One-ended 3-manifolds without locally finite toric decompositions

Sylvain Maillot

Abstract

We introduce a class of one-ended open 3-manifolds which can be 'recursively' defined from two compact 3-manifolds, and construct examples of manifolds in this class which fail to have a toric decomposition in the sense of Jaco-Shalen and Johannson.

Keywords: Open 3-manifolds, JSJ splitting, Orbifolds.
MS Classification 2020: 57M50.

1. Introduction

To start off, we introduce a class \mathcal{C} of open 3 -manifolds which we view as a candidate for 'the smallest class of open 3-manifolds for which the classification problem is interesting.' It is large enough so that exotic phenomena due to the topology at infinity can occur; yet it is small enough so that algorithmic problems - in particular the homeomorphism problem - make sense, and seem to have a decent chance of being decidable.

Throughout the paper we work in the PL category. Let $\left(X, Y, F_{+}, F_{-}, f, g\right)$ be a 6 -tuple with the following properties:

- Both X and Y are connected, orientable, compact 3-manifolds.
- ∂X is connected.
- ∂Y has exactly two components, which are F_{+}and F_{-}.
- f is an orientation-reversing homeomorphism from ∂X to F_{-}.
- g is an orientation-reversing homeomorphism from F_{+}to F_{-}.

To such a 6 -tuple, we associate an open 3 -manifold obtained by gluing together X and an infinite sequence of copies of Y using the homeomorphisms f, g. More precisely, we set

$$
M\left(X, Y, F_{+}, F_{-}, f, g\right)=X \cup_{f_{0}} Y \times\{0\} \cup_{g_{0}} T \times\{1\}_{g_{1}} Y \times\{2\} \cup_{g_{2}} \cdots
$$

where the gluing homeomorphisms are given by $f_{0}(x)=(f(x), 0)$ for all $x \in X$, and $g_{n}(x, n)=(g(x), n+1)$ for all $x \in Y$ and $n \in \mathbf{N}$. We denote by \mathcal{C} the class of 3-manifolds obtained in this way.

Remark 1.1. Every 3-manifold in \mathcal{C} is orientable, connected, and one-ended. Moreover, it has an exhaustion by compact submanifolds with connected boundary of fixed genus. We can call genus of a manifold $M \in \mathcal{C}$ the minimal genus of ∂X in a presentation of M as $M\left(X, Y, F_{+}, F_{-}, g, f\right)$.
Remark 1.2. We can fix triangulations of X and Y with respect to which f and g are simplicial, so that algorithmic problems are well-defined. For the same reason, there are countably many manifolds in \mathcal{C} up to homeomorphism.
Remark 1.3. The class \mathcal{C} contains the original Whitehead manifold [13] as well as many other contractible 3-manifolds not homeomorphic to \mathbf{R}^{3}. It does not contain those with infinite genus. Nor does it contain all Whitehead manifolds of genus 1 , since there are uncountably many of those, as shown by McMillan [9].
Remark 1.4. One can define in a similar way a class \mathcal{C}_{n} for each dimension n, so that $\mathcal{C}=\mathcal{C}_{3}$. This construction is a special case of that of [8] of manifolds associated to a topological automaton. The automaton has two states corresponding to X, Y. Thus the classification for \mathcal{C}_{2} follows from the main theorem of [8]. The one-ended case, however, is much simpler than that; it is a straightforward consequence of the Kerekjarto classification theorem. Indeed, an orientable, one-ended surface is classified by its genus $h \in[0,+\infty]$, which is easily seen to be $+\infty$ if Y has positive genus, and equal to the genus of X otherwise.

In this paper, we are interested in the question of which, among the exotic phenomena concerning open 3 -manifolds, occur in the class \mathcal{C}. We already mentioned that \mathcal{C} contains contractible manifolds which are not homeomorphic to \mathbf{R}^{3}. For instance, the original Whitehead manifold has genus 1 , the manifold X being a solid torus, and Y being the exterior of the Whitehead link in S^{3}.

Likewise, the manifold M_{1} constructed by the author in [7] is easily seen to belong to \mathcal{C}. It has genus 1 , the manifold X being again a solid torus, and Y being the product of a circle by a compact orientable surface of genus 1 with two boundary components. This manifold has the property that it is impossible to split it as a connected sum of prime manifolds, even allowing infinitely many factors, and allowing the factors to be noncompact. Note that the first such example was constructed by P. Scott [12]. Scott's example has infinitely many ends (in fact, its space of ends is a Cantor set due to the treelike nature of the construction.) Thus it does not belong to \mathcal{C}. Note also that any example of this phenomenon in the class \mathcal{C} needs to have genus at least 1 . Indeed, one can construct a spherical decomposition of any manifold of genus 0 in \mathcal{C} by starting with the boundary components of the copies of Y and adding spheres in X and the copies of Y to split them into (punctured) prime compact manifolds.

The manifold M_{3} from [7] does not have a locally finite splitting along 2tori into submanifolds that are Seifert-fibered or atoroidal, thus showing that
the theory of Jaco-Shalen [4] and Johannson [5] is difficult to extend to open 3 -manifolds. This construction was inspired by Scott's work, so M_{3} also has a Cantor set's worth of ends, and does not belong to the class \mathcal{C}. The goal of this paper is to give an example of a manifold in \mathcal{C} with the same property.

In order to state the result, we recall some terminology. Let M be an orientable 3-manifold. It is irreducible if every embedded 2 -sphere in M bounds a 3-ball. An embedded torus in M is incompressible if it is π_{1}-injective. Following W. Neumann and G. Swarup [10], we call an embedded torus T in M canonical if it is incompressible and for every embedded, incompressible torus $T^{\prime} \subset M$, there is an embedded torus $T^{\prime \prime}$ isotopic to T^{\prime} such that $T \cap T^{\prime \prime}=\emptyset$.

