EXISTENCE OF GLOBAL SOLUTIONS OF DELAYED DIFFERENTIAL EQUATIONS ON COMPACT MANIFOLDS (*)

by Jaroslav Kurzweil (in Prague) (**)

SOMMARIO. - Per equazioni differenziali con argomenti ritardati su una varietà compatta X vale la seguente proposizione: Per ogni punto di X passa almeno una soluzione definita sulla retta reale.

SUMMARY. - The following assertion is true for a differential equation with retarded arguments on a compact manifold X: Through any point of X there passes at least one solution, which is defined on the real line.

Let X be a compact connected $C^{(2)}$ manifold. Let $g: X \times X \times R \to TX$ be a $C^{(1)}$ — map such that $g(x, y, t) \in T_x X$. By a global solution of

(1)
$$\frac{dx}{dt}(t) = g(x(t), x(t-1), t)$$

it is understood a solution defined on R.

THEOREM. For any $u \in X$, $s \in R$ there exists a global solution x of (1) such that x(s) = u.

The proof depends on the following

PROPOSITION. Let X be a compact connected $C^{(0)}$ — manifold. Let $f: X \to X$ be a continuous map homotopic to the identity map id: $X \to X$. Then f(X) = X.

^(*) Pervenuto in Redazione l'11 maggio 1970.

^(**) Indirizzo dell'Autore: Mathematical Institute of Czechoslovak Academy of Sciences — Žitná 25 — Praha 1 (Czechoslovakia).

Proposition is a consequence of several facts from algebraic topology. For these we refer to [1] and keep to notations introduced in [1].

PROOF OF PROPOSITION. Consider singular homology modules, the scalar ring being $\mathbb{Z}/2$ — the ring of integers mod 2. Assume that $f(X) \neq X$ and find $u \in X - f(X)$. Obviously $H_n(f) : H_n(X) \longrightarrow H_n(X, X - u)$ is a zero-homomorphism and by homotopy

(2)
$$H_n(\mathrm{id}): H_n(X) \to H_n(X, X-u)$$

is a zero-homomorphism as well. On the other hand $H_n(X) = \mathbb{Z}/2$ (cf [1], (22.30)) and the desired contradiction results from the fact that (2) is an isomorphism. This follows from the commutative diagram preceding (22.24) in [1]. In this diagram we put A = X, $B = \{u\}$. It follows that $\Gamma A \cong \mathbb{Z}/2 \cong \Gamma B$, r is an isomorphism and $j_B^A = H_n$ (id). The diagram mentioned above may be given the following form

 j_A , j_B being isomorphisms (cf. [1], (22.24), (22.1)). Hence (2) is an isomorphism and Proposition is proved.

NOTE 1. By means of index theory Proposition is proved in [2] (II, Theorem 18,2) under the additional assumption of orientability of X.

PROOF OF THEOREM. Choose any Riemannian form ω on X. ω induces a metric on X and a norm on TX (on $T_w X$ for any $w \in X$). For any $v \in X$, $s \in R$ and T > 0 there exists a solution x = F(v, s) of (1) on $\langle s - T, \infty \rangle$ such that x(t) = v for $t \in \langle s - T - 1, s - T \rangle$ (x is defined on $\langle s - T - 1, \infty \rangle$ and fulfills (1) on $\langle s - T, \infty \rangle$). F(v, s)(t) depends continuously on (v, t) and F(v, s)(s - T) = v for $v \in X$. Define $f: X \to X$ by f(v) = F(v, s)(s). By Proposition f(X) = X. Fix $u \in X$, $s \in R$. For any T > 0 there

exists a solution $x_{[T]}$ of (1) on $\langle s - T, \infty \rangle$ such that $x_{[T]}(s) = u$. As X is compact and g is continuous, for any compact interval $\langle a, b \rangle \subset R$, g is bounded on $X \times X \times \langle a, b \rangle$ and the set of all

$$x_{[T]}|_{\langle a,b\rangle}, T \geq \max(0,s-a)$$

(solutions $x_{[T]}$ restricted to $\langle a, b \rangle$) is compact (equicontinuous).

Hence there exists such a sequence $T_k \to \infty$, k = 1, 2, 3, ... and $x: R \to X$ that

 $x_{[T_k]} \to x$ uniformly on any compact interval $\langle a, b \rangle$,

 $k \to \infty$. Obviously x is a global solution of (1) and x(s) = u. Proof of Theorem is complete.

Note 2. It is sufficient to assume that g is continuous as there exist g_j , j=1,2,3 ... of class $C^{(1)}$ such that $g_j \to g$ for $j \to \infty$, the convergence being uniform on $X \times X \times J$ for any compact interval J. The procedure works for functional differential equations on X in case that there is guaranteed local existence of solutions, uniqueness, prolongability of solutions for $t \to +\infty$, continuous dependence of solutions on initial condition and equicontinuity of solutions. Again the result may be extended by passing to a limit.

NOTE 3. In some cases there passes just a unique global solution through any $u \in X$ at any $s \in R$. This was proved in [3] (Theorem 4) in case that X is a torus and $g(x_t, t) = g_1(x(t), t) + h(x_t, t)$, g_4 being a vectorfield and h being sufficiently small. The same holds for any compact manifold (the author intends to deduce it from Theorem in [4]).

REFERENCES

^[1] M. GREENBERG, Lectures on Algebraic Topology, Benjamin, New York-Amsterdam, 1967.

^[2] K. O. FRIEDRICHS, Lectures on Topology, New York University, Institute for Mathematics and Mechanics (mimeographed).

^[3] J. KURZWEIL, Invariant Manifolds for Flows, Diff. Equations and Dynamical Systems, Proc. Int. Symp., Academic Press, 1967, pp. 431-468.

^[4] J. Kurzweil, Invariant Manifolds I, Comm. Matem. Univ. Carol., 11, 1970, pp. 309-336.