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1. Introduction

Let M (C) be the set of all non-constant meromorphic functions in C,
whereas E (C) denotes the set of all non-constant entire functions. On the
other hand we denote by MT (C) and ET (C) the set of all transcendental mero-
morphic and entire functions respectively. Let f ∈ M (C) and a ∈ M (C) ∪ C
such that f ̸≡ a. We denote by n(t, a; f) = n(t, 0; f −a) the number of roots of
the equation f(z)−a(z) = 0 in |z| ≤ t, multiple roots being counted multiplely
and by n(t, a; f) the number of distinct roots of f(z) − a(z) = 0 in |z| ≤ t.
Correspondingly we define

N(r, a; f) =

r∫
0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r,

N(r, a; f) =

r∫
0

n(t, a; f)− n(0, a; f)

t
dt+ n(0, a; f) log r.

Also we use the standard notations of Nevanlinna’s value distribution theory
such as N(r, f), m(r, f), T (r, f), . . . (see, e.g., [3, 11]). By S(r, f) we denote
any quantity that satisfies the condition S(r, f) = o(T (r, f)) as r → ∞ possibly
outside of an exceptional set of finite linear measure. A meromorphic function
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a is said to be a small function of f if T (r, a) = S(r, f). We denote by S (f)
the set of all small functions of f . Also we use ρ(f) and ρ2(f) to denote the
order and hyper-order of a meromorphic function f respectively.

By a differential polynomial Pd(z, f) in f of degree d, we mean it is a poly-
nomial in f and its derivatives with a total degree d and small functions of f as
the coefficients. Note that Pd(z, f) is said to be an algebraic differential polyno-
mial if the coefficients are polynomials. By a differential-difference polynomial
Pd(z, f) in f of degree d, we mean it is a polynomial in f , f(z + c) and their
derivatives with a total degree d and small functions of f as the coefficients.

It is difficult to prove the existence of solutions of a given differential equa-
tion and it is also interesting to find out the solutions if the solutions exist.

A special type of nonlinear differential equation fn + Pd(z, f) = h, where
h ∈ M (C) ∪ C and Pd(z, f) is a differential polynomial in f of degree d, has
become a matter of increasing interest among the researchers.

It is easy to verify that f1(z) = sin z is a solution of the differential equation

4f3(z)+3f ′′(z) = − sin 3z. In [4], it was proved that f2(z) = −
√
3
2 cos z− 1

2 sin z
is also a solution of this equation. In 2004, Yang and Li [10] proved that
this equation admits exactly three entire solutions namely f1(z), f2(z) and

f3(z) =
√
3
2 cos z − 1

2 sin z. Since − sin 3z is a linear combination of ei3z and
e−i3z, so it is interesting to find out all entire solutions of the following general
equation

fn(z) + Pd(z, f) = p1e
λz + p2e

−λz, (1.1)

where p1, p2, λ ∈ C \ {0} and d ≤ n− 1.
In this direction, Yang and Li [10] obtained the following result.

Theorem 1.1 ([10]). Let Pd(z, f) be a differential polynomial such that d ≤
n−3, where n ≥ 3, b ∈ S (f) and λ, p1, p2 ∈ C\{0}. Then there does not exist
f ∈ ET (C) such that fn(z) + Pd(z, f) = b(z)

(
p1e

λz + p2e
−λz

)
.

In 2006, Li and Yang [7] further generalized Theorem A and obtained the
following result.

Theorem 1.2 ([7]). Let Pd(z, f) be an algebraic differential polynomial such
that d ≤ n − 3, where n ≥ 4. Let p1, p2 be non-zero polynomials, α1, α2 ∈
C \ {0} such that α1

α2
̸∈ Q. Then there does not exist f ∈ ET (C) such that

fn(z) + Pd(z, f) = p1(z)e
α1z + p2(z)e

α2z.

In 2011, Li [6] derived the possible forms of the solutions of the equa-
tion (1.1) when d ≤ n− 2 and obtained the following result.

Theorem 1.3 ([6]). Let Pd(z, f) be a differential polynomial such that d ≤ n−2,
where n ≥ 2 and p1, p2, α1, α2 ∈ C \ {0} with α1 ̸= α2. If f ∈ MT (C) is a
solution of the equation fn(z)+Pd(z, f) = p1e

α1z+p2e
α2z satisfying N(r, f) =

S(r, f), then one of the following holds
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(i) f(z) = c0(z) + c1e
α1
n z, where c0 ∈ S (f) and cn1 = p1;

(ii) f(z) = c0(z) + c2e
α2
n z, where c0 ∈ S (f) and cn2 = p2;

(iii) f(z) = c1e
α1
n z + c2e

α2
n z, where α1 + α2 = 0 and cni = pi, i = 1, 2.

In 2013, Liao, Yang and Zhang [8] further extended and improved the above
results by giving the following result.

Theorem 1.4 ([8]). Let Pd(z, f) be a differential polynomial with rational func-
tions as its coefficients. Let p1, p2(̸≡ 0) be rational functions, α1, α2 be poly-
nomials and n ≥ 3. If d ≤ n− 2, then the differential equation fn +Pd(z, f) =

p1e
α1+p2e

α2 admits a solution f ∈ M (C) with finitely many poles and
α′

1

α′
2
∈ Q.

Furthermore only one of the following four cases holds:

(1) f = qep and
α′

1

α′
2
= 1, where q( ̸≡ 0) is a rational function and p is a

polynomial with np′ = α′
1 = α′

2;

(2) f = qep and either
α′

1

α′
2

= k
n or

α′
1

α′
2

= n
k , where q(̸≡ 0) is a rational

function, k ∈ N with 1 ≤ k ≤ d and p is a polynomial with np′ = α′
1 or

np′ = α′
2;

(3) f satisfies one of the differential equations (1) f ′ = 1
n

(
p′
2

p2
+ α′

2

)
f + ψ

and
α′

1

α′
2
= n−1

n and (2) f ′ = 1
n

(
p′
1

p1
+ α′

1

)
f + ψ and

α′
1

α′
2
= n

n−1 , where ψ

is a rational function;

(4) f = γ1e
β1+γ2e

−β1 and
α′

1

α′
2
= −1, where γ1, γ2(̸≡ 0) are rational functions

and β1 is a polynomial with nβ′
1 = α′

1 or nβ′
1 = α′

2.

Now it is interesting to find out all the meromorphic solutions of the fol-
lowing nonlinear differential-difference equation:

fn(z)f(z + c) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z), (1.2)

where c ∈ C \ {0}, Pd(z, f) is a differential-difference polynomial with small
functions of f as its coefficients, p1, p2( ̸≡ 0) are rational functions and α1, α2

are non-constant polynomials.
The objective of the paper is threefold. Our first objective is to find out the

possible solution of the nonlinear differential-difference equation given by (1.2),
when the right side of the equation (1.2) contains only one term. Now we state
one of our main results.

Theorem 1.5. Let c ∈ C \ {0} and Pd(z, f) be a differential-difference polyno-
mial with small functions of f as its coefficients and n ≥ d + 2. Let p(̸≡ 0)
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be a rational function and α be a non-constant polynomial. If f ∈ M (C) is a
solution of the equation

fn(z)f(z + c) + Pd(z, f) = p(z)eα(z) (1.3)

satisfying ρ2(f) < 1 and N(r, f) = O(log r), then Pd(z, f) ≡ 0 and f = qep,
where q(̸≡ 0) is a rational function and p is a non-constant polynomial such
that qn(z)q(z + c) = p(z) and np′(z) + p′(z + c) = α′(z).

Let us take f2(z)f(z + c) + Pd(z, f) = p(z)eα(z), where

Pd(z, f) = −3

2
f ′(z)− 1,

p(z) = − 1
2 , α(z) = 3z and c ∈ C \ {0} such that ec = − 1

2 . Here n = 2 and
d = 1. Clearly f(z) = ez+1 is a solution of the given equation and so the given
equation admits a solution which is not of the form f = qep, where q(̸≡ 0) is a
rational function and p is a non-constant polynomial.

Our second objective is to find out the possible forms of meromorphic solu-
tions of the differential-difference equation (1.2), when p1, p2(̸≡ 0) are rational
functions and α1, α2 are non-constant polynomials. In this regard, we obtain
the following result.

Theorem 1.6. Let c ∈ C \ {0} and Pd(z, f) be a differential-difference poly-
nomial with small functions of f as its coefficients and n ≥ d + 3. Suppose
p1, p2( ̸≡ 0) are rational functions and α1, α2 are non-constant polynomials.
If f ∈ M (C) is a solution of the equation (1.2) satisfying ρ2(f) < 1 and
N(r, f) = O(log r), then one of the following cases holds:

(1) f = qep, where q(̸≡ 0) is a rational function and p is a non-constant
polynomial such that qn(z)q(z + c) = b1p1(z) + p2(z), where b1 ∈ C and
np′(z) + p′(z + c) = α′

1(z) = α′
2(z).

