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Abstract. This paper is concerned with a system of magnetic effected
piezoelectric beams with distributed delay term, where the heat flux is
given by Cattaneo’s law (second sound). We prove the existence and
the uniqueness of the solution using the semigroup theory. Then, we es-
tablish the exponential stability of the solution by introducing a suitable
Lyapunov functional.
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1. Introduction

In this article, we study well-posedness and asymptotic stability for magnetic
effected piezoelectric beams with second sound and distributed delay term

ρvtt − αvxx + γβpxx + ηθx = 0,

µptt − βpxx + γβvxx + µ1pt +

∫ τ2

τ1

µ2 (s) pt (x, t− s) ds = 0,

θt + kqx + ηvxt = 0,
τqt + δq + kθx = 0,

(1)

where (x, t) ∈ (0, L)×(0,∞), with the following initial and boundary conditions

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) ,
p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) ,
θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) ,
v (0, t) = αvx (L, t)− γβpx (L, t) = 0,
p (0, t) = px (L, t)− γvx (L, t) = 0,
θ (0, t) = θ (L, t) = 0,
pt (x,−t) = f0 (x, t) ,

∀x ∈ (0, L) ,
∀x ∈ (0, L) ,
∀x ∈ (0, L) ,
∀t > 0,
∀t > 0,
∀t > 0,
(x, t) ∈ (0, L)× (0, τ2),

(2)

where v = v (x, t) is the transverse displacement of the beam, p = p (x, t) the
total load of the electric displacement along the transverse direction at each
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point x, θ = θ(x, t) is the temperature difference, η > 0 is the coupling constant
depending on the heating effect, q = q(x, t) is the heat flux and the parameter
τ > 0 is the relaxation time describing the time lag in the response for the
temperature. v0, v1, p0, p1, θ0, q0 are initial data, and f0 is history function.
The coefficients, ρ, α, γ, µ, µ1, β, δ and k are constitutive constants which are
positive and satisfy

α1 = α− γ2β > 0,

and µ2 : [τ1, τ2] −→ R is a bounded function, where τ1 and τ2 are two real
numbers satisfying 0 ≤ τ1 < τ2. Here, we prove the well-posedness and stability
results for system (1)-(2), under the assumption

C1 = µ1 −
∫ τ2

τ1

|µ2 (s)| ds > 0. (3)

The distributed delay considered in this work is important because it is given by
a nonlocal time-delay control. The history of nonlocal problems with integral
conditions for partial differential equations goes back to [4]. See also [17] and
references therein. This kind of delay∫ τ2

τ1

µ2 (s) pt (x, t− s) ds,

is called nonlocal because the integral is not a pointwise relation. This condi-
tion provokes some mathematical difficulties which make the study of such a
problem particularly interesting. For the last several decades, various types of
equations have been employed as some mathematical models describing physi-
cal, chemical, ecological and biological systems. See for example [9].

Piezoelectric materials now occupy a prominent role thanks to the remark-
able physical property of transforming electrical energy into mechanics and
vice versa, such property has great utility in the industry where these ma-
terials can be used in the production of electromechanical mechanisms such
as sensors and actuators. In modeling piezoelectric systems, three major ef-
fects and their interrelations need to be considered: mechanical, electrical,
and magnetic. In many studies, the magnetic effect is neglected and only the
mechanical and electrical effects are considered. Mechanical effects are gener-
ally modeled through Kirchhoff, Euler–Bernoulli, or Mindlin–Timoshenko small
displacement assumptions, see, for instance, [2, 8, 23, 25]. The study of math-
ematical models based on piezoelectric materials is of great importance for the
development and design of new devices based on these materials. During the
last few decades, the theory of stabilization of magnetic effected piezoelectric
beams has been a topic of interest. Morris and Özer [13, 14] established the the-
ory of piezoelectric materials, in which they combined mechanical, magnetic,
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and electrical effects{
ρvtt − αvxx + γβpxx = 0,
µptt − βpxx + γβvxx = 0,

