A CHARACTERIZATION OF COMPACT FILTERBASIS IN COMPLETE METRIC SPACES(*)

by Massimo Furi and Mario Martelli (in Firenze) (**)

- SOMMARIO. In questo articolo si dà una caratterizzazione delle basi di filtro compatte negli spazi metrici completi, usando il numero a di Kuratowski (Teorema 1). Come conseguenza di tale caratterizzazione si estendono alcuni noti risultati di Cantor-Kuratowski, Kuratowski e Painlevé-Kuratowski (Teoremi 2, 3 e 4 rispettivamente).
- Summary. In this paper, using the number α of Kuratowski, we give a characterization of compact filterbasis in complete metric spaces (Theorem 1). As a consequence of this characterization we extend some known results of Cantor-Kuratowski, Kuratowski and Painlevé-Kuratowski (Theorem 2, Theorem 3 and Theorem 4 respectively).
- 1. Let \mathcal{B} and \mathcal{B}' be two filterbasis. \mathcal{B}' is subordered to \mathcal{B} , written $\mathcal{B}' \mid \mathcal{B}$, iff, for any $A \in \mathcal{B}$, there exists $A' \in \mathcal{B}'$ such that $A' \subset A$ [1]. A filterbasis \mathcal{B} in a topological space is said to be compact iff each \mathcal{B}' such that $\mathcal{B}' \mid \mathcal{B}$ has cluster points.

In this paper, using the number α of Kuratowski [2], we give a characterization of compact filterbasis in complete metric spaces (Theorem 1). As a consequence of this characterization we extend some known results of Cantor-Kuratowski [3], Kuratowski [2], and Painlevé-Kuratowski [3] (Theorem 2, Theorem 3 and Theorem 4 respectively).

We recall first some terminology.

^(*) Pervenuto in Redazione il 7 luglio 1970.

Lavoro eseguito nell'ambito delle attività dei Contratti di Ricerca matematica del C. N. R.

^(**) Indirizzo degli Autori: Istituto Matematico «Ulisse Dini» - Università - Viale Morgagni 67/A -- 50134 Firenze.

Let X be a metric space. Throughout the paper $\alpha(A)$ denotes the Kuratowski number of $A \subset X$; i.e., if A is bounded, $\alpha(A)$ is the infimum of all $\varepsilon > 0$ such that A admits a finite covering of sets with diameter less than ε ; if A is unbounded, then $\alpha(A) = +\infty$. About the number α and its properties see [4] and [5].

Let \mathfrak{B} be a filterbasis in a metric space. We define $\alpha(\mathfrak{B}) = \inf \{ \alpha(A) : A \in \mathfrak{B} \}$. Obviously, if $\mathfrak{B}' \models \mathfrak{B}$ then $\alpha(\mathfrak{B}') \leq \alpha(\mathfrak{B})$. Moreover, denoting by \overline{A} the adherence of A, we put $\overline{\mathfrak{B}} = \{ \overline{A} : A \in \mathfrak{B} \}$. We shall say that \mathfrak{B} is a closed filterbasis iff $\mathfrak{B} \sim \overline{\mathfrak{B}}$ (\mathfrak{B} is equivalent to $\overline{\mathfrak{B}}$), i.e. $\mathfrak{B} \models \overline{\mathfrak{B}}$ and $\overline{\mathfrak{B}} \models \mathfrak{B}$.

2. Our main result is Theorem 1. To prove this Theorem we need the following two Lemmas.

LEMMA 1. Let δ be a family of sets with the finite intersection property (f. i. p.) and let $A \in \delta$. If $\{A_k : 1 \le k \le n\}$ is a finite covering of A, then there exists \overline{k} , $1 \le \overline{k} \le n$, such that the family δ' , obtained from δ replacing A by $A_{\overline{k}}$, has the f. i. p..

PROOF. Assume the contrary. Then there exist n finite subfamilies $\mathcal{O}_1, \ldots, \mathcal{O}_n$ of \mathcal{O} , such that

$$A_k \cap (\cap \{B : B \in \mathcal{O}_k\}) = \Phi, \qquad k = 1, \dots, n.$$

This implies $A \cap \{B : B \in U_k \circ J_k\} = \Phi$. But this contradicts the f. i. p. of \circ .

