for the Chandrasekhar integral equation is given.

1. Introduction.

Considerable effort has been devoted to the study of iligher
order methods for the iterative solution of equations of the form :

(1) F(x)=0,

where F maps the Banach space X into a Banach space Y (see,
for example, [1],{2]). Most of these methods require high order
derivatives of F' and are often of limited practical utility. Recently,
some iterative methods are considered which require no explicit
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evaluations of higher derivatives (see [3],[4],[5]). In this paper an
iteration process of this type is considered.
More precisely, the following method

(2)  Tnpr = 2y — F'—1 () F” (x,, + % F'—1 (2,) F(w,.)) F'=1 (2,) F(x),

n=20,1,...

is examined, where F is twice continuously Frechét differentiable
in a convex subset 2 cX. A convergence theorem is given and
some applications to the solution of two point boundary value
problems and of the Chandrasekhar integral equation are consi-
dered.

2. A convergence theorem.
We now prove a convergence theorem for (2).

THEOREM 2.1: Let X and Y be Banach spaces and F be a
map twice differentiable from X into Y ; let 2y €X be a point sa-
tisfying the following conditions :

(i) F'1(x,) exists;
(i) || 27~ (@) F (o) || < 8 , | T~ (wp) B () || < M, ;
(iii) for some «€]0,1],
| B2 (o) F" (y) — F'=1 (o) F" (2) [<Ny|ly—z]=, MY, 2 € B (x » 7o)

where, letting

1 +a 1
hy = ”2_M0 80 89 = No/ My o (o) = hy +- I+a o hite
79 =147 (hy),
we define
ro=1,(1 — c},"‘" hz)'l'“)—1 ,
with

Mg == 7o 8y , kg = My 7,
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o d (L b S0 %
elte =4 (1 — g (k) lg(g‘l'if"'a_-ifm) T
1
wm which ’ [
1
g (kO) p— kO —I— m 80 k(l)+a;

(iv) g (k) <15

(V) tte = (1 — g (k)™ ¢ (ko) g hyte < 1.
Then the equation (1) has a solution xt in 1_3(900 y 7o) ; the sequence
{wn} defined by (2) converges to xt and the rate of convergence is
given by the following inequality :

@) | ot —a || < Br(1 — clte Ri+a)=1 g t£)2+a)n -1,

where .
pite = (1 — g (ko)1 g (k).

Proor: We first show that conditions like (i), ..., (v) are
fulfilled at #, and by induction at all », .
We have [6]:

F'=1 (a,) F(” + % - (xo>F<xo)) = F'~1 (x) F (z) +

4) + % F'=1 (w5) F" (w) B/~ (a) F (wg) +

1
2

/=1 () F (@) dL- - B~ () Flay)

1
+ [ w0 @+t
0
from which it follows that
1
(5) H F'=1(x) F’ (wo + - F'=1 () F(wo)) “ =14+ f(h)=r1,.

Thus the point «, , given by (2), is welldefined and =, € B (z,, 7,),
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since
(6) |2y — o || < 7080 =12,.
‘We observe that the inequality

(| B7=1 () (B (o) — F” (m,)) || < ¢ (lep) < 1

holds ; however the operator U= F’~!(x;) F’ (x,) bas the inverse
U—1, the norm of which satisfies the inequality

(7) T <@ —g k).
Thus, the operator F’—1(z,) = U~ F'—! (x,) exists and (i) holds at
- Now, from (2) and (4) we get
(8) (@, — @) + F'~1 () F () =
= — 5 P (@) B (@) (B (a0) F () @ — R,

where
1

(9) R,= f [1«"—1 (@g) F" (wo +¢ % F'=1 (x,) F(xo)) —
0

1
— F'—1(x,) F" (wo)l ag- - (B (@) F (24))®.
However, letting

1 s ’—
4= F'=1 (wg) B (y) B’ (x,) F (%) R, ,

ay = % F'=1 (wg) F" (o) [ () F" (w0) (F'— () F (,))¥] R, ,
ag = % F/—1 () F" (o) By (2, — ),
1
a4=f(1—C)[Ff—1 (o) F" (2¢g + ¢ (2, — ) —
0