(x, t) ∈ (0, L)× (0,∞),
(x, t) ∈ (0, L)× (0,∞),

(4)

and they assumed that the beam is fixed at x = 0 and free at x = L, thus they
got (from modeling) the boundary conditions{

v (0, t) = p (0, t) = αvx (L, t)− γβpx (L, t) = 0,
βpx (L, t)− γβvx (L, t) = −V (t) ,

∀t > 0,
∀t > 0,

(5)

where V (t) = pt (L, t) /h (electrical feedback controller). The authors estab-
lished strong stabilization for almost all system parameters and exponential
stability for system parameters in a measure-null set, unlike the classical model,
consisting of a single wave equation studied in [11, 24], where the magnetic ef-
fect is neglected and so the decay is exponential. Besides, Ramos et al. [20]
inserted a (mechanical) dissipative term δvt in (4)1, i.e., the first equation
in (4), where δ is a constant, and considered the boundary condition{

v (0, t) = αvx (L, t)− γβpx (L, t) = 0,
p (0, t) = px (L, t)− γvx (L, t) = 0,

t ∈ (0, T ),
t ∈ (0, T ).

The authors showed, by using the energy method, that the system’s energy
decays exponentially. This means that the friction term and the magnetic
effect work together in order to exponentially stabilize the system.

Delay effects arise in many applications and practical problems (see for in-
stance [3, 22]). Introducing the delay term makes the problem different from
those considered in the literature. It has been established that voluntary in-
troduction of delay can benefit the control (see [1]). On the other hand, it may
not only destabilize a system which is asymptotically stable in the absence of
delay but may also lead to ill-posedness (see [5, 19] and the references therein).
Therefore, the issue of well-posedness and the stability result of systems with
delay are of practical and theoretical importance. In recent years, the control
of magnetic effected piezoelectric beams with time delay has become an active
area of research (e.g. [6, 10, 21]). In [6], Freitas et al. considered the sys-
tem (4) with a discrete delay term (together with a friction term) acting in
equation (4)2; the authors also considered nonlinear source terms and external
forces acting in the model; more precisely they studied{

ρvtt − αvxx + γβpxx + f1 (v, p) + vt = h1,
µptt − βpxx + γβvxx + f2 (v, p) + µ1pt + µ2pt (x, t− τ) = h2,

(6)

where (x, t) ∈ (0, L) × (0, T ), the functions f1 (v, p) and f2 (v, p) are nonlin-
ear source terms, h1 and h2 represent external forces, whereas vt and pt de-
note damping in displacement and magnetic current, respectively. The authors
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proved that the dynamical system associated with the solution of the system
possesses global and exponential attractors. Ramos et al. in [21] inserted
in the equation (4)1 terms for damping ξ1vt (x, t) and damping with delay
ξ2vt (x, t− τ), where ξ1, ξ2 and τ > 0 are constant, and V (t) = 0 in (5)2. The
authors obtained exponential stability for the model considering the relation-
ship ξ2 < ξ1.

In [7], the authors proposed the following fractional piezoelectric system
with magnetic effects and Fourier’s law ρvtt − αvxx + γβpxx + δθx + f1 (v, p) = h1,

µptt − βpxx + γβvxx +Ampt + f2 (v, p) = h2,
cθt − κθxx + δvtx = 0,

in (0, L)× (0, T ),
in (0, L)× (0, T ),
in (0, L)× (0, T ),

(7)

where A : D (A) ⊂ L2 (0, L) −→ L2 (0, L) is the one-dimensional Laplacian
operator defined by

