SULLA METRIZZABILITÀ (*)

di GIANNI FACINI (a Trieste) (**)

SOMMARIO. - Una condizione necessaria e sufficiente per la metrizzabilità di uno spazio topologico.

SUMMARY. - A necessary and sufficient condition for a topological space to be metrizable.

Come è noto, il problema della caratterizzazione topologica degli spazi topologici metrizzabili è stato risolto prima che gli spazi uniformi venissero definiti in maniera generale.

In questa nota mostro come dalla caratterizzazione uniforme degli spazi topologici metrizzabili si tragga una caratterizzazione topologica.

1. Notazioni.

Useremo le seguenti notazioni:

E spazio topologico;

x, y, z punti di E;

 V_x intorno di x;

 $\delta = (V_x)_{x \in E}$ tale che $x \in V_y \Longrightarrow y \in V_x$ (scelta d'intorni);

^(*) Pervenuto in Redazione il 19 dicembre 1969.

^(**) Indirizzo dell'Autore: Istituto di Matematica dell'Università — Piazzale Europa 1 — 34100 Trieste.

$$\delta^2 = (\bigcup_{y \in V_x} V_y)_{x \in E} \quad (quadrato \ di \ \delta);$$

I insieme di indici;

i elemento di I;

N insieme dei numeri naturali;

n elemento di N;

 $V_{x,i}$ intorno di x;

 $(\mathcal{S}_i)_{i \in I} = ((V_{x,i})_{x \in E})_{i \in I}$ famiglia indiciata in I di scelte;

 $V_{x,n}$ intorno di x;

 $(\mathcal{O}_n)_{n \in N} = ((V_{x,n})_{x \in E})_{n \in N}$ famiglia indiciata in N di scelte;

$$U_n = \bigcup_{x \in E} (|x| \times V_{x,n});$$

 \mathcal{U} filtro su $E \times E$ generato da $\{U_n \mid n \in N\}$;

 Δ diagonale di $E \times E$.

Inoltre un termine che si distingua graficamente da uno di quelli qui sopra elencati solo per un contrassegno si suppone dotato delle stesse proprietà del termine simile. Così per esempio \mathcal{S}' è una scelta d'intorni (in generale diversa da \mathcal{S}) e V_x' è un intorno di x (in generale diverso da V_x).

2. Un teorema sulla metrizzabilità.

DEF. La famiglia $(\mathcal{S}_i)_{i \in I}$ di scelte si dice basica per E se $(V_{x,i})_{i \in I}$ è base d'intorni di x per ogni $x \in E$.

Def. $\delta > \delta'$ se $V_x \subset V_x'$ per ogni $x \in E$.

DEF. $(\mathcal{O}_n)_{n \in N}$ si dice « di Nagata-Smirnov » se $\mathcal{O}_{n+1}^2 > \mathcal{O}_n$ per ogni $n \in N$.

TEOREMA: Condizione necessaria a sufficiente perchè lo spazio topologico E sia metrizzabile è che esista una famiglia di Nagata-Smirnov basica per E.

Per dimostrare questo teorema osserviamo che uno spazio topologico è metrizzabile se e solo se la sua topologia è compatibile con una uniformità con base numerabile di adiacenze.

D'altra parte si vede immediatamente che uno spazio la cui topologia è compatibile con una uniformità avente base numerabile ammette una famiglia basica di Nagata-Smirnov.

Basterà quindi dimostrare il seguente

LEMMA: Se esiste una famiglia di Nagata-Smirnov $(\mathcal{S}_n)_{n\in\mathbb{N}}$ basica su E, allora \mathcal{U} è il filtro delle adiacenze di una uniformità compatibile con la topologia di E.

DIMOSTRAZIONE:

- 1) $\Delta \subset U_n$ per ogni $n \in \mathbb{N}$. È evidente.
- 2) $U_n = \stackrel{-1}{U_n}$. Infatti $(x, y) \in U_n \Longrightarrow y \in V_{x,n} \Longrightarrow x \in V_{y,n} \Longrightarrow > \longrightarrow (y, x) \in U_n$.
- 3) Per ogni $n \in N$ è $\overset{2}{U_{n+1}} \subset U_n$. Infatti: $(x,z) \in \overset{2}{U_{n+1}} \Longrightarrow (\exists \ y) \ (y \in E \ et \ (x,y) \in U_{n+1} \ et \ (y,z) \in U_{n+1}) \Longrightarrow (\exists \ y) \ (y \in E \ et \ y \in V_{x,n+1}) \Longrightarrow z \in V_{x,n} \Longrightarrow (x,z) \in U_n$.
 - 4) Da 1), 2) e 3) segue che $\mathcal U$ è un filtro di adiacenze.
- 5) La topologia dedotta dalla uniformità $\mathcal U$ ha per base di intorni in un punto x la famiglia $(U_n(x))_{n\in N}$.

Ma $U_n(x) = V_{x,n}$ e per ipotesi $(V_{x,n})_{n \in N}$ è base di intorni di x per la topologia data inizialmente su E.