LEMMA 2. Let δ be a family with the f.i.p.. Let, for each $A \in \delta$, $\Phi(A)$ be a finite covering of A. Then for each $A \in \delta$ we can select $U_A \in \Phi(A)$ such that the family $\{U_A : A \in \delta\}$ has the f.i.p..

PROOF. Let ${m Q}$ be the set of all mappings ψ with the following properties

- a) $\mathcal{D}(\psi) \subset \mathcal{O}$, where $\mathcal{D}(\psi)$ denotes the domain of ψ ;
- b) $\psi(A) \in \Phi(A), \forall A \in \mathcal{D}(\psi);$
- c) the family obtained from \circlearrowleft , replacing each $A \in \mathcal{O}(\psi)$ by $\psi(A)$ has the f.i.p..

We have only to prove that there exists $\varphi \in \Omega$ such that $\mathcal{D}(\varphi) = \emptyset$. Obviously the set Ω is nonempty by Lemma 1. Moreover Ω can be partially ordered as follows: $\psi_1 < \psi_2$ if and only if $\mathcal{D}(\psi_1) \subset \mathcal{D}(\psi_2)$ and $\psi_1(A) = \psi_2(A)$ for all $A \in \mathcal{D}(\psi_1)$. By Zorn's

Lemma Ω has a maximal element φ . Therefore, by Lemma 1, $\mathcal{D}(\varphi) = \emptyset$.

We now prove

THEOREM 1. Let \Re a filterbasis in a complete metric space X. Then \Re is compact if and only if $\alpha(\Re) = 0$.

PROOF. Suppose $\alpha(\mathcal{B}) > 0$. Let us prove that there exists a filterbasis $\mathcal{B}' \models \mathcal{B}$ with no cluster point. Put $\mathcal{B}' = \{U' \subset X : \exists \ U \in \mathcal{B}\}$ such that $\alpha(U \setminus U') < \alpha(\mathcal{B})\}$. Obviously each $U' \in \mathcal{B}'$ is nonempty. Let U_1' , $U_2' \in \mathcal{B}'$. There exist U_1 , $U_2 \in \mathcal{B}$ such that $\alpha(U_1 \setminus U_1')$, $\alpha(U_2 \setminus U_2') < \alpha(\mathcal{B})$ and $W \in \mathcal{B}$, $W \subset U_1 \cap U_2$. Since

$$\alpha (W \setminus (U_1' \cap U_2')) = \alpha ((W \setminus U_1') \cup (W \setminus U_2')) =$$

$$\max\left\{\alpha\left(W \setminus U_1'\right), \alpha\left(W \setminus U_2'\right)\right\} \leq \max\left\{\alpha\left(U_1 \setminus U_1'\right), \alpha\left(U_2 \setminus U_2'\right)\right\} < \alpha\left(\Im\right)$$

then $U_1' \cap U_2'$ belongs to \mathfrak{B}' . Moreover if $V' \supset U'$, with $U' \in \mathfrak{B}'$, then $V' \in \mathfrak{B}'$. Hence \mathfrak{B}' is a filter. Clearly $\mathfrak{B}' \supset \mathfrak{B}$, therefore $\mathfrak{B}' \mid ---- \mathfrak{B}$. It remains only to prove that \mathfrak{B}' has no cluster point.

Indeed, let $x \in X$ and consider the neighborhood of x, $B(x, \varepsilon) = \{y \in X : d(x, y) < \varepsilon\}$ with $0 < 2\varepsilon < \alpha$ (%). Since, for any $U' \in \mathcal{B}'$, we have $U \setminus (U' \setminus B(x, \varepsilon)) \subset (U \setminus U') \cup B(x, \varepsilon)$, it turns out that

$$\alpha \left(U \setminus \left(U' \setminus B\left(x,\varepsilon\right) \right) \right) \leq \alpha \left(\left(U \setminus U' \right) \cup B\left(x,\varepsilon\right) \right) \leq$$

$$\leq \max \{ \alpha (U \setminus U'), \alpha (B(x, \varepsilon)) \} < \alpha (\%).$$

Hence $U' \setminus B(x, \varepsilon) \in \mathcal{B}'$. Then x is not a cluster point of \mathcal{B}' since $(U' \setminus B(x, \varepsilon)) \cap B(x, \varepsilon) = \Phi$.