A = −∂xx, with domain D (A) =
{
v ∈ H2 (0, L) ∩H1

∗ (0, L) , vx (L) = 0
}
,

H1
∗ (0, L) =

{
u ∈ H1 (0, L) , u(0) = 0

}
and Am : D (Am) ⊂ L2 (0, L) −→

L2 (0, L) is the fractional power associated with operator A of order m ∈
(0, 1/2) . The deduction of the model (7) is done by using a variational ap-
proach. Magnetic and thermal effects are taken into account via Maxwell’s
equations and Fourier’s law, respectively. Existence and uniqueness of solu-
tions of the system is proved by the semigroup theory. The existence of smooth
global attractors with finite fractal dimension and the existence of exponential
attractors are proved via recent quasi-stability methods. Indeed, it is physi-
cally relevant to take into account thermal effects. In the above model, the
temperature has an infinite velocity of propagation (which is based on the clas-
sical Fourier’s equation) which is not well accepted from a physical point of
view. This paradox of the heat conduction is physically unrealistic since it
implies the propagation of thermal waves with infinite speed. Much research
has thus been conducted in order to modify the model of thermal effect. To
get more realistic with respect to the thermal effect, we consider the so-called
Cattaneo’s law (see [12, 18] and references therein for more explanations on
the model). This model of heat conduction, originally due to Cattaneo, is of
hyperbolic type, thus it has a finite speed of propagation, as opposed to the
classical Fourier law of heat conduction. Indeed, it is observed experimentally
that at low temperature heat propagates as a thermal wave. This phenomenon
is called second sound, by analogy to the propagation of sound in air.

Motivated by the above results, in the present work we aim to prove that
system (1)-(2) is well-posed and exponentially stable.

The outline of this paper is as follows. In Section 2, we adopt the semigroup
method and Lumer-Philips theorem to obtain the well-posedness of system (1)-
(2). In Section 3, we use the perturbed energy method and construct some
Lyapunov functionals to prove the exponential stability of system (1)-(2).
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2. The well-posedness of the problem

In this section, we prove the existence and uniqueness of solutions for (1)-(2)
using the semigroup theory [16]. To this end, we first transform (1) into an
equivalent problem by introducing, as in [15], a new dependent variable

z(x, σ, s, t) = pt (x, t− σs) , x ∈ (0, L) , σ ∈ (0, 1) , s ∈ (τ1, τ2) , t > 0.

A simple differentiation shows that z satisfies

szt(x, σ, s, t) + zσ(x, σ, s, t) = 0, x ∈ (0, L) , σ ∈ (0, 1) , s ∈ (τ1, τ2) , t > 0.

Therefore, system (1) is equivalent to

ρvtt − αvxx + γβpxx + ηθx = 0,

µptt − βpxx + γβvxx + µ1pt +

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)ds = 0,

θt + kqx + ηvxt = 0,
τqt + δq + kθx = 0,
szt(x, σ, s, t) + zσ(x, σ, s, t) = 0,

(8)

where (x, σ, s, t) ∈ (0, L) × (0, 1) × (τ1, τ2) × (0,∞), with the following initial
and boundary conditions

v (x, 0) = v0 (x) , vt (x, 0) = v1 (x) ,
p (x, 0) = p0 (x) , pt (x, 0) = p1 (x) ,
θ (x, 0) = θ0 (x) , q (x, 0) = q0 (x) ,
v (0, t) = αvx (L, t)−γβpx (L, t) = 0,
p (0, t) = px (L, t)− γvx (L, t) = 0,
θ (0, t) = θ (L, t) = 0,
z(x, σ, s, 0) = f0 (x, σs) ,

∀x ∈ (0, L) ,
∀x ∈ (0, L) ,
∀x ∈ (0, L) ,
∀t > 0,
∀t > 0,
∀t > 0,
(x, σ, s)∈(0, L)×(0, 1)×(0, τ2).

(9)

Thus, we shall consider system (8)-(9) instead of system (1)-(2).
The aim of this section is to prove that system system (8)-(9) is well-posed.

From Equation (8)4 and the boundary conditions, we conclude that

d

dt

∫ L

0

q (x, t) dx+
δ

τ

∫ L

0

q (x, t) dx = 0,

so, using the initial data of q, we obtain∫ L

0

q (x, t) dx =

(∫ L

0

q0 (x) dx

)
exp

(
− δ
τ
t

)
.