(2) f = qep, where q(̸≡ 0) is a rational function and p is a non-constant
polynomial such that either qn(z)q(z+c) = p1(z) and np

′(z)+p′(z+c) =
α′
1(z) or q

n(z)q(z + c) = p2(z) and np
′(z) + p′(z + c) = α′

2(z).

Let us take f2(z)f(z + c) + Pd(z, f) = p1(z)e
α1(z) + p2(z)e

α2(z), where

Pd(z, f) = −if(z + c), p1(z) = p2(z) = i, α1(z) = 3z, α2(z) = −3z

and c ∈ C\{0} such that ec = i. Here n = 2 and d = 1. Clearly f(z) = ez+e−z

is a solution of the given equation and so the given equation admits a solution
which is not of the form f = qep, where q(̸≡ 0) is a rational function and p is
a non-constant polynomial.
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Remark 1.7. In Theorem 1.6 we study the existence of meromorphic solutions
of equation (1.2) having finitely many poles. Now our next purpose is to study
the existence of meromorphic solutions of equation (1.2) satisfying N(r, f) =
S(r, f).

For further study, it is quite natural to ask the following question.
Question 1. How to find the solutions of the equation (1.2) under the

condition n ≥ d+ 1 ?

Definition 1.8. Let f, g ∈ M (C) and a ∈ S (f) ∩ S (g). Denote by NE(r, a)
the counting function of all common zeros of f − a and g − a with the same
multiplicities. If N(r, a; f) + N(r, a; g) − 2NE(r, a) = S(r, f), then we say f
and g share a CM∗.

Our third objective for writing this paper is to find out the possible answer
to the above question. In the paper we have been able to solve Question 1 at
the cost of considering the fact that f(z) and f(z+ c) share 0 CM∗ and obtain
the following result.

Theorem 1.9. Let c ∈ C \ {0} and Pd(z, f) be a differential-difference poly-
nomial with small functions of f as its coefficients and n ≥ d + 1. Suppose
p1, p2( ̸≡ 0) are rational functions and α1, α2 are non-constant polynomials. If
f ∈ M (C) is a solution of the equation (1.2)

such that ρ2(f) < 1, N(r, f) = S(r, f) and f(z), f(z+c) share 0 CM∗, then
one of the following cases holds:

(1) f = qe
α2
n+1 , q ∈ S (f)\{0} such that qn(z)q(z+c)e

α2(z+c)−α2(z)
n+1 = c0p2(z),

where eα1−α2 ∈ S (f), c0 ∈ C \ {0};

(2) f = qe
α1
n+1 , q ∈ S (f)\{0} such that qn(z)q(z+c)e

α1(z+c)−α1(z)
n+1 = p1(z)+

φ(z)p2(z), where φ = eα2−α1 ∈ S (f);

(3) f = qe
α1
n+1 , q ∈ S (f) \ {0} such that qn(z)q(z + c)e

α1(z+c)−α1(z)
n+1 = p1(z)

and
e

kα1−(n+1)α2
n+1 ∈ S (f), where k ∈ {0, 1, 2, . . . , d};

(4) f = u1e
α1
n+1 − v1, where u1, v1 ∈ S (f) \ {0} such that un1 (z)u1(z +

c)e
α1(z+c)−α1(z)

n+1 =p1(z), u
n+1
1 (z)v1(z+ c)=p1(z)v1(z) and e

nα1−(n+1)α2 ∈
S (f);

(5) f = δ1e
γ + δ2e

−γ , where eα1+α2 ∈ S (f), δ1, δ2 ∈ S (f) \ {0} and
γ is a non-constant polynomial such that either e(n+1)γ+α1 ∈ S (f) or
e(n+1)γ+α2 ∈ S (f).

From Theorems 1.5, 1.6 and 1.9, we have the following corollary.
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Corollary 1.10. Equations (1.2) and (1.3) do not have any solution f ∈
M (C) satisfying N(r, f) = O(log r) (S(r, f)), ρ(f) = +∞ and ρ2(f) < 1.

The following example shows that conclusion (4) in Theorem 1.9 cannot be
removed.

Example 1.11. Let us take f2(z)f(z+c)+Pd(z, f) = p1(z)e
α1(z)+p2(z)e

α2(z),
where Pd(z, f) = − 1

3f
′(z)+ 1

27 , p1(z) = p2(z) = 1, α1(z) = 3z, α2(z) = 2z and

c ∈ C \ {0} such that ec = 1. Here n = 2 and d = 1. Clearly f = u1e
α1
n+1 − v1,

where u1 = 1 and v1 = 1
3 is a solution of the given equation. Note that

un1 (z)u1(z + c)e
α1(z+c)−α1(z)

n+1 = p1(z), u
n+1
1 (z)v1(z + c) = p1(z)v1(z) and f(z),

f(z + c) share 0 CM∗.

The following example shows that conclusion (5) in Theorem 1.9 cannot be
removed.

Example 1.12. Let us take f(z)f(z+ c)+Pd(z, f) = p1(z)e
α1(z)+p2(z)e

α2(z),
where Pd(z, f) ≡ 2, p1(z) = p2(z) = −1, α1(z) = 2z, α2(z) = −2z and
c ∈ C\{0} such that ec = −1. Here n = 1 and d = 0. Clearly f = δ1e

γ +δ2e
−γ

is a solution of the given equation, where δ1 = δ2 = 1 and γ(z) = z. Note that
f(z) and f(z + c) share 0 CM∗ and e(n+1)γ(z)+α2(z) ∈ S (f).

2. Auxiliary lemmas

Lemma 2.1 ([5]). Let f ∈ MT (C) be a solution of finite order ρ of the equation
H(z, f)P (z, f) = Q(z, f), where H(z, f), P (z, f) and Q(z, f) are difference
polynomials such that the total degree of H(z, f) in f and its shifts is n and
that the total degree of Q(z, f) is at most n. If H(z, f) just contains one term of
maximal total degree, then m(r, P (z, f)) = O

(
rρ−1+ε

)
+ S(r, f) holds possibly

outside of an exceptional set of finite logarithmic measure, where ε > 0.

Remark 2.2. Particularly, if H(z, f) = fn(z), then a similar conclusion holds
when P (z, f) and Q(z, f) are differential-difference polynomials in f .

Lemma 2.3 ([1]). Let f ∈ MT (C) and fn(z)P (z, f) = Q(z, f), where P (z, f)
and Q(z, f) are polynomials in f and its derivatives with meromorphic coef-
ficients, say {aλ(z) |λ ∈ I} such that m(r, aλ) = S(r, f) for all λ ∈ I. If the
total degree of Q(z, f) as a polynomial in f and its derivatives is less than or
equal to n, then m(r, P (z, f)) = S(r, f).

Lemma 2.4 ([3]). Let f ∈ M (C) and ai ∈ S (f), i = 1, 2. Then T (r, f) ≤
N(r, f) +N(r, a1; f) +N(r, a2; f) + S(r, f).

Lemma 2.5 ([2]). Let c ∈ C \ {0}, ε > 0 and f ∈ M (C) such that ρ2(f) < 1.
Then

m
(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= o

( T (r, f)

r1−ρ2(f)−ε

)
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outside of an exceptional set of finite logarithmic measure.

Lemma 2.6 ([9]). Let f ∈ MT (C) such that ρ2(f) < 1 and c ∈ C \ {0}. Then
T (r, f(z + c)) = T (r, f) + S(r, f) and N(r, f(z + c)) = N(r, f) + S(r, f).

Lemma 2.7. Let c ∈ C\{0} and Pd(z, f) be a differential-difference polynomial
with small functions of f as its coefficients and d ≤ n− 1. Suppose p1, p2(̸≡ 0)
are rational functions and α1, α2 are non-constant polynomials. If f ∈ M (C) is
a solution of (1.2) satisfying ρ2(f) < 1 and N(r, f) = S(r, f), then f ∈ MT (C)
and ρ(f) < +∞.