Definition 1.5. Let $\mathcal{T}=\left\{T_{i}\right\}_{i \in I}$ be a family of pairwise disjoint canonical tori in M. We say that \mathcal{T} is complete if every canonical torus in M is isotopic to T_{i} for some $i \in I$.

Theorem 1.6. There is an open 3 -manifold M_{0} in the class \mathcal{C} with the following properties.
i. M_{0} is irreducible.
ii. Every complete family of canonical tori in M_{0} fails to be locally finite.

The key to constructing such a manifold is to ensure that there is a sequence $\left\{T_{n}\right\}$ of pairwise nonisotopic canonical tori in M_{0} which fails to be locally finite no matter how the representatives of the various isotopy classes are chosen, because they are trapped by some compact subset $K \subset M_{0}$ that has to intersect all of them. In the paper [7], the tori T_{n} are pairwise nonhomologous, and separate different ends of the manifold M_{3}. By contrast, M_{0} has only one end, and its tori T_{n} are all null-homologous, making it harder to prove that they are not isotopic.

In order to construct M_{0}, we first construct a 3 -orbifold \mathcal{O}_{0} with similar properties, interpreted in the orbifold sense. It is irreducible, and contains a sequence $\left\{P_{n}\right\}$ of pillows, i.e. spheres with four conical points of order 2 , which is trapped by some compact set. The orbifold \mathcal{O}_{0} has underlying space \mathbf{R}^{3} and is designed so that it is easy to see that the pillows P_{n} are pairwise nonisotopic. Then the manifold M_{0} is constructed as a 2-fold cover of \mathcal{O}^{3}. The tori T_{n} are taken to be the preimages of the pillows P_{n} under the covering map.

The structure of the paper is as follows: in Section 2 we construct the 3 -orbifold \mathcal{O}_{0} and prove its various properties. In Section 3 we will prove Theorem 1.6 by constructing the manifold M_{0} and showing that it has the required properties.

2. The orbifold case

2.1. Definition of the orbifold \mathcal{O}_{0}

Throughout the paper, we work in either the PL category or the smooth category, and all manifolds and orbifolds are assumed to be connected and orientable. For terminology about 3 -orbifolds, we refer to [1].

Let \mathcal{O} be a 3 -orbifold. Two 2 -suborbifolds F, F^{\prime} are isotopically disjoint if there is a suborbifold $F^{\prime \prime}$ isotopic to F^{\prime} and disjoint from F. An incompressible toric suborbifold is canonical if it is isotopically disjoint from every incompressible toric 2 -suborbifold.

Let K be a compact subset of \mathcal{O}. A sequence $\left\{F_{n}\right\}$ of 2 -suborbifolds is said to be trapped by K if no 2 -suborbifold isotopic to any F_{n} is disjoint from K. Thus, it is impossible to make $\left\{F_{n}\right\}$ locally finite by choosing different representatives of the various isotopy classes.

Let B be a 3 -manifold homeomorphic to the 3 -ball and let α (resp. c) be a properly embedded arc (resp. circle) in B. Assume that α and c are disjoint. Then we say that $\alpha \cup c$ is trivial (resp. a Hopf tangle) if α is trivial and c bounds an embedded disk disjoint from α (resp. meeting α transversally in a single point.) To justify the terminology, note that if another 3-ball B^{\prime} is glued to B and α is extended to an unknot c^{\prime} in $B \cup B^{\prime}$ in the obvious way, then $c \cup c^{\prime}$ is an unlink (resp. a Hopf link.)

We now come to our main construction: throughout the article we let \mathcal{O}_{0} be a 3 -orbifold with the following properties: its underlying space is Euclidean 3 -space. Its singular locus $\Sigma_{\mathcal{O}_{0}}$ consists in three unknotted, properly embedded lines L_{0}, L_{12}, and L_{34}, and four sequences of embedded circles $\left(c_{i}^{n}\right)$ with $n \in \mathbf{N}$ and $i \in\{1,2,3,4\}$. The general relative positions of the various components of $\Sigma_{\mathcal{O}_{0}}$ are shown in Figure 1. For each $n \in \mathbf{N}, c_{1}^{n} \cup c_{2}^{n} \cup c_{3}^{n} \cup c_{4}^{n}$ is a four component link contained in a 'box' B_{n} whose intersection with $L_{12} \cup L_{34}$ consists of a trivial 4-tangle $\alpha_{1}^{n} \cup \alpha_{2}^{n} \cup \alpha_{3}^{n} \cup \alpha_{4}^{n}$, with $\alpha_{1}^{n} \cup \alpha_{2}^{n} \subset L_{12}$ and $\alpha_{3}^{n} \cup \alpha_{4}^{n} \subset L_{34}$.

Furthermore, we will assume that in each box, the circles c_{i}^{n} and the arcs α_{j}^{n} satisfy the following properties:
i. each c_{i}^{n} is unknotted;
ii. $c_{1}^{n} \cup c_{2}^{n}, c_{2}^{n} \cup c_{3}^{n}, c_{3}^{n} \cup c_{4}^{n}$, and $c_{4}^{n} \cup c_{1}^{n}$ are Hopf links;
iii. $c_{1}^{n} \cup c_{3}^{n}$ and $c_{2}^{n} \cup c_{4}^{n}$ are unlinks;
iv. for each $(i, j) \in\{1,2,3,4\}^{2}, c_{i} \cup \alpha_{j}$ is trivial if $i=j$, and a Hopf tangle otherwise.

It is straightforward to see that such configurations exist, though they are far from being unique. Throughout the text, we assume that a choice has been

Figure 1: General configuration of $\Sigma_{\mathcal{O}_{0}}$
made once and for all. Moreover, the choice is the same for all values of n, since we want the double manifold cover of \mathcal{O}_{0} to belong to the class \mathcal{C}.