Consequently, if we let

q̄ (x, t) = q (x, t)−

(∫ L

0

q0 (x) dx

)
exp

(
− δ
τ
t

)
,
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then (v, p, θ, q̄) satisfies system (1) and∫ L

0

q̄ (x, t) dx = 0, ∀t ≥ 0.

Henceforth, we work with q̄ instead of q but write q for simplicity of notation.
Introducing the vector function Φ = (v, φ, p, ψ, θ, q, z)

T
, where φ = vt and

ψ = pt, system (8)-(9) can be written as{
Φ′ (t) = AΦ (t) , t > 0,

Φ (0) = Φ0 = (v0, v1, p0, p1, θ0, q0, f0)
T
,

(10)

where the operator A is defined by

A



v
φ
p
ψ
θ
q
z


=



φ
1

ρ
[αvxx − γβpxx − ηθx]

ψ
1

µ

[
βpxx − γβvxx − µ1ψ −

∫ τ2

τ1

µ2 (s) z(x, 1, s)ds

]
−kqx − ηφx

−1

τ
[δq + kθx]

−1

s
zσ(x, σ, s)


.

Next, we consider the following spaces

H1
∗ (0, L) =

{
w ∈ H1 (0, L) ; w (0) = 0

}
,

L2
∗ (0, L) =

{
w ∈ L2 (0, L) ;

∫ L

0

w (s) ds = 0

}
,

and the Hilbert space

H = H1
∗ (0, L)× L2 (0, L)×H1

∗ (0, L)× L2 (0, L)× L2 (0, L)

× L2
∗ (0, L)× L2 ((0, L)× (0, 1)× (τ1, τ2)) ,

equipped with the inner product〈
Φ, Φ̃

〉
H

= ρ

∫ L

0

φφ̃dx+ µ

∫ L

0

ψψ̃dx+

∫ L

0

θθ̃dx+ τ

∫ L

0

qq̃dx

+ α1

∫ L

0

vxṽxdx+ β

∫ L

0

(γvx − px) (γṽx − p̃x) dx

+

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| z (x, σ, s) z̃ (x, σ, s) dsdσdx.
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The domain of A is

D (A) =

Φ ∈ H

∣∣∣∣∣∣∣∣
v, p∈H2(0, L) , φ, ψ∈H1

∗ (0, L) , vx (L) = px (L) = 0,
θ ∈ H1

0 (0, L) , q ∈ H1 (0, L) ∩ L2
∗ (0, L) ,

z, zσ ∈ L2 ((0, L)× (0, 1)× (τ1, τ2)) ,
z (x, 0, s) = ψ (x) in (0, L)

 ,

and it is dense in H.
We have the following existence and uniqueness result.

Theorem 2.1. Assume that Φ0 ∈ H and (3) holds, then system (8)-(9) has a
unique solution Φ ∈ C (R+;H). Moreover, if Φ0 ∈ D (A), then

Φ ∈ C
(
R+;D (A)

)
∩ C1

(
R+;H

)
.

Proof. To obtain the above result, we need to prove that A : D (A) → H is
a maximal monotone operator, which means A is dissipative and Id − A is
surjective. First, for any Φ = (v, φ, p, ψ, θ, q, z)

T ∈ D (A), by using the inner
product and integration by parts, we can obtain that

⟨AΦ,Φ⟩H = −
(
µ1 −

1

2

∫ τ2

τ1

|µ2 (s)| ds
)∫ L

0

ψ2dx− δ

∫ L

0

qqdx

− 1

2

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s) dsdx

−
∫ L

0

ψ

∫ τ2

τ1

µ2 (s) z(x, 1, s)dsdx. (11)

By using Young’s inequality, for the last term in (11) we have

−
∫ L

0

ψ

∫ τ2

τ1

µ2 (s) z(x, 1, s)dsdx

≤ 1

2

∫ τ2

τ1

|µ2 (s)| ds
∫ L

0

ψ2dx+
1

2

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s) dsdx. (12)

Substituting (12) in (11) and using (3), it follows that

⟨AΦ,Φ⟩H ≤ −C1

∫ L

0

ψ2dx− δ

∫ L

0

qqdx ≤ 0,

which implies that A is a dissipative operator. Next, we prove that the operator
Id−A is surjective.