Proof. Let f ∈ M (C) be a solution of the equation (1.2). We claim that f ∈
MT (C). If not, suppose f is a rational function. In this case p1e

α1+p2e
α2 must

be a rational function, say R1(̸≡ 0) and so −p1eα1 = p2e
α2 −R1. Consequently

p2e
α2 −R1 has finitely many zeros and so by Lemma 2.4 we get

T (r, p2e
α2) ≤ N(r, p2e

α2) +N(r, 0; p2e
α2) +N(r,R1; p2e

α2) + S(r, p2e
α2)

= S(r, p2e
α2),

which is impossible. Hence f ∈ MT (C). Note that

Pd(z, f) =
∑
µ

bµ(z)Gµ(z, f),

where bµ ∈ S (f) and

Gµ(z, f)

= (f(z))p
µ
0 (f ′(z))p

µ
1 . . . (f (k)(z))p

µ
k (f(z + c))q

µ
0 (f ′(z + c))q

µ
1 . . . (f (k)(z + c))q

µ
k ,

pµ0 , p
µ
1 , . . . , p

µ
k , q

µ
0 , q

µ
1 , . . . , q

µ
k ∈ N ∪ {0} such that

k∑
j=0

pµj +
k∑

j=0

qµj = µ ≤ d.

Therefore we have

Pd(z, f) =
∑
µ

bµ(z)
Gµ(z, f)

fµ(z)
fµ(z). (2.1)

Now applying the lemma on the logarithmic derivative and Lemma 2.5 we
obtain

m
(
r, bµ(z)

Gµ(z, f)

fµ(z)

)
= m

(
r, bµ(z)

(
f ′(z)

f(z)

)pµ
1

. . .

(
f (k)(z)

f(z)

)pµ
k
(
f(z + c)

f(z)

)qµ0

. . .

(
f (k)(z + c)

f(z)

)qµk )
= S(r, f).
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Therefore (2.1) takes the form Pd(z, f) = cd(z)f
d(z) + cd−1(z)f

d−1(z) +
. . . + c0(z), where cd ̸≡ 0 and m(r, ci) = S(r, f) for i = 0, 1, 2, . . . , d. Now by
mathematical induction we can prove that m(r, Pd(z, f)) ≤ d m(r, f)+S(r, f).
Note that f ∈ MT (C) and N(r, f) = S(r, f). Then by Lemma 2.6 we get
N(r, f(z + c)) = S(r, f). We know that N(r, f (j)) ≤ (1 + j)N(r, f). Therefore

N(r,Gµ(z, f)) ≤
(∑k

j=0(1 + j)pµj
)
N(r, f) +

(∑k
j=0(1 + j)qµj

)
N(r, f(z + c)) =

S(r, f). Since N(r, bµ) = S(r, f) one can easily deduce that N(r, Pd(z, f)) =
S(r, f). Consequently

T (r, Pd(z, f)) = m(r, Pd(z, f)) + S(r, f) (2.2)

≤ d m(r, f) + S(r, f) = d T (r, f) + S(r, f).

On the other hand from Lemma 2.5, we have

T (r, fn(z)f(z + c)) = m(r, fn(z)f(z + c)) + S(r, f)

≤ m(r, fn+1(z)) +m
(
r,
f(z + c)

f(z)

)
+ S(r, f)

= (n+ 1) T (r, f) + S(r, f).

Again from Lemma 2.5, we see that

(n+ 1) T (r, f) = m(r, fn+1) + S(r, f)

≤ m
(
r, fn(z)f(z + c)

)
+m

(
r,

f(z)

f(z + c)

)
+ S(r, f)

≤ T (r, fn(z)f(z + c)) + S(r, f).

Therefore T (r, fn(z)f(z + c)) = (n+ 1) T (r, f) + S(r, f) and so from (2.2),
we get

T
(
r, p1e

α1 + p2e
α2
)
≤ T

(
r, fn(z)f(z + c)

)
+ T

(
r, Pd(z, f)

)
≤ (n+ d+ 1) T (r, f) + S(r, f),

T
(
r, p1e

α1 + p2e
α2
)
≥ T

(
r, fn(z)f(z + c)

)
− T

(
r, Pd(z, f)

)
≥ (n− d+ 1) T (r, f) + S(r, f).

Consequently (n − d + 1) T (r, f) + S(r, f) ≤ T
(
r, p1e

α1 + p2e
α2
)
≤ (n +

d + 1) T (r, f) + S(r, f), which implies that ρ(f) < +∞. This completes the
proof.

From Lemma 2.7, we immediately have the following lemma.

Lemma 2.8. Let c ∈ C\{0} and Pd(z, f) be a differential-difference polynomial
with small functions of f as its coefficients and d ≤ n − 1. Suppose p(̸≡ 0)
is a rational function and α is a non-constant polynomial. If f ∈ M (C) is a
solution of (1.3) satisfying ρ2(f) < 1 and N(r, f) = S(r, f), then f ∈ MT (C)
and ρ(f) < +∞.
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Lemma 2.9 ([6]). Let f ∈ MT (C) and q1, q2, q3, a ∈ S (f) such that q1q3a ̸≡
0. If q1f

2 + q2ff
′ + q3(f

′)2 = a, then q3
(
q22 − 4q1q3

)
a′

a + q2
(
q22 − 4q1q3

)
−

q3
(
q22 − 4q1q3

)′
+
(
q22 − 4q1q3

)
q′3 ≡ 0.

Lemma 2.10 ([3]). Let f ∈ M (C). Suppose g(z) = fn(z) + Pn−1(z, f), where
Pn−1(z, f) is a differential polynomial with small functions of f as its coeffi-
cients and N(r, f) +N

(
r, 1g

)
= S(r, f). Then g = (f + γ)n, where γ ∈ S (f).

Lemma 2.11. Let f ∈ M (C). Suppose g(z) = fn+1(z) + Pn−1(z, f), where
Pn−1(z, f) is a differential polynomial with small functions of f as its coeffi-
cients and N(r, f) +N

(
r, 1g

)
= S(r, f). Then g = fn+1 and Pn−1(z, f) ≡ 0.

Proof. From Lemma 2.10 we get g = (f + γ)
n+1

, where γ ∈ S (f). If possible,

suppose γ ̸≡ 0. Then we have (f(z) + γ(z))
n+1

= fn+1(z) + Pn−1(z, f) and so
(n+ 1)γ(z)fn(z) +Qn−1(z, f) = Pn−1(z, f), where Qn−1(z, f) is a differential
polynomial with small functions of f as its coefficients. Therefore fn−1(z).(n+
1)γ(z)f(z) = Pn−1(z, f) −Qn−1(z, f) and so by Lemma 2.3 we conclude that
m(r, f) = S(r, f). Since N(r, f) = S(r, f), it follows that f ∈ S (r, f), which
is impossible. Hence γ ≡ 0. Consequently g = fn+1 and Pn−1(z, f) ≡ 0.

3. Proofs of the theorems

Proof of Theorem 1.5. Let f ∈ M (C) be a solution of the equation (1.3). Then
by Lemma 2.8 we conclude that f ∈ MT (C) and ρ(f) < +∞. Now differenti-
ating (1.3) once we get

fn−1(z) (nf ′(z)f(z + c) + f(z)f ′(z + c)) + P ′
d(f(z))

= (p(z)α′(z) + p′(z))eα(z), (3.1)

where Pd(f(z)) = Pd(z, f).
We claim that pα′ + p′ ̸≡ 0. If not, suppose pα′ + p′ ≡ 0. On integration

we get eα = a0

p , where a0 ∈ C \ {0}, which is impossible. Now eliminating eα

from (1.3) and (3.1) we get

fn−1(z)
(
p(z) (nf ′(z)f(z + c) + f(z)f ′(z + c))

− (p(z)α′(z) + p′(z)) f(z)f(z + c)
)

= (p(z)α′(z) + p′(z))Pd(f(z))− p(z)P ′
d(f(z)). (3.2)

Suppose p(z) (nf ′(z)f(z+c) + f(z)f ′(z+c))−(p(z)α′(z) + p′(z)) f(z)f(z+
c) ̸≡ 0. Then by Lemma 2.1 we get

m
(
r, p(z) (nf ′(z)f(z + c) + f(z)f ′(z + c))

− (p(z)α′(z) + p′(z)) f(z)f(z + c)
)
= O

(
rρ−1+ε

)
+ S(r, f) (3.3)
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and

m
(
r, p(z)

(
nf(z)f ′(z)f(z + c) + f2(z)f ′(z + c)

)
− (p(z)α′(z) + p′(z)) f2(z)f(z + c)

)
= O

(
rρ−1+ε

)
+ S(r, f). (3.4)

Since N(r, f) = O(log r), from (3.3) and (3.4) we have

T (r, f) ≤T
(
r, p(z)

(
nf(z)f ′(z)f(z + c) + f2(z)f ′(z + c)

)
− (p(z)α′(z) + p′(z)) f2(z)f(z + c)

)
+ T

(
r, p(z) (nf ′(z)f(z + c) + f(z)f ′(z + c))

− (p(z)α′(z) + p′(z)) f(z)f(z + c)
)
= O

(
rρ−1+ε

)
+ S(r, f),

which is impossible. Therefore

p(z) (nf ′(z)f(z + c) + f(z)f ′(z + c))− (p(z)α′(z) + p′(z)) f(z)f(z + c) ≡ 0

and so on integration we get

fn(z)f(z + c) = a1p(z)e
α(z), (3.5)

where a1 ∈ C\{0}. Now from (1.3) we have
(
1− 1

a1

)
fn(z)f(z+c) = −Pd(z, f).