What matters is not the precise nature of the content of the boxes, but rather the values of the linking numbers of the various components of $\Sigma_{\mathcal{O}_{0}}$; those are summarized by the graph depicted on Figure 2, with the convention that the linking number between two components is zero if there is no edge drawn between them, and one otherwise.

Figure 2: Linking numbers of components of $\Sigma_{\mathcal{O}_{0}}$
Finally, we assume that \mathcal{O}_{0} is a so-called π-orbifold, i.e. each nontrivial local group is cyclic of order 2 .

Lemma 2.1. \mathcal{O} is irreducible.
Proof. Let $S \subset \mathcal{O}$ be a 2 -suborbifold of positive Euler characteristic. Then $|S|$ is a 2 -sphere intersecting $\Sigma_{\mathcal{O}_{0}}$ transversally. For homological reasons, the number of singular points of S is even. Thus S is either a nonsingular 2 -sphere or a football. Furthermore, by Alexander's Theorem, $|S|$ bounds a 3 -ball $B \subset \mathbf{R}^{3}$.

Suppose that S is nonsingular. If B contains a singular point, then it contains some compact component c_{i}^{n} of $\Sigma_{\mathcal{O}_{0}}$. Since c_{i}^{n} is unknotted, it bounds a disk $D \subset \operatorname{Int} B$. Either L_{12} or L_{34} has linking number one with c_{i}^{n}. Thus
for L equal to L_{12} or L_{34} we have $D \cap L \neq \emptyset$, hence $B \cap L \neq \emptyset$. Since L is noncompact, this contradicts the assumption that S is nonsingular. Therefore, B is nonsingular.

Suppose now that S has two singular points. Those two points must belong to either L_{12} or L_{34}. By symmetry we may assume it is L_{12}. Then $B \cap$ L_{12} is an unknotted arc. We need to show that $B \cap \Sigma_{\mathcal{O}_{0}}$ is in fact equal to this arc. Arguing by contradiction, assume that some $c_{i_{0}}^{n}$ is contained in B. Arguing as above using linking numbers, we can show that for every i, c_{i}^{n} is contained in Int B. Thus for the same reason L_{34} intersects B, leading to a contradiction.

2.2. The pillows P_{n} and their first properties

Let us define the sequence of pillows $\left(P_{n}\right)$ and the compact subset K^{\prime} that traps them. As shown in Figure 3 each P_{n} meets L_{12} and L_{34} both twice; the 3 -ball bounded by $\left|P_{n}\right|$ contains a given box B_{m} if and only if $m \leq n$; finally, K^{\prime} is a 3 -ball meeting each of L_{0}, L_{12}, and L_{34} in an unknotted arc, and for every n the intersection of K^{\prime} with P_{n} is a nonsingular disk.

For future reference, we let Π denote the properly embedded plane shown in Figure 3 and H_{0}, H_{1} the closed half-spaces bounded by Π, so that $L_{0} \subset H_{0}$ and H_{1} contains all other components of $\Sigma_{\mathcal{O}_{0}}$.

Figure 3: The canonical pillows P_{n}, the compact set K^{\prime}, and the plane Π
For future reference, for each n we let U_{n} denote the 3-ball bounded by $\left|P_{n}\right|$ and set $X_{n}:=\left|\mathcal{O}_{0}\right| \backslash \operatorname{Int} B_{n}$. Thus X_{n} is noncompact and $\partial X_{n}=P_{n}$.

We collect in the next proposition some facts about the pillows P_{n} which are fairly easy to prove.

Lemma 2.2. i. Each pillow P_{n} is incompressible.
ii. The pillows P_{n} are pairwise nonisotopic.
iii. The pillows P_{n} are trapped by K^{\prime}.

Proof. Proof of assertion (i): If some P_{n} were compressible, then P_{n} would bound a solid pillow or be contained in a discal 3 -suborbifold. Now U_{n} contains at least four closed components of $\Sigma_{\mathcal{O}_{0}}$, so this is impossible.

Assertion (ii) follows immediately from the fact that for $n \neq m$, the numbers of closed components of $\Sigma_{\mathcal{O}_{0}}$ contained in U_{n} and U_{m} are different.

Proof of assertion (iii): let n be a natural number. Seeking a contradiction, we assume there is a pillow P_{n}^{\prime} isotopic to P_{n} such that $P_{n}^{\prime} \cap K^{\prime}=\emptyset$. By Alexander's Theorem, the 2 -sphere $\left|P_{n}^{\prime}\right|$ bounds a 3 -ball U_{n}^{\prime} in \mathbf{R}^{3}. There are two cases:

Case $1 K^{\prime}$ is contained in U_{n}^{\prime}. Then $\left|P_{n}^{\prime}\right|$ is homologous to ∂K^{\prime} in $\mathbf{R}^{3} \backslash \operatorname{Int} K^{\prime}$. In this case, P_{n}^{\prime} must hit L_{0}, which contradicts our assumption that P_{n}^{\prime} is isotopic to P_{n}.

Case $2 U_{n}^{\prime}$ is disjoint from K^{\prime}. Let L_{1}, L_{2} (resp. L_{3}, L_{4}) be the connected components of $L_{12} \backslash \operatorname{Int} K^{\prime}$ (resp. $L_{34} \backslash \operatorname{Int} K^{\prime}$.) Again by homological reasons, and using the fact that P_{n}^{\prime} is isotopic to P_{n}, among the four singular points of P_{n}^{\prime}, two must lie on some L_{i} with $1 \leq i \leq 2$, and the other two on some L_{j} with $3 \leq j \leq 4$. Now $\operatorname{Int} U_{n}^{\prime}$ contains all c_{i}^{n} for $1 \leq i \leq 4$. As we have already seen several times, this leads to a contradiction.

Remark 2.3. The argument used to prove Lemma 2.1 shows that every X_{n} is irreducible.