Let F =(f1, ..., f7)
T∈H, we prove that there exists Φ=(v, φ, p, ψ, θ, q, z)

T∈
D (A) satisfying

(Id−A) Φ = F, (13)
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that is

v − φ = f1 ∈ H1
∗ (0, L) ,

ρφ− αvxx + γβpxx + ηθx = ρf2 ∈ L2 (0, L) ,
p− ψ = f3 ∈ H1

∗ (0, L) ,

(µ+ µ1)ψ−βpxx+γβvxx+
∫ τ2

τ1

µ2 (s) z(x, 1, s)ds = µf4 ∈ L2 (0, L) ,

θ + kqx + ηφx = f5 ∈ L2 (0, L) ,
(τ + δ) q + kθx = τf6 ∈ L2

∗ (0, L) ,
sz(x, σ, s) + zσ(x, σ, s) = sf7 ∈ L2 ((0, L)× (0, 1)× (τ1, τ2)) .

(14)

By integrating the sixth equation in (14), we obtain

θ =
τ

k

∫ x

0

f6dy −
∫ x

0

(τ + δ)

k
qdy (15)

and θ (0) = θ (L) = 0.
From (14)1 and (14)3, we have{

φ = v − f1,
ψ = p− f3.

(16)

The last equation in (14), together with Equation (16)2 and the fact that
z(x, 0, s) = ψ(x), has a unique solution

z (x, σ, s) = p (x) e−σs − f3 (x) e
−σs + se−σs

∫ σ

0

eτsf7(x, τ, s)dτ. (17)

Clearly, z, zσ ∈ L2 ((0, L)× (0, 1)× (τ1, τ2)) .
Inserting (15) and (16) into (14)2, (14)4 and (14)6, we get

ρv − αvxx + γβpxx − (τ + δ) η

k
q = h1 ∈ L2 (0, L) ,

µ3p− βpxx + γβvxx = h2 ∈ L2 (0, L) ,

(τ + δ)

k

∫ x

0

qdy − kqx − ηvx = h3 ∈ L2 (0, L) ,

(18)

where

µ3 = µ+ µ1 +

∫ τ2

τ1

µ2 (s) e
−sds,

h1 = ρ (f1 + f2)−
τη

k
f6,

h2 = µ3f3 + µf4 −
∫ τ2

τ1

µ2 (s) se
−s

∫ 1

0

eτsf7(x, τ, s)dτds,

h3 = −ηf1x − f5 +
τ

k

∫ x

0

f6dy.
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To solve (18) we consider

B
(
(v, p, q)

T
, (ṽ, p̃, q̃)

T
)
= G (ṽ, p̃, q̃)

T
, (19)

where B :
[
H1

∗ (0, L)×H1
∗ (0, L)× L2

∗ (0, L)
]2 −→ R is the bilinear form given

by

B
(
(v, p, q)

T
, (ṽ, p̃, q̃)

T
)

= ρ

∫ L

0

vṽdx+ α1

∫ L

0

vxṽxdx+
(τ + δ) η

k

∫ L

0

(vq̃ − qṽ) dx

+ µ3

∫ L

0

pp̃dx+ β

∫ L

0

(γvx − px) (γṽx − p̃x) dx

+

(
τ + δ

k

)2 ∫ L

0

(∫ x

0

qdy

∫ x

0

q̃dy

)
dx+ (τ + δ)

∫ L

0

qq̃dx,

and G :
[
H1

∗ (0, L)×H1
∗ (0, L)× L2

∗ (0, L)
]
−→ R is the linear form defined by

G (ṽ, p̃, q̃)
T
=

∫ L

0

h1ṽdx+

∫ L

0

h2p̃dx+
(τ + δ)

k

∫ L

0

h3

(∫ x

0

q̃dy

)
dx.