If a1 ̸= 1, then by Lemma 2.1 we getm(r, f(z+c)) = O
(
rρ−1+ε

)
+S(r, f). Since

N(r, (z + c)) = O(log r), we have T (r, f(z + c)) = O
(
rρ−1+ε

)
+ S(r, f), which

is impossible. Hence a1 = 1 and so Pd(z, f) ≡ 0. Also from (3.5) we deduce
that N(r, 0; f) = O(log r) and so we let f = qep, where q(̸≡ 0) is a rational
function and p is a non-constant polynomial such that qn(z)q(z+c) = p(z) and
np′(z) + p′(z + c) = α′(z). This completes the proof.

Proof of Theorem 1.6. Let f ∈ M (C) be a solution of the equation (1.2). Then
by Lemma 2.7 we conclude that f ∈ MT (C) and ρ(f) < +∞. Differentiating
(1.2) once we get

fn−1(z) (nf ′(z)f(z + c) + f(z)f ′(z + c)) + P ′
d(f(z))

= (p1α
′
1 + p′1)e

α1 + (p2α
′
2 + p′2)e

α2 . (3.6)

Now eliminating eα2 from (1.2) and (3.6) we get

fn−1(z)
(
p2(z) (nf

′(z)f(z + c) + f(z)f ′(z + c))

− (p2(z)α
′
2(z) + p′2(z)) f(z)f(z + c)

)
+ p2(z)P

′
d(f(z))− (p2(z)α

′
2(z) + p′2(z))Pd(f(z)) = A(z)eα1(z) , (3.7)

where

A(z) = p2(z)(p1(z)α
′
1(z) + p′1(z))− p1(z)(p2(z)α

′
2(z) + p′2(z)).
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First we suppose A ≡ 0. Then α′
1 − α′

2 ≡ p′
2

p2
− p′

1

p1
and so α′

1 ≡ α′
2. Now

from (3.7) we get

fn−1(z)
(
p2(z)

(
nf ′(z)f(z+c)+f(z)f ′(z+c)

)
−
(
p2(z)α

′
2(z)+p

′
2(z)

)
f(z)f(z+c)

)
= (p2(z)α

′
2(z) + p′2(z))Pd(f(z))− p2(z)P

′
d(f(z)). (3.8)

Then proceeding in the same way as done in the proof of Theorem 1.5, one
can easily conclude that f = qep, where q(̸≡ 0) is a rational function and p is a
non-constant polynomial such that qn(z)q(z+c) = p2(z) and np

′(z)+p′(z+c) =
α′
1(z) = α′

2(z).
Next we suppose A ̸≡ 0. Now differentiating (3.7) once we get

fn−2(z)
(
(n− 1)np2(z)(f

′(z))2f(z + c) + 2np2(z)f(z)f
′(z)f ′(z + c)

−np2(z)α′
2(z)f(z)f

′(z)f(z + c) + np2(z)f(z)f
′′(z)f(z + c)

+p2(z)f
2(z)f ′′(z + c)− (p2(z)α

′
2(z) + p′2(z))

′f2(z)f(z + c)

−p2(z)α′
2(z)f

2(z)f ′(z + c)
)
+Q′

d(f(z))

= (A′(z) +A(z)α′
1(z))e

α1(z), (3.9)

where

Qd(f(z)) = p2(z)P
′
d(f(z))− (p2(z)α

′
2(z) + p′2(z))Pd(f(z)). (3.10)

Eliminating eα1 from (3.7) and (3.9) we get

fn−2(z)φ(z) = A(z)Q′
d(f(z))− (A′(z) +A(z)α′

1(z))Qd(f(z)), (3.11)

where

φ(z) =h1(z)(f
′(z))2f(z + c) + h2(z)f(z)f

′(z)f ′(z + c)

+ h3(z)f(z)f
′(z)f(z + c) + h4(z)f(z)f

′′(z)f(z + c)

+ h5(z)f
2(z)f ′′(z + c) + h6(z)f

2(z)f(z + c)

+ h7(z)f
2(z)f ′(z + c), (3.12)

and



h1(z) = n(n− 1)p2(z)A(z)
h2(z) = −2np2(z)A(z)
h3(z) = np2(z) ((A(z)α

′
1(z) +A′(z)) + α′

2(z)A(z))
h4(z) = −np2(z)A(z)
h5(z) = −p2(z)A(z)
h6(z) =

(
p2(z)α

′
2(z) + p′2(z)

)′
A(z)

− (A(z)α′
1(z) +A(z))

(
p2(z)α

′
2(z) + p′2(z)

)
h7(z) = p2(z) (A(z)(α

′
1(z)− α′

2(z)) +A′(z)) .
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If φ ̸≡ 0, then by Lemma 2.1 we get{
m(r, φ) = O

(
rρ−1+ε

)
+ S(r, f)

m(r, fφ) = O
(
rρ−1+ε

)
+ S(r, f).

(3.13)

Since N(r, f) = O(log r), from (3.13) we get T (r, f) ≤ T (r, φ) + T (r, fφ) =
O
(
rρ−1+ε

)
+ S(r, f), which is impossible. Hence φ ≡ 0 and so from (3.11) we

have

AQ′
d ≡ (A′ +Aα′

1)Qd. (3.14)

Suppose Qd ≡ 0. Then from (3.10) we have

p2P
′
d ≡ (p2α

′
2 + p′2)Pd. (3.15)

If Pd ≡ 0, then from (1.2) we get

fn(z)f(z + c) = p1(z)e
α1(z) + p2(z)e

α2(z) (3.16)

= eα2(z)
(
p1(z)e

α1(z)−α2(z) + p2(z)
)
.

We claim that α1 − α2 ∈ C. If not, suppose α1 − α2 ̸∈ C. Since N(r, f) =
O(log r), from (3.16) we get N

(
r, 0; p1e

α1−α2 +p2
)
≤ 1

nN
(
r, 0; p1e

α1−α2 +p2
)
+

O(log r). Now by Lemma 2.4 we get

T
(
r, eα1−α2

)
= T

(
r, p1e

α1−α2
)
+ S

(
r, eα1−α2

)
≤ N

(
r, 0; p1e

α1−α2
)
+N

(
r,∞; p1e

α1−α2
)

+N
(
r,−p2; p1eα1−α2

)
+ S

(
r, eα1−α2

)
≤ 1

n
N
(
r, 0; p1e

α1−α2 + p2
)
+ S

(
r, eα1−α2

)
≤ 1

n
T
(
r, eα1−α2

)
+ S

(
r, eα1−α2

)
,

which is impossible. Hence α1 − α2 ∈ C and so we let eα1 = b1e
α2 , where

b1 ∈ C \ {0}. Therefore from (3.16), we have fn(z)f(z + c) =
(
b1p1(z) +

p2(z)
)
eα2(z). This shows that f has finitely many zeros. In this case one

can easily conclude that f = qep, where q( ̸≡ 0) is a rational function and p
is a non-constant polynomial such that qn(z)q(z + c) = b1p1(z) + p2(z) and
np′(z) + p′(z + c) = α′

1(z) = α′
2(z).

If Pd ̸≡ 0, then from (3.15) we have
P ′

d

Pd
≡ α′

2 +
p′
2

p2
. On integration, we get

Pd = b2p2e
α2 , where b2 ∈ C \ {0} and so from (1.2) we get

fn(z)f(z + c) +
(
1− 1

b2

)
Pd(f(z)) = p1(z)e

α1(z).
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Now by Theorem 1.5, we conclude that f = qep, where q( ̸≡ 0) is a rational
function and p is a non-constant polynomial such that qn(z)q(z + c) = p1(z)
and np′(z) + p′(z + c) = α′

1(z).