— F'=1 () F(w,)| AL (@), — 2)?,
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we obtain

F'=1 (o) F (@) = F'=1 (o) F (%) + (@, — @) +

1

[ =07 00 2 5+ € 0, — ) 2 (5, — 2 —

0

1

=7 F'=Yao) F"(a,) I'—1(a5) F () [ B’ (a00) F" (a00) (F '~ (w0) F (a00))@] 4
1

g T (@) B () (B~ (@) B () (' (w) F ()]

| P @B ) (B @) Plog)+ = @) ] — Ry+ 2 ay.
J:ﬁ

Taking norms and using (ii) and (iii), we obtain

12+a
(10) || F'=1 (@) Play) || < 41578, (% +2+ (1_+La><2_+a)> +

1
+ Ty g 0o ho T (1 + (1 + a) by + B))

from which we have
) [ F @) F )| <T |- P~ @) Floy)|< ™8, =14,
Furthermore, from (iii) it follows that

(12) | 7' (w) F" (2) || < M, + N, 75,
which yields

(13) | B2 () B (@) || < (1 — g (Ro))™ 9" (o) My = M, ,

i. e. condition (ii) at point x, is satisfied.
Since, by (v), we have

1
(14) b= M8y =1 —g k)™ g’ (ko) o™ Iy ™ by =8 o <,

it follows that
(15) u=14f(h) <r,.
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Then, since (v) implies clt2hlte < 1, we get
1e6) [lo,—a||<7é =1n= at®ngt 07y << ot Ryt o<1 -

‘We consider next the ball

—_ X 7] X
a7 Blo,r)=jeeX:|e—a || < g—"llamr =,
0 0

and we note that the following inequality holds for any z € B (g, 1))

(18) [l@— || S <=1 — ot hgtey1 gpte ngt N0 + Mo =7y

Hence,

(19) B (1) C By, 7).

Thus, from (iii) and (7) it follows that

(20) [ "= (@) B (y) — F'~ (@) B () [| < N, |y — 2]|°,
My,2€B(x,, 1)),

where N, = (1 — ¢ (k)" N,, so that condition (iii) at the point

x, is verified.
Next, from the inequalities

N '

(21) & = j[—l_—,i_; = (1 — g (k))* (¢’ (kp))'+ g, << &,
1

(22) by <t ky <k,

we deduce

(23) g (k) < g(kp) <1

and, since ¢’ (k,) << ¢’ (k,) and clte < clte, we have

(24) ttr<ut<1.

Thus conditions (iv) and (v) at «, are verified.
Now it can be shown by induction on = that the sequence
jo.{ is welldefined and that conditions (i),...,(v) at the point @y,
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are verified for all n. We obtain also the inequality
(25) o << frOHa) g2t 1y

from which we deduce
1—(e™h ™)

(26)
1— c},"'“ nate

— | < B g

I Tnip

Thus, {a.) is a Cauchy sequence in E(mo,'ro); hence, lim #, = a+t
exists, t € B (x,, 7, and the error bound (3) holds.
Since the condition

27 | "1 (2g) F (#nt1) | <<
] 9 N 63 2 N, a
=[G+ 0+ D50+ gl —

holds, where ¢ = M, -+ N, r¢ and 6, < (c;™* hi+*n 5, we have

lim F (z,) = F (x+) = 0

n —> 0o

since F is continuous.
Thus, the theorem is completely proved.