Suppose $\alpha(\Im) = 0$. We must prove that any filterbasis $\Im' = \Im$ has cluster points. Since $\alpha(\Im') = 0$, it is sufficient to show that the condition $\alpha(\Im) = 0$ implies the existence of cluster points of \Im .

There are two possibilities:

- a) there exists $A^* \in \mathcal{B}$ such that $\alpha(A^*) = 0$;
- b) $\alpha(A) > 0$ for all $A \in \mathcal{P}_3$.

In the first case let \mathfrak{B}' be the filterbasis consisting of all members of \mathfrak{B} contained in A^* . Clearly for any $A \in \mathfrak{B}'$ the adherence \overline{A} of A is compact. Since the family $\{\overline{A}: A \in \mathfrak{B}'\}$ has the f. i. p. it follows that $\bigcap \{\overline{A}: A \in \mathfrak{B}'\} \neq \Phi$. Then \mathfrak{B} has cluster points since $\mathfrak{B}' \models \mathfrak{B}$.

In the second one, for any $A \in \mathcal{B}$, let $\Phi(A)$ be a finite covering of A consisting of subsets of A with diameter less than $2\alpha(A)$. By Lemma 2 we can select $U_A \in \Phi(A)$ such that the family $\{U_A : A \in \mathcal{B}\}$ has the f. i. p. . Clearly $\{U_A : A \in \mathcal{B}\}$ is a subbasis of a Cauchy filterbasis $\mathcal{B}' \models \mathcal{B}$. Since X is complete \mathcal{B}' converges to a point $x \in X$, so x is a cluster point of \mathcal{B} .

3. In this section we give some consequences of Theorem 1.

THEOREM 2. Let (X, d) be a complete metric space and let $\delta = \{A_j : j \in J\}$ be a family of closed subsets of X, with the f. i. p. . If for any $\varepsilon > 0$ there exists a finite subset K_{ε} of J such that $\alpha \cap \{A_j : j \in K_{\varepsilon}\} < \varepsilon$, then $\cap \{A_j : j \in J\}$ is nonempty and compact.

PROOF. By the assumption δ is a subbasis of a filterbasis \mathfrak{P} , such that $\alpha(\mathfrak{P}) = 0$. Since A_j is closed for each $j \in J$, the set M of all cluster points of \mathfrak{P} is precisely $\bigcap \{A_j : j \in J\}$. Therefore M is closed and, by Theorem 1, nonempty. Moreover $M \subseteq B$ for any $B \in \mathfrak{P}$, and this implies $0 \le \alpha(M) \le \alpha(\mathfrak{P}) = 0$. Then M is compact by the completeness of X.

Theorem 2 contains a well known result in the case when all sets A_j are compact, and a result of Cantor-Kuratowski [3] when the family δ is a nonincreasing sequence $\{A_n\}$ of nonempty closed sets such that $\lim_n \alpha(A_n) = 0$.

Let (X, d) be a complete metric space and let $\mathcal{C}(X)$ be the family of all nonempty and closed subsets of X. For every pair A, B of elements of $\mathcal{C}(X)$ the Hausdorff distance D(A, B) is max $\{\varrho(A, B), \varrho(B, A)\}$ where $\varrho(A, B) = \sup\{d(x, B) : x \in A\}$.

Recall that if $\{A_{\delta} : \delta \in \Delta\}$ is a filterbasis, then we can regard Δ as a directed set, defining $\delta < \delta'$ if and only if $A_{\delta} \supset A_{\delta'}$.