Suppose Qd ̸≡ 0. Then from (3.14) we have
Q′

d

Qd
≡ A′

A + α′
1. On integration

we get Qd = b3Ae
α1 , where b3 ∈ C \ {0} and so from (3.7) we have

fn−1(z)
(
p2(z)

(
nf ′(z)f(z + c) + f(z)f ′(z + c)

)
−

(
p2(z)α

′
2(z)

+ p′2(z)
)
f(z)f(z + c)

)
=

(
1− 1

b3

)
Qd. (3.17)

Let

φ1(z) = p2(z) (nf
′(z)f(z + c) + f(z)f ′(z + c))

− (p2(z)α
′
2(z) + p′2(z)) f(z)f(z + c).

If b3 = 1, then from (3.17) we get

p2(z)
(
nf ′(z)f(z + c) + f(z)f ′(z + c)

)
−

(
p2(z)α

′
2(z) + p′2(z)

)
f(z)f(z + c) ≡ 0

and so on integration we have fn(z)f(z+c) = b4p2(z)e
α2(z), where b4 ∈ C\{0}.

Now by Theorem 1.5, we conclude that f = qep, where q(̸≡ 0) is a rational
function and p is a non-constant polynomial such that qn(z)q(z + c) = p2(z)
and np′(z) + p′(z + c) = α′

2(z).
If b3 ̸= 1, then from Lemma 2.1 and (3.17) we get m(r, φ1) = O

(
rρ−1+ε

)
+

S(r, f) and m(r, φ1f) = O
(
rρ−1+ε

)
+ S(r, f). Since N(r,∞; f) = O(log r) we

get T (r, φ1) = O
(
rρ−1+ε

)
+S(r, f) and T (r, φ1f) = O

(
rρ−1+ε

)
+S(r, f). Note

that

T (r, f) ≤ T (r, φ1f)+T
(
r,

1

φ1

)
+O

(
rρ−1+ε

)
+S(r, f) = O

(
rρ−1+ε

)
+S(r, f),

which is impossible. This completes the proof.

Let k ∈ N and a ∈ C ∪ {∞}. We use the notation N(k+1(r, a; f) to denote
the counting function of a-points of f with multiplicity greater than k. Also
N (k+1(r, a; f) is the reduced counting function.

Proof of Theorem 1.9. Let f ∈ M (C) be a solution of (1.2). Now using Lem-
ma 2.7 we conclude that f ∈ MT (C) and ρ(f) < +∞. We have N(r, f) =
S(r, f) and so from Lemma 2.6 we get N(r, f(z+ c)) = S(r, f). Since f(z) and

f(z + c) share 0 CM∗, we have N
(
r, f(z+c)

f(z)

)
= S(r, f). Also by Lemma 2.5 we
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get m
(
r, f(z+c)

f(z)

)
= S(r, f). Consequently f(z+c)

f(z) ∈ S (f) and so f(z + c) =

ϕ(z)f(z), where ϕ ∈ S (f). Therefore (1.2) reduces to

fn+1 +Qd = p3e
α1 + p4e

α2 , (3.18)

where Qd(f) (d ≤ n− 1) is a differential polynomial with small functions of f
as its coefficients,

p3(z) =
p1(z)

ϕ(z)
=
p1(z)f(z)

f(z + c)
∈ S (f) (3.19)

and p4(z) =
p2(z)

ϕ(z)
=
p2(z)f(z)

f(z + c)
∈ S (f).

Now differentiating both sides of (3.18) once we get

(n+ 1)fnf ′ +Q′
d = (p3α

′
1 + p′3)e

α1 + (p4α
′
2 + p′4)e

α2 . (3.20)

Eliminating eα2 from (3.18) and (3.20) we get

fn
(
(n+ 1)p4f

′ − (p4α
′
2 + p′4) f

)
+ p4Q

′
d − (p4α

′
2 + p′4)Qd = A1e

α1 , (3.21)

where A1 = p4(p3α
′
1 + p′3)− p3(p4α

′
2 + p′4). Again eliminating eα1 from (3.18)

and (3.20) we get

fn
(
(n+ 1)p3f

′ − (p3α
′
1 + p′3) f

)
+ p3Q

′
d − (p3α

′
1 + p′3)Qd = −A1e

α2 . (3.22)

First we suppose A1 ≡ 0. Then we have α′
1−α′

2 =
p′
4

p4
− p′

3

p3
and so eα1−α2 ∈

S (f). Now from (3.21) we get

fn
(
(n+ 1)p4f

′ − (p4α
′
2 + p′4) f

)
= (p4α

′
2 + p′4)Qd − p4Q

′
d. (3.23)

If (n+ 1)p4f
′ − (p4α

′
2 + p′4)f ̸≡ 0, then from Lemma 2.3 we get{

m
(
r, (n+ 1)p4f

′ − (p4α
′
2 + p′4)f

)
= S(r, f)

m
(
r, (n+ 1)p4ff

′ − (p4α
′
2 + p′4)f

2
)
= S(r, f).

(3.24)

Since N(r, f) = S(r, f), from (3.24) we get f ∈ S (r, f), which is impossible.
Therefore (n + 1)p4f

′ − (p4α
′
2 + p′4)f ≡ 0 and so fn+1 = c1p4e

α2 , where

c1 ∈ C \ {0}. Therefore we let f = qe
α2
n+1 , where q ∈ S (f) \ {0} such that

qn+1(z)f(z+c) = c0p2(z)f(z), i.e., q
n(z)q(z+c)e

α2(z+c)−α2(z)
n+1 = c0p2(z), where

c0 ∈ C \ {0}.
Next we suppose A1 ̸≡ 0. Now differentiating (3.21) once we get

fn−1
(
− (p4α

′
2 + p′4)

′
f2 − (n+ 1)p4α

′
2ff

′

+ n(n+ 1)p4(f
′)2 + (n+ 1)p4ff

′′)+R′
d = (A′

1 +A1α
′
1)e

α1 , (3.25)
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where
Rd = p4Q

′
d −

(
p4α

′
2 + p′4

)
Qd. (3.26)

Eliminating eα1 from (3.21) and (3.25) we get

fn−1
(
h21f

2 + h22ff
′ + h23(f

′)2 + h24ff
′′) = R∗

d, (3.27)

where 
R∗

d = (A′
1 +A1α

′
1)Rd −A1R

′
d

h21 = (p4α
′
2 + p′4)(A

′
1 +A1α

′
1)−A1 (p4α

′
2 + p′4)

′

h22 = −(n+ 1)(α′
1 + α′

2)p4A1 − (n+ 1)p4A
′
1

h23 = n(n+ 1)p4A1 ̸≡ 0
h24 = (n+ 1)p4A1 ̸≡ 0.

(3.28)

Clearly h2j ∈ S (f) for j = 1, 2, 3, 4.

Suppose h21 ≡ 0. Then we have

(
p4α

′
2+p′

4

)′

p4α′
2+p′

4
− A′

1

A1
≡ α′

1. On integration we

get p4α
′
2+p

′
4 = c2A1e

α1 , c2 ∈ C\{0} and so A1e
α1 ∈ S (f). Then from (3.21),

we have

fn
(
(n+ 1)p4f

′ − (p4α
′
2 + p′4) f

)
= (p4α

′
2 + p′4)Qd − p4Q

′
d +A1e

α1 . (3.29)

In this case also, we conclude that f = qe
α2
n+1 , where q ∈ S f) \ {0} such that

qn(z)q(z + c)e
α2(z+c)−α2(z)

n+1 = c0p2(z), where c0 ∈ C \ {0}.
Suppose h21 ̸≡ 0. Let

h21f
2 + h22ff

′ + h23(f
′)2 + h24ff

′′ = a. (3.30)

Now we consider the following two cases.
Case 1. Suppose a ≡ 0. Then from (3.30), we have

−h21f2 ≡ h22ff
′ + h23(f

′)2 + h24ff
′′. (3.31)

Let z1 be a zero of f of multiplicity l1 such that h2i(z1) ̸= 0,∞ for i =
1, 2, 3, 4. Clearly z1 is a zero of multiplicity 2l1 of the left hand side of (3.31)
and a zero of multiplicity 2l1 − 2 of the right hand side of (3.31). Therefore
we arrive at a contradiction from (3.31). Now from (3.31) we deduce that
N(r, 0; f) = S(r, f). Since a ≡ 0, from (3.27) and (3.28) we get

R∗
d ≡ 0, i.e., (A′

1 +A1α
′
1)Rd ≡ A1R

′
d. (3.32)

First we suppose Rd ≡ 0. Then from (3.26) we have(
p4α

′
2 + p′4

)
Qd ≡ p4Q

′
d. (3.33)
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Suppose Qd ≡ 0. Then from (3.18) and (3.21) we have respectively

fn+1 = p3e
α1 + p4e

α2 and fn
(
(n+ 1)p4f

′ −
(
p4α

′
2 + p′4

)
f
)
= A1e

α1 . (3.34)

Clearly (3.34) gives (n+1)p4
f ′

f −(p4α
′
2 + p′4) = A1

eα1

fn+1 and som
(
r, eα1

fn+1

)
=

S(r, f). Since N(r, 0; f) = S(r, f) we have eα1

fn+1 ∈ S (f) and so fn+1

eα1
∈ S (f).