2.3. The pillows P_{n} are canonical

If V is a solid torus and V^{\prime} a solid torus contained in V, then the geometric winding number of the pair $\left(V, V^{\prime}\right)$, denoted by $\operatorname{gw}\left(V, V^{\prime}\right)$, is the smallest natural number n such that there is a meridian disk D of V with the property that $D \cap V^{\prime}$ has n connected components. A fundamental fact, due to Schubert, is the multiplicativity of gw:

Lemma 2.4 (Schubert [11]). Let $V, V^{\prime}, V^{\prime \prime}$ be solid tori such that $V \subset V^{\prime} \subset V^{\prime \prime}$. Then

$$
\operatorname{gw}\left(V^{\prime \prime}, V\right)=\operatorname{gw}\left(V^{\prime \prime}, V^{\prime}\right) \cdot \operatorname{gw}\left(V^{\prime}, V\right)
$$

If V is a solid torus and c is an embedded circle in V, then the geometric winding number of the pair $\left(V, V^{\prime}\right)$ where V^{\prime} is a tubular neighbourhood of c does not depend on the choice of V^{\prime}. We shall denote this number by $\mathrm{gw}(V, c)$

Let c, c^{\prime} be two disjoint unknots in \mathbf{R}^{3}. Choose two solid tori V, V^{\prime} such that $V \cap V^{\prime}=\emptyset$ and V (resp. V^{\prime}) is a tubular neighborhood of c (resp. c^{\prime}.) Viewing \mathbf{R}^{3} as S^{3} minus a point ∞, the complement of $\operatorname{Int} V$ in S^{3} is also a solid torus, which we denote by V_{1}. By hypothesis, we have $V^{\prime} \subset V_{1}$. We shall denote by $\operatorname{gw}\left(c^{*}, c^{\prime}\right)$ the geometric winding number of the pair $\left(V_{1}, V\right)$. Again, this does not depend on the various choices. If c is an unknot in \mathbf{R}^{3} and V is a solid torus contained in $\mathbf{R}^{3} \backslash c$, then $\operatorname{gw}\left(c^{*}, V\right)$ is defined similarly.

Note that if $c \cup c^{\prime}$ is an unlink (resp. a Hopf link), then $\operatorname{gw}\left(c^{*}, c^{\prime}\right)$ equals zero (resp. one). Hence all geometric winding numbers involving compact components of $\Sigma_{\mathcal{O}_{0}}$ are determined by our construction.

By extension, we can define $\operatorname{gw}\left(L^{*}, c\right)$ when L is an unknotted properly embedded line in \mathbf{R}^{3} and c is an embedded circle in \mathbf{R}^{3} that misses L : in the one-point compactification $S^{3}=\mathbf{R}^{3} \cup\{\infty\}, L$ compactifies to a circle $L \cup\{\infty\}$. Let V be the complement of an open tubular neighborhood of this circle such that $c \subset V$. Then we set $\operatorname{gw}\left(L^{*}, c\right):=\operatorname{gw}(V, c)$. Again, all such numbers involving components of $\Sigma_{\mathcal{O}_{0}}$ are determined by the construction, and are equal to either zero or one. Likewise, if V^{\prime} is a solid torus which misses L, then $\operatorname{gw}\left(L^{*}, V^{\prime}\right)$ is defined as $\operatorname{gw}\left(V, V^{\prime}\right)$ for a suitable choice of V.

Lemma 2.5. Let V be a solid torus in $\left|\mathcal{O}_{0}\right|$ such that no point of ∂V is singular. Then Int V contains at most one component of $\Sigma_{\mathcal{O}_{0}}$. If it does, then this component is compact and homotopic to the core of V.
Proof. Assume that Int V contains some component of $\Sigma_{\mathcal{O}_{0}}$. Then this component is compact. Up to changing the notation, we may assume it is c_{1}^{n} for some n. For brevity, we drop the superscript n in the sequel.

Observe that $c_{1} \subset V \subset S^{3} \backslash L_{12}$. Hence by Lemma 2.4, we have gw $\left(L_{12}^{*}, c_{1}\right)=$ $\operatorname{gw}\left(L_{12}^{*}, V\right) \cdot \operatorname{gw}\left(V, c_{1}\right)$. Since $\operatorname{gw}\left(L_{12}^{*}, c_{1}\right)=1$ holds, we deduce $\operatorname{gw}\left(L_{12}^{*}, V\right)=$ $\operatorname{gw}\left(V, c_{1}\right)=1$. We also have $c_{1} \subset V \subset S^{3} \backslash L_{34}$. Since $\operatorname{gw}\left(L_{34}^{*}, c_{1}\right)=0$ and $\operatorname{gw}\left(V, c_{1}\right)=1$, Lemma 2.4 implies that $\operatorname{gw}\left(L_{34}^{*}, V\right)=0$.

Seeking a contradiction, assume that $c_{3} \subset V$. Then using the chain of inclusions $c_{3} \subset V \subset S^{3} \backslash L_{34}$ and the facts that $\operatorname{gw}\left(L_{34}^{*}, c_{3}\right)=1$ and $\operatorname{gw}\left(L_{34}^{*}, V\right)=0$ we get a contradiction. Hence $V \subset S^{3} \backslash c_{3}$. Using the chain $c_{1} \subset V \subset S^{3} \backslash c_{3}$ we obtain $\operatorname{gw}\left(c_{3}^{*}, V\right)=0$. The same argument applies, mutatis mutandis, to c_{4}.

Again we prove by contradiction that $c_{2} \not \subset V$: otherwise using the chain $c_{2} \subset V \subset S^{3} \backslash c_{3}$ and the fact that $\operatorname{gw}\left(c_{3}^{*}, c_{2}\right)=1$, Lemma 2.4 would lead to a contradiction.