REMARK 1. If the conditions of theorem 2.1 are satisfied for
a =1, then the rate of convergence is given by the inequality

| at —a, || < r, f2n 8371,

1 .
REMARK 2. Expanding F’ (xn + > F'—1 (ac,,)F(w,,)) into a Tay-

lor series about z,, from (2) we get

1 n ’
Zpp1 = &y — {1 -+ 9 F'= (@) B (0n) F'1 (a00) F (2)

F'=1 (x,) F(2,) +

+ B, (),

from which we deduce that the iterative process (2) is analogous to
the method of Chebyschev [2], but the process (2) does not require
to calculate F'' () at each step; this is useful in most applications.
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3. Some applications of the process (2).

(i) We consider the following boundary value problem :

‘.i’:f(t’w)’
z2(0)=ua,z(T)=",

(28)

where f is a continuous mapping of R <X R™ into R™.

We recall first that a continuous mapping «+(t) of [0, 7] into
R™ is a solution of (28) if and only if zt (¢) is a solution of the
integral equation

t

T
) wO=atp0—a—[I60s6a0)n,

where I'(t, s) is the Green’s function given by

t

T(T—s), if 0<<t<<s<T,
(30) It s =

%(T——t), if 0s<t<T.

We can now write (29) as

(31) F@)=a — @) =0,

where ¢ is a mapping of C ([0, T], R™)(!) into itself given by
. T
(32) g:z@)—>ad 50— — f I'(t,8)f (s,(s)) ds, w(t)€ O([0,T],R™.
0

Assuming that F, given by (31) and (32), satisfies the conditions
of theorem 2.1, we apply the algorithm (2) for the approximation

() ¢([0, T], R™) denotes the Banach space of the continuous mapping of
[0, T] into R™ .
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of the solution of (31). Consequently, we obtain

;'n+l = ¢ () (;;n+1 - .’t‘,,) + @ (z2),

1 ~
(33) fn = ¥p — ? (wn-l-l - wn)

Tn41 = @' (%) (wn+1 — &) — @ (2n) (05;+1 —xn)+ a":+1 .

These linear equations are equivalent to a pair of integral equations,
from which we obtain the corresponding linear boundary value
problems (2) :

v=J(t, @, (&) © + [ (t, 2n () — T (t @ () @n ()],

(34) ~ ~
Tn41 (0) =0y T4y (T) = b7
’l:(') = J (t, Tn (t)) w —I— [f(t, Xy (t)) - J (t; Ly (t)) L (t)] +
(35) + [T (ty @ (6) — T (¢, 20 ()] @ () — 20 (1)

m,1+1 (0) = a, xn+1 (T) =b.

We note that the algorithm (34), (35) looks like an improvement of
the method of quasilinearization [7]. Sufficient conditions for the
convergence of the sequence {x,(f)} given by (34), (35) can be deduced
directly from the theorem 2.1,

(ii) Consider next the Chandrasekhar equation [8]:

1
' y(s) 2 (9)
B )| ———
(36) (Fo) (1) =1 + ta (2) s 1 ds,
0
which describes the radiative transfer.
We deduce from theorem 2.1 that the algorithm (2) converges

to a solution of (36), if the inequality

1
(37) rgf‘ﬁ|#’(t)|<m-

(®) J (t,x) denotes the jacobian matrix of f (1, ).
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. 1
holds. In particular, if w(t)=—2—,u(,u=const.), the sequence ge-

nerated by (2) converges if the condition u < 1/(21og 2)=0.72 is
verified.

In table 1 we present the number of iterations » to obtain the
convergence (i. e. || #,41 — @n ||, << 107%) for u=0-1--1, by the al-
gorithm (2) discretized by a Gauss quadrature formula and by a
Simpson composite formula respectively.

TABLE 1

AN

AN 0.1 02 03 04 05 06 07 08 09 1.0
n
Gauss
10 point 3 3 3 4 4 4 4 4 b 31
Simpson

. 4 4 4 b 5 b 6 6 6 16
10 point

We also observe that, although Theorem 2.1 guarantees the con-
vergence only for 0 < u < 0.72, the actual computations converge
for values u > 0.72.
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