THEOREM 3. Let $\mathcal{B} = \{A_{\delta} : \delta \in \Delta\}$ be a closed filterbasis in a complete metric space X. Assume $\alpha(\mathcal{B}) = 0$. Then $\lim_{\delta \in \Delta} D(A_{\delta}, M) = 0$ where $M = \bigcap \{A_{\delta} : \delta \in \Delta\}$.

PROOF. Assume the contrary. Then there exists $\epsilon > 0$ such that $A_{\delta} \subset B(M, \epsilon)$ (1) for all $\delta \in \Delta$. Put $A'_{\delta} = A_{\delta} \setminus B(M, \epsilon)$ and $\mathfrak{B}' = \{A'_{\delta} : \delta \in \Delta\}$. It is easily seen that $\mathfrak{B}' \mid - \mathfrak{B}$. Therefore $M' = \cap \{A'_{\delta} : \delta \in \Delta\}$ is nonempty by Theorem 1 and obviously $M' \cap M = \Phi$. But this contradicts the fact that $\mathfrak{B}' \mid - \mathfrak{B}$.

 $^(^{1}) B(M, \varepsilon) = \{ y \in X : d(y, M) < \varepsilon \}.$

Theorem 3, in the case when the filterbasis \Re is a nonincreasing sequence of closed sets, gives a result due to C. Kuratowski [2].

THEOREM 4. Let $\mathfrak{B} = \{A_{\delta} : \delta \in \Delta\}$ be a closed filterbasis in a complete metric space X. If A_{δ} is connected for any $\delta \in \Delta$ and $\alpha(\mathfrak{B}) = 0$, then $M = \bigcap \{A_{\delta} : \delta \in \Delta\}$ is a nonempty continuum.

PROOF. Clearly M is nonempty and compact by Theorem 2. Suppose M disconnected. Then we can find a pair of nonempty, compact sets M_1 , M_2 such that $M_1 \cap M_2 = \Phi$ and $M_1 \cup M_2 = M$. Therefore there exists $\varepsilon > 0$ such that $B(M,\varepsilon) = B(M_1,\varepsilon) \cup B(M_2,\varepsilon)$ with $B(M_1,\varepsilon) \cap B(M_2,\varepsilon) = \Phi$. By Theorem 3 there exists $\delta \in \Delta$ such that $A_\delta \subset B(M,\varepsilon)$. Put $C_k = A_\delta \cap B(M_k,\varepsilon)$, k=1,2. Obviously $A_\delta = C_1 \cup C_2$ and $C_1 \cap C_2 = \Phi$; but this is impossible since A_δ is connected.

If, in Theorem 4, the filterbasis is a nonincreasing sequence of nonempty, closed and connected sets, we obtain a result of Painlevé-Kuratowski [3].

REMARK. Recall that a set A of a metric space (X,d) is said to be ε -chained if for all $x, y \in A$ there exists a finite subset $\{x_1, \ldots, x_n\}$ such that $x = x_1, y = x_n$ and $d(x_i, x_{i+1}) < \varepsilon, i = 1, \ldots, n-1$. We define $\eta(A) = \inf\{\varepsilon > 0 : A \text{ is } \varepsilon\text{-chained}\}$. Then Theorem 4 can be extended replacing the assumption A is connected for any $\delta \in A$ by A in A in A is connected for any A is A by A in A is A in A is connected for any A is connected for A is connected for any A is connected for A

REFERENCES

- [1] J. DUGUNDJI, Topology, Allyn and Bacon, Boston, (1967).
- [2] C. Kuratowski, Topologie, Monografie Matematiczne, Tom 20, Warszawa, (1958).
- [3] C. KURATOWSKI, Sur les espaces completes, Fund. Math. 15, (1930), pp. 301-309.
- [4] S. SZUFLA, Some remarks on ordinary differential equations in Banach Spaces, Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Math. Astr. et Phys., Vol. XVI, No. 10, (1968).
- [5] M. FURI and A. VIGNOLI, Fixed points for densifying mappings, Rend. Acc. Naz. Lincei, Vol. XLVII, No. 6, (1969).