By similar arguments, we exclude c_{3}^{m} and c_{4}^{m} for $m \neq n$ (using L_{34}), then c_{2}^{m} (using c_{3}^{m}), and finally c_{1}^{m} (using c_{4}^{m}.)

Lemma 2.6. For each $n \in \mathbf{N}, X_{n}$ does not contain any essential, properly embedded annular 2 -suborbifold.
Proof. Arguing by contradiction, we let A be such an annular 2-suborbifold. Thus A is either a nonsingular annulus or a disk with two singular points.

Case 1 Suppose that A is an annulus. An innermost disk argument shows that after an isotopy we may assume that $A \cap \Pi=\emptyset$. Then ∂A is a union of two circles. Viewed on P_{n}, these are parallel and have two singular points on each side. Let Y be the manifold obtained from $\left|H_{1} \cap X_{n}\right|$ by removing small open tubular neighborhoods of L_{12} and L_{34}. Then Y has a manifold compactification diffeomorphic to a product $F \times[0,1]$, where F is a sphere with four holes, and $F \times\{0\}$ is the image of a subset of P_{n}. Such a manifold does not contain any essential annulus with both boundary components in $F \times\{0\}$.

Since A is incompressible in Y, we deduce that it is boundary-parallel in Y. Let V be a parallelism region in Y between A and some annulus A^{\prime} in P_{n}. Let us show that no component of $\Sigma_{\mathcal{O}_{0}}$ lies in V. By Lemma $2.5, V$ contains at most one such component, say c_{1}^{m} for some $m>n$. For simplicity of notation, set $c_{i}:=c_{i}^{m}$. Let γ be a core of A^{\prime}. Then we apply Lemma 2.4 to the chain $\gamma \subset V \subset S^{3} \backslash c_{2}$: from $\operatorname{gw}(V, \gamma)=1$ and $\operatorname{gw}\left(c_{2}^{*}, \gamma\right)=0$ we deduce $\operatorname{gw}\left(c_{2}^{*}, V\right)=0$. Then Lemma 2.4 applied to $c_{1} \subset V \subset S^{3} \backslash c_{2}$ yields a contradiction. This finishes the proof of Lemma 2.6 in Case 1.

Case 2 Suppose that A is a disk with two singular points. Again, we may assume that A misses Π, and therefore lies in H_{1}. The intersection of X_{n} with $L_{12} \cup L_{34}$ consists of four properly embedded half-lines, which we denote by $L_{1}, L_{2}, L_{3}, L_{4}$ in such a way that for each $m>n$ and each $1 \leq i \leq 4, \alpha_{i}^{m}$ is contained in L_{i}.

By hypothesis, there exist two different indices i_{0}, j_{0} in $\{1,2,3,4\}$ such that A meets L_{i} if and only if $i \in\left\{i_{0}, j_{0}\right\}$. Let k_{0}, l_{0} be the two remaining indices. Let Y be the π-orbifold whose underlying space is obtained from $\left|H_{1} \cap X_{n}\right|$ by removing small open tubular neighborhoods of $L_{k_{0}}$ and $L_{l_{0}}$, and whose singular locus consists of $L_{i_{0}} \cup L_{j_{0}}$. Then Y compactifies as $F \times[0,1]$, with F an annulus (two-holed sphere) with two singular points, $F \times\{0\}$ corresponding to a subset of P_{n}.

As before, we deduce that A is parallel in Y to some disk $D \subset P_{n}$ with two singular points, which necessarily belong, one to $L_{i_{0}}$ and the other to $L_{j_{0}}$. Let B be the product region between A and D, this time viewed as a suborbifold of \mathcal{O}_{0}. Observe that B is a 3 -ball whose singular locus contains a trivial 2-tangle consisting of the union of a subarc of $L_{i_{0}}$ and a subarc of $L_{j_{0}}$. Since A is essential in X_{n}, $\operatorname{Int} B$ must in addition contain c_{i}^{m} for some $1 \leq i \leq 4$ and $m>n$.

Arguing as in the proof of the irreducibility of \mathcal{O}, we see that $\operatorname{Int} B$ contains c_{i}^{m} for all i; in particular it contains $c_{k_{0}}^{m}$. We deduce that $c_{k_{0}}^{m}$, being an unknot in the ball $|B|$, bounds a disk $D^{\prime} \subset|B|$. Such a disk must meet either $L_{k_{0}}$ or $L_{l_{0}}$. This contradiction completes the proof of Case 2.

At last we can prove the main result of this subsection:

Proposition 2.7. Every P_{n} is canonical.
Proof. Assume that P_{n} is not canonical. Let P_{n}^{\prime} be an incompressible toric 2-suborbifold of \mathcal{O}_{0} which cannot be isotoped off P_{n}. Since \mathcal{O} does not contain any turnover, P_{n}^{\prime} is a nonsingular torus or a pillow. Assume that P_{n}^{\prime} has been isotoped so as to intersect P_{n} transversally and minimally.

Since both P_{n} and P_{n}^{\prime} are incompressible, a component of $P_{n} \cap P_{n}^{\prime}$ is essential on P_{n} if and only if it is essential on P_{n}^{\prime}. Using the irreducibility of \mathcal{O}_{0} and a standard argument, one can remove any inessential intersection component between P_{n} and P_{n}^{\prime}. Hence, by our assumption of minimality, each component of $P_{n} \cap P_{n}^{\prime}$ is essential. As a consequence, some connected component A of $X_{n} \cap P_{n}^{\prime}$ is an annular 2-suborbifold, which is essential as a suborbifold of X_{n}. This contradicts Lemma 2.6.