Now we introduce the Hilbert space V = H1
∗ (0, L) × H1

∗ (0, L) × L2
∗ (0, L) ,

equipped with the norm

∥(v, p, q)∥2V = ∥v∥22 + ∥p∥22 + ∥q∥22 + ∥vx∥22 + ∥γvx − px∥22 .

We can easily see that B and G are bounded. Furthermore, using integration
by parts, we can obtain that there exists a positive constant c such that

B
(
(v, p, q)

T
, (v, p, q)

T
)

= ρ

∫ L

0

v2dx+ α1

∫ L

0

v2xdx+ µ3

∫ L

0

p2dx+ (τ + δ)

∫ L

0

q2dx

+ β

∫ L

0

(γv − p)
2
x dx+

(
τ + δ

k

)2 ∫ L

0

(∫ x

0

qdy

)2

dx

≥ c ∥(v, p, q)∥2V ,

which implies that B (·, ·) is coercive. Consequently, the Lax-Milgram Lemma
provides that (19) has a unique solution v ∈ H1

∗ (0, L) , p ∈ H1
∗ (0, L) and

q ∈ L2
∗ (0, L).

Then, by substituting v and p into (16) and q into (15), we obtain

φ ∈ H1
∗ (0, L) , ψ ∈ H1

∗ (0, L) and θ ∈ H1
0 (0, L) .



(10 of 19) MADANI DOUIB

Next, it remains to show that

v, p ∈ H2(0, L) ∩H1
∗ (0, L) , vx (L) = px (L) = 0,

q ∈ H1(0, L) ∩ L2
∗ (0, L) .

It follows from (18) that
αvxx = ρv + γβpxx − (τ + δ) η

k
q − h1,

βpxx = µ3p+ γβvxx − h2,

kqx =
(τ + δ)

k

∫ x

0

qdy − ηvx − h3,

(20)

and therefore,

α1vxx = ρv + γµ3p−
(τ + δ) η

k
q − h1 − γh2 ∈ L2 (0, L) .

Consequently, by the regularity theory for the linear elliptic equations, it follows
that

v ∈ H2(0, L) ∩H1
∗ (0, L) .

Moreover, we have

α1

∫ L

0

vxxϕdx = ρ

∫ L

0

vϕdx+ γµ3

∫ L

0

pϕdx− (τ + δ) η

k

∫ L

0

qϕdx

−
∫ L

0

h1ϕdx− γ

∫ L

0

h2ϕdx,

for any ϕ ∈ C1 ([0, L]) ⊂ H1
∗ (0, L) (ϕ (0) = 0) . By using the integration by

parts, we obtain

vx (L)ϕ (L) = 0, ∀ϕ ∈ C1 ([0, L]) , ϕ (0) = 0.

Therefore,
vx (L) = 0.

Similarly, using the equations (20)2 and (20)3 we obtain

p ∈ H2(0, L) ∩H1
∗ (0, L) , px (L) = 0,

q ∈ H1(0, L) ∩ L2
∗ (0, L) .

Hence, there exists a unique Φ ∈ D(A) such that Equation (19) is satisfied.
Therefore, the operator Id − A is surjective. Moreover, it is easy to see that
D(A) is dense in H. Consequently, the well-posedness result follows from
Lumer-Philips theorem.
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3. Exponential decay of solutions

In this section, we state and prove the exponential decay for system (8)-(9). It
will be achieved by using the perturbed energy method. We define the following
energy functional:

E (t) :=
1

2

∫ L

0

[
ρv2t + µp2t + α1v

2
x + β (γvx − px)

2
+ θ2 + τq2

]
dx

+
1

2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| z2(x, σ, s, t)dsdσdx. (21)

The main result of this section is the following theorem.

Theorem 3.1. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the
energy E (t) satisfies, for all t ≥ 0,

E (t) ≤ λ0e
−λ1t, (22)

where λ0 and λ1 are positive constants.

To prove this result, we need the following lemmas.