Again from (3.34) we have fn+1

eα1
= p3 + p4e

α2−α1 and so eα2−α1 ∈ S (f). Let
eα2 = ϕ1e

α1 , where ϕ1 ∈ S (f). Then from (3.34) we get fn+1 = ϕ2e
α1 ,

where ϕ2 = p3 + ϕ1p4 ∈ S (f). In this case also we get f = qe
α1
n+1 , where

q ∈ S (f) \ {0} such that qn+1(z)f(z + c) = (p1(z) + φ(z)p2(z))f(z), i.e.,

qn(z)q(z + c)e
α1(z+c)−α1(z)

n+1 = p1(z) + φ(z)p2(z), where φ = eα2−α1 .

Suppose Qd ̸≡ 0. Then (3.33) gives
Q′

d

Qd
≡ α′

2 +
p′
4

p4
. On integration we

get Qd = c3p4e
α2 , where c3 ∈ C \ {0} and so from (3.18) we get fn+1 +

(
1 −

1
c3

)
Qd = p3e

α1 . If c3 ̸= 1, then by Lemma 2.11 we have fn+1 = p3e
α1 and

Qd ≡ 0. Therefore we get a contradiction since Qd ̸≡ 0. Hence c3 = 1 and so

fn+1 = p3e
α1 and Qd = p4e

α2 ̸≡ 0. In this case also, we have f = qe
α1
n+1 , where

q ∈ S (f) \ {0} such that qn(z)q(z+ c)e
α1(z+c)−α1(z)

n+1 = p1(z). Now substituting

f = qe
α1
n+1 into Qd(f(z)) = p4(z)e

α2(z) we get

d∑
k=0

a2k(z)e
kα1(z)
n+1 = p4(z)e

α2(z), (3.35)

where a2k ∈ S (f) (k = 0, 1, . . . , d). Since T (r, f) = T
(
r, e

α1
n+1

)
+ S(r, f), it

follows that a2k ∈ S
(
e

α1
n+1

)
(k = 0, 1, . . . , d) and so a2k ∈ S

(
e

kα1
n+1

)
(k =

0, 1, . . . , d), where k ∈ {1, 2, . . . , d}. Since p4 ̸≡ 0, from (3.35) we conclude
that there exists at least one value of k ∈ {0, 1, . . . , d} such that a2k ̸≡ 0. We
now claim that there exists exactly one value of k ∈ {0, 1, . . . , d} such that
a2k ̸≡ 0. If d = 0, then our claim is true. Next we suppose that d ≥ 1. If
possible suppose that there exist at least two values of k ∈ {0, 1, . . . , d} such
that a2k ̸≡ 0. For the sake of simplicity we may assume that a20 ̸≡ 0 and
a2d ̸≡ 0. Clearly

T
(
r,

d∑
k=1

a2ke
kα1
n+1

)
= d T

(
r, e

α1
n+1

)
+ S

(
r, e

α1
n+1

)
. (3.36)

Also from (3.35) we have

N
(
r,−a20;

d∑
k=1

a2ke
kα1
n+1

)
= N(r, 0; p4) ≤ S

(
r, e

α1
n+1

)
. (3.37)
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Now from Lemma 2.4, (3.36) and (3.37) we get

d T
(
r, e

α1
n+1

)
≤ N

(
r, 0;

d∑
k=1

a2ke
kα1
n+1

)
+N

(
r,

d∑
k=1

a2ke
kα1
n+1

)
+N

(
r,−a20;

d∑
k=1

a2ke
kα1
n+1

)
+ S

(
r, e

α1
n+1

)
≤ N

(
r, 0;

d−1∑
k=0

a2ke
kα1
n+1

)
+ S

(
r, e

α1
n+1

)
≤ T

(
r,

d−1∑
k=0

a2ke
kα1
n+1

)
+ S

(
r, e

α1
n+1

)
= (d− 1) T

(
r, e

α1
n+1

)
+ S

(
r, e

α1
n+1

)
,

which is impossible. Therefore there exists exactly one value of k ∈ {0, 1, . . . , d}
such that a2k ̸≡ 0 and so from (3.35), we conclude that there must exist exactly

one value of k ∈ {0, 1, 2, . . . , d} such that e
kα1−(n+1)α2

n+1 ∈ S (f).

Next we suppose Rd ̸≡ 0. Then (3.32) gives
R′

d

Rd
≡ A′

1

A1
+ α′

1 and so

Rd = c4A1e
α1 , where c4 ∈ C \ {0}. Also from (3.21) we get fn

(
(n + 1)p4f

′ −(
p4α

′
2 + p′4

)
f
)
≡

(
1
c4

− 1
)
Rd.

Let ϕ3 = (n + 1)p4f
′ −

(
p4α

′
2 + p′4

)
f . If c4 ̸= 1, then by Lemma 2.3 we

have m(r, ϕ3) = S(r, f) and m(r, ϕ3f) = S(r, f). Since N(r, f) = S(r, f), it
follows that ϕ3 ∈ S (f) and ϕ3f ∈ S (f). Note that T (r, f) ≤ T (r, ϕ3f) +
T
(
r, 1

ϕ3

)
+ S(r, f) = S(r, f), which is impossible. Hence c4 = 1 and so ϕ3 ≡ 0.

Then we have (n+1) f
′

f =
p′
4

p4
+α2 and so fn+1 = c5p4e

α2 , where c5 ∈ C \ {0}.
If c5 ̸= 1, then from (3.18) we have

(
1 − 1

c5

)
fn+1 + Qd = p3e

α1 . Now by
Lemma 2.11 we conclude that Qd ≡ 0 and so Rd ≡ 0, which contradicts the
fact that Rd ̸≡ 0. Hence c5 = 1 and so fn+1 = p4e

α2 . Also from (3.18) we

have Qd = p3e
α1 . In this case, we have f = qe

α2
n+1 , where q ∈ S (f) \ {0}

such that qn(z)q(z+c)e
α2(z+c)−α2(z)

n+1 = p2(z). Also there must exist exactly one

k ∈ {0, 1, 2, . . . , d} such that e
kα2−(n+1)α1

n+1 ∈ S (f).
Case 2. Suppose a ̸≡ 0. Then Lemma 2.3 gives a ∈ S (f). Also from

(3.30) we have

1

f2
=
h21
a

+
h22
a

f ′

f
+
h23
a

(
f ′

f

)2

+
h24
a

f ′′

f
. (3.38)

Therefore from (3.38) we deduce that m
(
r, 1

f2

)
= S(r, f), i.e., m

(
r, 1f

)
=

S(r, f). Consequently T (r, f) = N(r, 0; f) + S(r, f). This shows that f has
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infinitely many zeros. Let z2 be a multiple zero of f such that h2i(z2) ̸= 0,∞
for i = 1, 2, . . . , 4. Then from (3.30) we conclude that z2 is also a zero of a.
Therefore N(2(r, 0; f) ≤ T (r, a) = S(r, f), i.e., N(2(r, 0; f) = S(r, f). Con-
sequently f has infinitely many simple zeros. Differentiating (3.30) once we
have

a′ = h′21f
2 + (2h21 + h′22)ff

′ + (h22 + h′23)(f
′)2 + (h22 + h′24)ff

′′

+ (2h23 + h24)f
′f ′′ + h24ff

′′′. (3.39)

Now from (3.30) and (3.39) we get

(ah′21 − a′h21)f
2 + (2ah21 + ah′22 − a′h22)ff

′

+ (ah22 + ah′23 − a′h23)(f
′)2 + (ah22 + ah′24 − a′h24)ff

′′

+ a(2h23 + h24)f
′f ′′ + ah24ff

′′′ ≡ 0. (3.40)

Let z3 be a simple zero of f which is not a zero or pole of the coefficients in
(3.40). Now from (3.40) we see that z3 is also a zero of (2ah23 + ah24)f

′′ −
(a′h23 − ah22 − ah′23) f

′. Let

α =
(2ah23 + ah24)f

′′ − (a′h23 − ah22 − ah′23) f
′

f
. (3.41)

Since N(r, f) + N(2(r, 0; f) = S(r, f), from (3.41) we see that N(r, α) =
S(r, f). Since m(r, α) = S(r, f), we get α ∈ S (f). Therefore from (3.41) we
have

f ′′ =
a′h23 − ah22 − ah′23

2ah23 + ah24
f ′ +

α

2ah23 + ah24
f. (3.42)

Now from (3.30) and (3.42) we get

a = q1f
2 + q2ff

′ + q3(f
′)2, (3.43)

where

q1 = h21 −
β

2ah23 + ah24
, q2 = h22 +

a′h23 − ah22 − ah′23
2ah23 + ah24

h24 and q3 = h23

are small functions of f . Also from (3.28) we see that

q2
q3

= − 2

2n+ 1
(α′

1 + α′
2)−

3

2n+ 1

A′
1

A1
+

1

2n+ 1

a′

a
− 1

2n+ 1

p′4
p4
. (3.44)

Then by Lemma 2.7 we get

q3(q
2
2−4q1q3)

a′

a
+ q2(q

2
2−4q1q3)− q3(q

2
2−4q1q3)

′ + (q22−4q1q3)q
′
3 ≡ 0. (3.45)
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Let δ = q22 − 4q1q3. Clearly δ ∈ S (f). Now we consider the following two
sub-cases.