3. The manifold M_{0}

In this section, we let $p: M_{0} \rightarrow \mathcal{O}_{0}$ be the only two-fold manifold cover of \mathcal{O}_{0}. In other words, M_{0} is the two-fold branched cover over \mathbf{R}^{3} with branching locus $\Sigma_{\mathcal{O}_{0}}$ and p is the canonical projection. As in the compact case, this cover can be constructed by splitting \mathcal{O}_{0} along a Seifert surface for $\Sigma_{\mathcal{O}_{0}}$, taking two copies of the resulting manifold, and gluing them appropriately. Alternatively, the orbifold fundamental group $\pi_{1} \mathcal{O}_{0}$ is (infinitely) generated by meridians, i.e. small circles around each component of $\Sigma_{\mathcal{O}_{0}}$. All meridians have order 2 . There is an index 2 normal subgroup Γ of $\pi_{1} \mathcal{O}_{0}$ which is the kernel of a homomorphism from $\pi_{1} \mathcal{O}_{0}$ to $\mathbf{Z} / 2 \mathbf{Z}$ sending all meridians to the nontrivial element. This group is torsion free, and $p: M_{0} \rightarrow \mathcal{O}_{0}$ is the corresponding manifold cover. We denote by $\tau: M_{0} \rightarrow M_{0}$ the involution such that $\mathcal{O}_{0}=M_{0} / \tau$.

By construction, \mathcal{O}_{0} is obtained by gluing K^{\prime} and countably many copies of some compact 3 -orbifold Y^{\prime} - the product of a 2 -sphere with six cone points with an interval - glued to each other 'in the same way'. Moreover, the preimage of K^{\prime} by p is connected and has connected boundary, and the preimage of each copy of Y^{\prime} is connected and has exactly two boundary components. It follows that M_{0} belongs to the class \mathcal{C} defined in the introduction.

For each $n \geq 0$, set $T_{n}:=p^{-1}\left(P_{n}\right)$ and $Y_{n}:=p^{-1}\left(X_{n}\right)$. Thus each T_{n} is an embedded 2-torus in M. Set $K:=p^{-1}\left(K^{\prime}\right)$. Then K is a compact subset of M. We need to prove that M has all the properties stated in Theorem 1.6.

Since \mathcal{O}_{0} is irreducible, M_{0} is irreducible ([1, Theorem 3.23].) For the same reason, Remark 2.3 implies that Y_{n} is irreducible for every n. By the equivariant Dehn Lemma, incompressibility of every T_{n} follows from Lemma 2.2(i).

Lemma 3.1. The tori T_{n} are pairwise nonisotopic.
Proof. Assume that there exist n, m with $n \neq m$ such that T_{m} is isotopic to
T_{n}. By [2, Prop. 4.5], there is a τ-equivariant isotopy. Hence P_{m} is isotopic to P_{n}, contradicting Lemma 2.2(ii).

Our next goal is to show that every T_{n} is canonical. For this we need a lemma.

Lemma 3.2. There is no properly embedded essential annulus in Y_{n}.
Proof. Put a τ-invariant Riemannian metric on Y_{n} with mean-convex boundary. Arguing by contradiction, we assume that Y_{n} contains a properly embedded essential annulus. Let A have least area among such annuli. Set $A^{\prime}:=\tau(A)$. If $A \cap A^{\prime}=\emptyset$ or $A=A^{\prime}$, then $p(A)$ is an annular 2-suborbifold in X_{n}. Thus by Lemma 2.6, we deduce that $p(A)$ is inessential. This implies that A is inessential, contradicting our hypothesis.

Hence by the Meeks-Yau trick we may assume that A and A^{\prime} intersect transversally in a nonempty disjoint union of curves and arcs. Since both A and A^{\prime} are essential, a curve or arc is essential on A if and only if it is essential on A^{\prime}.

If there exists an inessential curve in $A \cap A^{\prime}$, we let D be a disk of minimal area on A or A^{\prime} bounded by such a curve. Note that D is automatically innermost. Thus a classical exchange/roundoff argument leads to a contradiction (the disk exchange can be realized by an isotopy because Y_{n} is irreducible.)

If there is an inessential arc in $A \cap A^{\prime}$, we can argue similarly using a disk D of minimal area contained in A or A^{\prime} and whose boundary is the union of such an arc and an arc in ∂Y_{n}. In order to ensure that the disk exchange can be realized by an isotopy, we use the irreducibility of Y_{n} and the incompressibility of ∂Y_{n}.

Suppose there is an essential curve in $A \cap A^{\prime}$. Let γ be such a curve. Pick a basepoint on γ and consider the covering space Y_{γ} of M whose fundamental group is the infinite cyclic group generated by γ. Let \tilde{A} and \tilde{A}^{\prime} be lifts to Y_{γ} of A and A^{\prime} respectively. Observe that the inclusions of \tilde{A} and \tilde{A}^{\prime} in Y_{γ} are homotopy equivalences. In particular, \tilde{A} and \tilde{A}^{\prime} are incompressible.

Sublemma 3.3. i. The two boundary components of \tilde{A} lie on distinct components of ∂Y_{γ}.
ii. The same property holds for \tilde{A}^{\prime}.

Proof. It suffices to prove the first point. We argue by contradiction, letting F be a component of ∂Y_{γ} containing all of $\partial \tilde{A}$. Observe that F is an open annulus whose inclusion in Y_{γ} is a homotopy equivalence. Hence there is an annulus $A^{\prime \prime}$ contained in F and such that $\partial A^{\prime \prime}=\partial \tilde{A}$. Thus $T:=\tilde{A} \cup A^{\prime \prime}$ is an embedded torus. Since $\pi_{1}\left(Y_{\gamma}\right)$ is cyclic, T is compressible. As T contains an incompressible annulus, it does not lie in a 3 -ball. Therefore, T bounds a solid
torus V, which is a parallelism region between \tilde{A} and $A^{\prime \prime}$. In particular, \tilde{A} is isotopic to $A^{\prime \prime}$ relative to the boundary. Projecting such an isotopy to Y_{n} leads to a contradiction with the fact that A is essential. This completes the proof of Sublemma 3.3.