Lemma 3.2. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the energy
functional satisfies

E′ (t) ≤ −C1

∫ L

0

p2tdx− δ

∫ L

0

q2dx. (23)

Proof. Multiplying (8)1, (8)2, (8)3 and (8)4 by vt, pt, θ and q, respectively,
and integrating over (0, L) and summing up, using integration by parts and
the boundary conditions, we get

1

2

d

dt

∫ L

0

[
ρv2t + µp2t + α1v

2
x + β (γvx − px)

2
+ θ2 + τq2

]
dx

= −µ1

∫ L

0

p2tdx−
∫ L

0

pt

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)dsdx− δ

∫ L

0

q2dx. (24)

Now, multiplying (8)5 by |µ2 (s)| z(x, σ, s, t), integrating the product over
(0, L)× (0, 1)× (τ1, τ2), and recalling that z(x, 0, s, t) = pt, we obtain

1

2

d

dt

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| z2(x, σ, s, t)dsdσdx

= −1

2

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2(x, 1, s, t)dsdx+
1

2

∫ L

0

p2t

∫ τ2

τ1

|µ2 (s)| dsdx. (25)
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A combination of (24) and (25) gives

E′ (t) = −
(
µ1 −

1

2

∫ τ2

τ1

|µ2 (s)| ds
)∫ L

0

p2tdx− δ

∫ L

0

q2dx

−
∫ L

0

pt

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)dsdx

− 1

2

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2(x, 1, s, t)dsdx. (26)

Now, using Young’s inequality, we can estimate

−
∫ L

0

pt

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)dsdx

≤ 1

2

∫ τ2

τ1

|µ2 (s)| ds
∫ L

0

p2tdx+
1

2

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2 (x, 1, s, t) dsdx. (27)

Substitution of (27) into (26), and using (3) give (23), which concludes the
proof.

Lemma 3.3. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the func-
tional

L1 (t) := ρ

∫ L

0

vtvdx,

satisfies

L′
1 (t) ≤ −α1

2

∫ L

0

v2xdx+
γ2β2

α1

∫ L

0

(γv − p)
2
x dx+

η2

α1

∫ L

0

θ2dx+ρ

∫ L

0

v2t dx. (28)

Proof. Taking the derivative of L1 with respect to t, using (8)1 and integrating
by parts over (0, L) and using the boundary conditions in (9), we get

L′
1 (t) = −α1

∫ L

0

v2xdx−γβ
∫ L

0

(γv − p)x vxdx−η
∫ L

0

θxvdx+ρ

∫ L

0

v2t dx. (29)

Using Young’s inequality, we obtain

−γβ
∫ L

0

(γv − p)x vxdx ≤ γ2β2

α1

∫ L

0

(γv − p)
2
x dx+

α1

4

∫ L

0

v2xdx, (30)

η

∫ L

0

θvxdx ≤ η2

α1

∫ L

0

θ2dx+
α1

4

∫ L

0

v2xdx. (31)

Estimate (28) follows by substituting (30) and (31) into (29).
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Lemma 3.4. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the func-
tional

L2 (t) := −ρ
∫ L

0

vt (γv − p) dx,

satisfies, for all ε1 > 0, the estimate

L′
2(t) ≤ −ργ

2

∫ L

0

v2t dx+

(
α2
1

4ε1
+

η2

4ε1
+ γβ

)∫ L

0

(γv − p)
2
x dx

+ ε1

∫ L

0

v2xdx+ ε1

∫ L

0

θ2dx+
ρ

2γ

∫ L

0

p2tdx. (32)

Proof. A simple differentiation of L2, using (8)1 and integrating by parts over
(0, L) and using the boundary conditions in (9), we obtain

L′
2(t) = −ργ

∫ L

0

v2t dx+ α1

∫ L

0

vx (γv − p)x dx+ γβ

∫ L

0

(γv − p)
2
x dx

− η

∫ L

0

θ (γv − p)x dx+ ρ

∫ L

0

ptvtdx. (33)