Sub-case 2.1. Suppose δ = q22 − 4q1q3 ≡ 0. Then (3.43) gives q3
(
f ′ +

q2
2q3
f
)2

= a. This shows that f ′+ q2
2q3
f ∈ S (f). Let b = f ′+ q2

2q3
f . Since a ̸≡ 0,

it follows that b ̸≡ 0. Now substituting f ′ = b− q2
2q3
f into (3.21) and (3.22) we

get respectively

fn+1
(
p4α

′
2 + p′4 + (n+1)p4

q2
2q3

)
− (n+1)p4bf

n +R1d = A1e
α1 (3.46)

and fn+1
(
p3α

′
1 + p′3 + (n+1)p3

q2
2q3

)
− (n+1)p3bf

n +R2d = −A1e
α2 , (3.47)

where R1d = p4Q
′
d − (p4α

′
2 + p′4)Qd and R2d = p3Q

′
d − (p3α

′
1 + p′3)Qd. Let

γ1 = p4α
′
2 + p′4 + (n+ 1)p4

q2
2q3

and γ2 = p3α
′
1 + p′3 + (n+ 1)p3

q2
2q3

.

First we suppose γ1 ≡ 0. Then using (3.44) we get

(2n+ 1)
(p′4
p4

+ α′
2

)
= (n+ 1)

(
α′
1 + α′

2 +
3

2

A′
1

A1
− 1

2

a′

a
+

1

2

p′4
p4

)
.

On integration we get

(p4e
α2)2n+1 = c6

A
3(n+1)

2
1 p

n+1
2

4

a
n+1
2

e(n+1)(α1+α2),

where c6 ∈ C \ {0} and so enα2−(n+1)α1 ∈ S (f).
Next we suppose γ2 ≡ 0. Then using (3.44) we get

(2n+ 1)
(p′3
p3

+ α′
1

)
= (n+ 1)

(
α′
1 + α′

2 +
3

2

A′
1

A1
− 1

2

a′

a
+

1

2

p′4
p4

)
.

On integration we get

(p3e
α1)2n+1 = c7

A
3(n+1)

2
1 p

n+1
2

4

a
n+1
2

e(n+1)(α1+α2),

where c7 ∈ C \ {0} and so enα1−(n+1)α2 ∈ S (f). Next we discuss the following
four sub-cases.

Sub-case 2.1.1. Suppose γ1 ≡ 0 and γ2 ≡ 0.
Then enα2−(n+1)α1 , enα1−(n+1)α2 ∈ S (f). Clearly eα1+α2 ∈ S (f) and

so eα2 = ϕ4e
−α1 , where ϕ4 ∈ S (f). Now from (3.46) and (3.47) we have

respectively

− (n+ 1)p4bf
n +R1d = A1e

α1 and

− (n+ 1)p3bf
n +R2d = −A1ϕ4e

−α1 . (3.48)
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Eliminating eα1 and e−α1 , from (3.48) we get

f2n−1
(
(n+ 1)2b2p3p4f

)
+R3d = −A2

1ϕ4,

where R3d = −(n+ 1)p4bR2df
n − (n+ 1)p3bR1df

n +R1dR2d (3.49)

is a differential polynomial in f of degree ≤ 2n− 1 with small functions as its
coefficients. Then from Lemma 2.3 and (3.49) we obtain m(r, f) = S(r, f) and
so f ∈ S (f), which is impossible.

Sub-case 2.1.2. Suppose γ1 ̸≡ 0 and γ2 ≡ 0. Then we have enα1−(n+1)α2 ∈
S (f) and so

eα2 = ϕ5e
n

n+1α1 , where ϕ5 ∈ S (f). (3.50)

Now from Lemma 2.10 and (3.46) we conclude that there exists v1 ∈ S (f)
such that

(f + v1)
n+1 =

A1

γ1
eα1 , i.e., f = u1e

α1
n+1 − v1, (3.51)

where u1 ∈ S (f) \ {0}. Since f has infinitely many zeros, it follows that

v1 ̸≡ 0. Now from (3.18), (3.50) and (3.51) we have
(
u1e

α1
n+1 − v1

)n+1
+Qd =

p3e
α1 + c5p4e

nα1
n+1 . Using Lemma 2.11 we obtain un+1

1 = p3 and so from (3.19)
we get un+1

1 (z)f(z + c) = p1(z)f(z), i.e.,

u1(z)e
α1(z)
n+1

(
un1 (z)u1(z + c)e

α1(z+c)−α1(z)
n+1 − p1(z)

)
= un+1

1 (z)v1(z + c)− p1(z)v1(z). (3.52)

Note that p1, u1, v1, e
α1(z+c)−α1(z)

n+1 ∈ S
(
e

α1(z)
n+1

)
. Therefore from (3.52), one can

easily conclude that un1 (z)u1(z+c)e
α1(z+c)−α1(z)

n+1 = p1(z) and u
n+1
1 (z)v1(z+c) =

p1(z)v1(z).
Sub-case 2.1.3. Suppose γ1 ≡ 0 and γ2 ̸≡ 0. Since γ1 ≡ 0, we have

enα2−(n+1)α1 ∈ S (f) and so eα1 = ϕ6e
n

n+1α2 , where ϕ6 ∈ S (f). Now pro-
ceeding in the same way as in Sub-case 2.1.2, one can easily conclude that

f = u2e
α2
n+1 − v2, where u2, v2 ∈ S (f) \ {0} such that un+1

2 = p4. Also from
(3.19) we get un+1

2 (z)f(z + c) = p2(z)f(z). In this case we can conclude that

un2 (z)u2(z + c)e
α2(z+c)−α2(z)

n+1 = p2(z) and u
n+1
2 (z)v2(z + c) = p2(z)v2(z).

Sub-case 2.1.4. Suppose γ1 ̸≡ 0 and γ2 ̸≡ 0. Now from Lemma 2.10, (3.46)
and (3.47) we conclude that there exist v3, v4 ∈ S (f) such that (f + v3)

n+1 =
A1

γ1
eα1 and (f + v4)

n+1 = −A1

γ2
eα2 . From these we have respectively

f = u3e
α1
n+1 − v3 and f = u4e

α2
n+1 − v4, (3.53)

where un+1
3 = A1

γ1
, un+1

4 = −A1

γ2
. Since f has infinitely many zeros we have

v3 ̸≡ 0 and v4 ̸≡ 0.
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First we suppose eα1−α2 ∈ S (f). Therefore eα2 = ϕ7e
α1 , where ϕ7 ∈ S (f).

Now from (3.18) we have fn+1 +Qd = p5e
α1 , where p5 = p3 + ϕ7p4. If p5 ≡ 0,

then we have fn+1 = −Qd and so by Lemma 2.3 we get m(r, f) = S(r, f).
Therefore f ∈ S (f), which is impossible. Hence p5 ̸≡ 0. Now by Lemma 2.11

we conclude that fn+1 = p5e
α1 and Qd ≡ 0. In this case we have f = qe

α1
n+1 ,

q ∈ S (f)\{0} such that qn(z)q(z+ c)e
α1(z+c)−α1(z)

n+1 = p1(z)+φ(z)p2(z), where
φ = eα2−α1 ∈ S (f).