Note that in the previous discussion, γ was an arbitrary essential curve of intersection between A and A^{\prime}. Now we make a more specific choice of γ : we assume that some annulus cobounded by γ and some boundary component of A or A^{\prime} has least possible area. Without loss of generality, we assume that such an annulus, called A_{1}, is contained in A. We let A_{2} be the subannulus of A whose boundary is the union of γ and the other component of ∂A, and A_{3}, A_{4} be the annuli such that $A_{3} \cap A_{4}=\gamma$ and $A_{3} \cup A_{4}=A^{\prime}$.

We set $A_{5}:=A_{1} \cup A_{3}$ and $A_{6}:=A_{1} \cup A_{4}$. Then A_{5} and A_{6} are properly embedded annuli in X_{n}. As before we consider lifts \tilde{A}_{5} and \tilde{A}_{6} of those annuli to Y_{γ}. By the second assertion of Sublemma 3.3, at least one of \tilde{A}_{5} and \tilde{A}_{6} has its two boundary components on different components of ∂Y_{γ}. Assume \tilde{A}_{5} has this property. Then A_{5} is essential: otherwise one could lift a boundaryparallelism region for A_{5} to M_{γ} and obtain one for \tilde{A}_{5}. Now by choice of A_{1}, the area of A_{5} is less than or equal to that of A, and by rounding the corner, we obtain an essential annulus which contradicts the minimizing property of A.

Thus we are left with the case where $A \cap A^{\prime}$ contains an essential arc.
Sublemma 3.4. There are at least two distinct essential arcs in $A \cap A^{\prime}$.
Proof. Let γ_{1}, γ_{2} denote the boundary components of A and γ_{3}, γ_{4} denote those of A^{\prime}. Thus γ_{1} (resp. γ_{3}) is isotopic to γ_{2} (resp. γ_{4}) on T_{n}. If $A \cap A^{\prime}$ consists of only one essential arc α, then there are only two points in $\partial A \cap \partial A^{\prime}$. If γ is not isotopic to γ_{3}, then $\gamma_{1} \cap \gamma_{3}$ is nonempty, and so are $\gamma_{1} \cap \gamma_{4}, \gamma_{2} \cap \gamma_{3}$, and $\gamma_{2} \cap \gamma_{4}$, resulting in a contradiction.

Hence the circles γ_{i} are all pairwise isotopic, and the two intersection points belong to the same two arcs, which means that α is inessential, again a contradiction.

Choose as basepoint an endpoint of some arc in $A \cap A^{\prime}$ and let Y_{T} be the covering space of Y_{n} such that $\pi_{1}\left(Y_{T}\right)=\pi_{1}\left(T_{n}\right)$. Let U_{n} be a torus component of ∂Y_{T} whose projection is T_{n}, the said projection being a homeomorphism. Let \tilde{A} and \tilde{A}^{\prime} be lifts to Y_{T} of A and A^{\prime} respectively, which both meet U_{n}.

Sublemma 3.5. i. The two components of $\partial \tilde{A}$ lie on distinct components of ∂Y_{T}.
ii. The same holds for \tilde{A}^{\prime}.

Proof. Again we only have to prove the first statement. Arguing by contradiction, assume both components of $\partial \tilde{A}$ belong to the same component of ∂Y_{T}.

By construction, this component is U_{n}. Then there is an annulus $A^{\prime \prime} \subset U_{n}$ such that $\partial A^{\prime \prime}=\partial \tilde{A}$. Set $T=A^{\prime \prime} \cup \tilde{A}$. Then T is an embedded torus in Y_{T}. By pushing T slightly we get $T^{\prime} \subset \operatorname{Int} Y_{T}$.

Suppose that T (or equivalently T^{\prime}) is compressible. Since $A^{\prime \prime}$ is not contained in any 3 -ball, neither is T, so T bounds a solid torus V. Since the core of $A^{\prime \prime}$ is a primitive element of U_{n}, V is a parallelism region between $A^{\prime \prime}$ and \tilde{A}. This shows that \tilde{A} is inessential, and so is A, a contradiction.

Hence T is incompressible. Note that $H_{2}\left(Y_{T}\right)$ is isomorphic to \mathbf{Z} and generated by the class of U_{n}. Thus T is either null-homologous or homologous to U_{n}.

If T is null-homologous, then T bounds some compact submanifold V. Since T is incompressible in Y_{T}, it is also incompressible in V, and by van Kampen's theorem, the induced homomorphisms $\pi_{1} T \rightarrow \pi_{1} V \rightarrow \pi_{1} Y_{T}$ are both injective. It follows that $\pi_{1} V$ is isomorphic to \mathbf{Z}^{2}, which is impossible with ∂V connected.

Thus T is homologous to U_{n}, and so is T^{\prime}. Let X be a compact submanifold whose boundary is $U_{n} \cup T^{\prime}$. Arguing as before, we see that $\pi_{1} X$ is isomorphic to \mathbf{Z}^{2}, which entails that X is homeomorphic to $T^{2} \times I$. Again this implies that \tilde{A} is boundary-parallel.

We can now finish the proof of Lemma 3.2. Since Y_{T} covers a noncompact manifold, it is itself noncompact. In particular, Y_{T} is not homeomorphic to $T^{2} \times I$. Thus, homology considerations as above show that U_{n} is the only torus in ∂Y_{T}. It follows that the boundary components γ, γ^{\prime} of \tilde{A} and \tilde{A}^{\prime} that do not lie on U_{n} are contained in some annulus component $A^{\prime \prime}$ of ∂Y_{T}, and are freely homotopic (and noncontractible) there. Hence there is a bigon between γ and γ^{\prime}, and we can use an exchange/roundoff argument to get a contradiction. This completes the proof of Lemma 3.2.

The fact that the tori T_{n} are canonical is now deduced in the same way as Proposition 2.7 followed from Lemma 2.6. Hence to prove Theorem 1.6, we only need to show the following statement:

Lemma 3.6. The compact subset $K=p^{-1}\left(K^{\prime}\right) \subset M$ traps each T_{n}.
Proof. Arguing by contradiction, we assume that for some n there exists an embedded torus $T^{\prime} \subset M \backslash K$ which is isotopic to T_{n}. Our aim is to show that after isotopy, T^{\prime} can be chosen to be invariant under τ. Then by [2, Proposition 4.5] T^{\prime} and T_{n} are equivariantly isotopic. This implies that the image of T^{\prime} is an embedded pillow in $\mathcal{O} \backslash K^{\prime}$ isotopic to P_{n}, which contradicts the fact that P_{n} is trapped by K^{\prime}.

Let F be a parallel copy of ∂K lying outside K, and X be the (compact) product submanifold whose boundary is the disjoint union of ∂K and F. Thus $X \cap K=\partial K$. Without loss of generality we may assume that $T^{\prime} \cap X=\emptyset$. We are going to use the Jaco-Rubinstein theory of PL minimal surfaces, as
modified in [6]. Choose a triangulation \mathcal{T} of M which is in general position with respect to T^{\prime} and invariant under τ. Let w_{0} be the weight of T^{\prime} with respect to \mathcal{T}. By repeatedly subdividing \mathcal{T} on X, with may assume that any normal surface which meets both components of ∂X has weight strictly greater than w_{0}, keeping the invariance under τ. Then choose a τ-invariant regular Jaco-Rubinstein metric in the sense of [6] so that the PL area is well-defined.

Let $T^{\prime \prime}$ be a normal torus of least PL area in the isotopy class of T^{\prime}. We claim that $T^{\prime \prime}$ misses K. Indeed, K, being the double branched cover of a 3 -ball with branching locus a trivial tangle, is a handlebody. The same is true for $K \cup X$. Since $T^{\prime \prime}$ is an incompressible torus, it cannot be contained in $K \cup X$. Hence if it met K, it would meet both boundary components of X, contradicting the fact that its weight is at most w_{0}.

Since the Jaco-Rubinstein metric we use is τ-invariant, $\tau T^{\prime \prime}$ also has least PL area in its isotopy class. Now $T^{\prime \prime}$ is isotopic to T_{n}, which is τ-invariant, so $\tau T^{\prime \prime}$ is isotopic to $T^{\prime \prime}$. By Jaco-Rubinstein's version [3] of a Theorem of Freedman-Hass-Scott, it follows that $T^{\prime \prime}$ and $\tau T^{\prime \prime}$ are equal or disjoint, i.e. $T^{\prime \prime}$ is invariant or equivariant. We still have to rule out the latter possibility.

Suppose that $T^{\prime \prime} \cap \tau T^{\prime \prime}=\emptyset$. Since $T^{\prime \prime}$ and $\tau T^{\prime \prime}$ are isotopic, they are parallel. Let Y be the compact submanifold bounded by $T^{\prime \prime} \cup \tau T^{\prime \prime}$ and diffeomorphic to $T^{2} \times I$. Note that Y is unique because M is noncompact. Hence Y is τ-invariant. By the classification of involutions of $T^{2} \times I$, noting that τ exchanges the two boundary components, this implies that Int X contains an invariant embedded torus whose projection in \mathcal{O} is a one-sided, nonorientable 2 -suborbifold. Since \mathcal{O} does not contain any such suborbifold, we have reached the desired contradiction. Hence the proof of Lemma 3.6 is complete.

Acknowledgements

The author would like to thank Grégoire Montcouquiol, Michel Boileau and Luisa Paoluzzi for useful conversations.

The author was partially supported by Agence Nationale de la Recherche Grant ANR-12-BS01-0004.

References

[1] M. Boileau, S. Maillot, and J. Porti, Three-dimensional orbifolds and their geometric structures, Panoramas et Synthèses, vol. 15, Société Mathématique de France, Paris, 2003.
[2] M. Boileau and B. Zimmermann, The π-orbifold group of a link, Math. Z. 200 (1989), no. 2, 187-208.
[3] W. Jaco and J. H. Rubinstein, PL minimal surfaces in 3-manifolds, J. Differential Geom. 27 (1988), no. 3, 493-524.
[4] W. H. Jaco and P. B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc., no. 220, Amer. Math. Soc., Providence, RI, USA, 1979.
[5] K. Johannson, Homotopy equivalences of 3-manifolds with boundary, Lecture Notes in Math., vol. 761, Springer, Berlin, 1979.
[6] S. Maillot, Open 3-manifolds whose fundamental groups have infinite center, and a torus theorem for 3-orbifolds, Trans. Amer. Math. Soc. 355 (2003), no. 11, 4595-4638.
[7] S. Maillot, Some open 3-manifolds and 3-orbifolds without locally finite canonical decompositions, Algebr. Geom. Topol. 8 (2008), no. 3, 1795-1810.
[8] S. Maillot, An algorithmic classification of open surfaces, arXiv:1209.2818, 2012.
[9] D. R. McMillan, Jr., Some contractible open 3-manifolds, Trans. Amer. Math. Soc. 102 (1962), 373-382.
[10] W. D. Neumann and G. A. Swarup, Canonical decompositions of 3-manifolds, Geom. Topol. 1 (1997), 21-40.
[11] H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286.
[12] P. Scott, Fundamental groups of non-compact 3-manifolds, Proc. London Math. Soc. (3) 34 (1977), no. 2, 303-326.
[13] J. H. C. Whitehead, A certain open manifold whose group is unity, Quart. J. Math. Oxford 6 (1935), 268-279.

Author's address:
Sylvain Maillot
Institut Montpelliérain Alexander Grothendieck
CNRS, Université de Montpellier
E-mail: sylvain.maillot@umontpellier.fr

Received May 25, 2023
Accepted July 18, 2023