Next we suppose eα1−α2 ̸∈ S (f). Note that T (r, f) ≤ T
(
r, e

α1
n+1

)
+

S(r, f). Also we have T
(
r, e

α1
n+1

)
≤ T

(
r, u3e

α1
n+1 − v3

)
+ S(r, f) = T (r, f) +

S(r, f). Therefore T (r, f) = T
(
r, u3e

α1
n+1

)
+S(r, f). Similarly we have T (r, f) =

T
(
r, u4e

α2
n+1

)
+ S(r, f). Consequently S(r, f) = S

(
r, u3e

α1
n+1

)
= S

(
r, u4e

α2
n+1

)
.

Clearly u3, u4, v3, v4 ∈ S
(
e

α1
n+1

)
∩ S

(
e

α2
n+1

)
. On the other hand from (3.53)

we have
u3e

α1
n+1 − u4e

α2
n+1 = v3 − v4. (3.54)

We claim that v3 ≡ v4. If not, suppose v3 ̸≡ v4. Then by Lemma 2.4 we get

T (r, f) = T
(
r, u3e

α1
n+1

)
+ S(r, f)

≤ N
(
r, 0;u3e

α1
n+1

)
+N

(
r, v3 − v4;u3e

α1
n+1

)
+ S

(
r, u3e

α1
n+1

)
+ S(r, f)

= S(r, f),

which is absurd. Hence v3 ≡ v4 and so from (3.54) we get eα1−α2 ≡
(
u4

u3

)n+1
.

Hence eα1−α2 ∈ S (f), which is impossible.

Sub-case 2.2. Suppose δ = q22 − 4q1q3 ̸≡ 0. Then (3.45) gives q2
q3

≡ δ′

δ −
q′3
q3
− a′

a . Therefore from (3.28) and (3.44) we get 2(α′
1+α

′
2) ≡ (2n−2)

A′
1

A1
+(2n+

2)a
′

a + 2n
p′
4

p4
− (2n + 1) δ

′

δ . On integration we get e2(α1+α2) = c8
A2n−2

1 a2n+2p2n
4

δ2n+1 ,

where c8 ∈ C. This shows that eα1+α2 ∈ S (f) and so eα2 = ϕ8e
−α1 , where

ϕ8 ∈ S (f). Now from (3.21) and (3.22) we have respectively

fn ((n+ 1)p4f
′ − (p4α

′
2 + p′4)f) +R1d = A1e

α1 (3.55)

and fn ((n+ 1)p3f
′ − (p3α

′
1 + p′3)f) +R2d = −ϕ8A1e

−α1 . (3.56)

Eliminating eα1 and e−α1 , from (3.55) and (3.56) we get

f2n ((n+ 1)p4f
′ − (p4α

′
2 + p′4)f) ((n+ 1)p3f

′ − (p3α
′
1 + p′3)f)

+Q∗∗
d = −ϕ8A2

1, (3.57)

where

Q∗∗
d = fn ((n+ 1)p4f

′ − (p4α
′
2 + p′4)f)R2d

+ fn ((n+ 1)p1f
′ − (p1α

′
1 + p′1)f)R1d +R1dR2d
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is a differential polynomial of degree ≤ 2n with small functions of f as its
coefficients. Now by Lemma 2.3 we get

((p3α
′
1 + p′3)f − (n+ 1)p3f

′) ((p4α
′
2 + p′4)f − (n+ 1)p4f

′) = b11,

where b11 ∈ S (f). If b11 ≡ 0, then we have either (p3α
′
1+p

′
3)f−(n+1)p3f

′ ≡ 0
or (p4α

′
2 + p′4)f − (n+ 1)p4f

′ ≡ 0. Thus in either case one can easily conclude
that N(r, 0; f) = S(r, f), which is impossible. Hence b11 ̸≡ 0. Therefore we
can assume that

(p4α
′
2 + p′4)f − (n+ 1)p4f

′ = b1e
γ (3.58)

and (p3α
′
1 + p′3)f − (n+ 1)p3f

′ = b2e
−γ ,

where b1, b2 ∈ S (f) such that b1b2 = b11 and γ is an entire function. Since f
is of finite order, it follows that γ is a polynomial.

First we suppose γ ∈ C. Then (3.58) gives f ′ = 1
n+1

(
α′
2 +

p′
4

p4

)
f − b1e

γ

(n+1)p4

and f ′ = 1
n+1

(
α′
1 +

p′
3

p3

)
f − b2e

−γ

(n+1)p3
. These imply that

(
α′
1 − α′

2 +
p′3
p3

− p′4
p4

)
f =

b2e
−γ

p3
− b1e

γ

p4
. (3.59)

If α′
1 − α′

2 +
p′
3

p3
− p′

4

p4
≡ 0, then on integration we get eα1−α2 = c9

p4

p3
,

where c9 ∈ C \ {0} and so eα1−α2 ∈ S (f). Since eα2 = ϕ8e
−α1 , we have

eα2 ∈ S (f). Certainly eα1 ∈ S (f). Then from Lemma 2.3 and (3.18) we
deduce that m(r, f) = S(r, f) and so f ∈ S (f), which is absurd. Also if

α′
1 − α′

2 +
p′
3

p3
− p′

4

p4
̸≡ 0, then from (3.59) we get f ∈ S (f), which is absurd.

Next we suppose γ ̸∈ C. Then (3.58) gives (p3p4(α
′
2−α′

1)+p3p
′
4−p′3p4) f =

p3b1e
γ − p4b2e

−γ . With the similar argument, we can prove that p3p4(α
′
2 −

α′
1) + p3p

′
4 − p′3p4 ̸≡ 0. Clearly we have f(z) = δ1(z)e

γ(z) + δ2(z)e
−γ(z), where

δ1 = p3b1
p3p′

4−p′
3p4−p3p4(α′

1−α′
2)

and δ2 = −p4b2
p3p′

4−p′
3p4−p3p4(α′

1−α′
2)
. Then (3.58) can be

rewritten as

A2f − (n+ 1)p4f
′ = b1e

γ , A2 = p4α
′
2 + p′4. (3.60)

Differentiating (3.60) we get A′
2f + (A2 − (n+ 1)p′4) f

′ − (n+ 1)p4f
′′ = (b′1 +

b1γ
′)eγ . Then from (3.42) we have(
A′

2 −
(n+ 1)p4α

2ah23 + ah24

)
f

+

(
A2 − (n+ 1)p′4 − (n+ 1)

a′h23 − ah22 − ah′23
2ah23 + ah24

p4

)
f ′ = (b′1 + b1γ

′)eγ
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and so from (3.28) we get(
A′

2 −
1

2n+ 1

α

aA1

)
f +

(
A2 − (n+ 1)p′4 −

1

2n+ 1
(α′

1 + α′
2)p4

−n(n+ 1)

2n+ 1

a′

a
p4 +

n(n+ 1)

2n+ 1
p′4 −

n2 − 1

2n+ 1

A′
1

A1
p4

)
f ′ = (b′1 + b1γ

′)eγ . (3.61)

Dividing (3.61) by (3.60) we get ζ1f + ζ2f
′ ≡ 0, where

ζ1 = A′
2 −

1

2n+ 1

α

aA1
−A2

(b′1
b1

+ γ′
)

and ζ2 = A2 − (n+ 1)p′4 −
1

2n+ 1
(α′

1 + α′
2)p4 −

n(n+ 1)

2n+ 1

a′

a
p4 +

n(n+ 1)

2n+ 1
p′4

− n2 − 1

2n+ 1

A′
1

A1
p4 + (n+ 1)

(b′1
b1

+ γ′
)
p4.

It is clear that either ζ1 ̸≡ 0 and ζ2 ̸≡ 0 or ζ1 ≡ 0 and ζ2 ≡ 0. If ζ1 ̸≡ 0 and
ζ2 ̸≡ 0, then we have N(r, 0; f) = S(r, f), which is impossible. Hence ζ1 ≡ 0
and ζ2 ≡ 0. Now ζ2 ≡ 0 yields,

α′
2 −

n2

2n+ 1

p′4
p4

− 1

2n+ 1
(α′

1 + α′
2)−

n(n+ 1)

2n+ 1

a′

a
− n2 − 1

2n+ 1

A′
1

A1

+ (n+ 1)
b′1
b1

+ (n+ 1)γ′ ≡ 0,

which implies that

e(2n+1)((n+1)γ+α2) = c10
pn

2

4 eα1+α2an(n+1)An2−1
1

bn+1
1

, c10 ∈ C \ {0}.

So e(n+1)γ+α2 ∈ S (f). Finally f = δ1e
γ + δ2e

−γ , eα1+α2 ∈ S (f), where
δ1, δ2 ∈ S (f) \ {0} and γ is a non-constant polynomial such that either
e(n+1)γ+α2 ∈ S (f) or e(n+1)γ+α1 ∈ S (f).
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