Using Young’s inequality, we get for ε1 > 0

α1

∫ L

0

vx (γv − p)x dx ≤ ε1

∫ L

0

v2xdx+
α2
1

4ε1

∫ L

0

(γv − p)
2
x dx, (34)

−η
∫ L

0

θ (γv − p)x dx ≤ ε1

∫ L

0

θ2dx+
η2

4ε1

∫ L

0

(γv − p)
2
x dx, (35)

ρ

∫ L

0

ptvtdx ≤ ργ

2

∫ L

0

v2t dx+
ρ

2γ

∫ L

0

p2tdx. (36)

Inserting (34)-(36) into (33), we get (32).

Lemma 3.5. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the func-
tional

L3 (t) := −µ
∫ L

0

pt (γv − p) dx,

satisfies, for all ε2 > 0, the estimate

L′
3(t) ≤ −β

2

∫ L

0

(γv − p)
2
x dx+

(
Cµ2

1

β
+
γ2µ2

4ε2
+ µ

)∫ L

0

p2tdx

+ ε2

∫ L

0

v2t dx+
Cµ1

β

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2(x, 1, s, t)dsdx, (37)

where C is some positive constant.
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Proof. By differentiating L3, using (8)2 and integrating by parts over (0, L)
and using the boundary conditions in (9), we obtain

L′
3(t) = −β

∫ L

0

(γv − p)
2
x dx+ µ

∫ L

0

p2tdx+ µ1

∫ L

0

pt (γv − p) dx

− γµ

∫ L

0

ptvtdx+

∫ L

0

(γv − p)

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)dsdx. (38)

Using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we get for ε2 > 0

µ1

∫ L

0

pt (γv − p) dx ≤ Cµ2
1

β

∫ L

0

p2tdx+
β

4

∫ L

0

(γv − p)
2
x dx, (39)

−γµ
∫ L

0

ptvtdx ≤ γ2µ2

4ε2

∫ L

0

p2tdx+ ε2

∫ L

0

v2t dx, (40)

∫ L

0

(γv − p)

∫ τ2

τ1

µ2 (s) z(x, 1, s, t)dsdx

≤ β

4

∫ L

0

(γv − p)
2
x dx+

C

β

∫ L

0

(∫ τ2

τ1

µ2 (s) z(x, 1, s, t)ds

)2

dx

≤ β

4

∫ L

0

(γv−p)2x dx+
C

β

∫ τ2

τ1

|µ2 (s)| ds︸ ︷︷ ︸
<µ1

∫ L

0

∫ τ2

τ1

|µ2 (s)| z2(x, 1, s, t)dsdx. (41)

Substituting (39)-(41) into (38), we obtain (37).

Lemma 3.6. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the func-
tional

L4 (t) := τ

∫ L

0

θ

(∫ x

0

q (y, t) dy

)
dx,

satisfies, for all ε3 > 0, the estimate

L′
4 (t) ≤ −k

2

∫ L

0

θ2dx+ ε3

∫ L

0

v2t dx+

(
kτ +

Cqδ
2

2k
+
η2τ2

4ε3

)∫ L

0

q2dx, (42)

where Cq is some positive constant.

Proof. Taking the derivative of L4 with respect to t, using the third and the
fourth equations in (8) and integration by parts over (0, L), we obtain

L′
4 (t) = −k

∫ L

0

θ2dx+kτ

∫ L

0

q2dx+ητ

∫ L

0

vtqdx−δ
∫ L

0

θ

(∫ x

0

q (y, t) dy

)
dx. (43)

Then, we use Young’s, Cauchy-Schwarz and Poincaré’s inequalities with ε3 > 0
on (43) to obtain (42).
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Lemma 3.7. Let (v, p, θ, q, z) be the solution of system (8)-(9). Then the func-
tional

L5(t) :=

∫ L

0

∫ 1

0

∫ τ2

τ1

se−sσ |µ2 (s)| z2 (x, σ, s, t) dsdσdx,

satisfies

L′
5(t) ≤ −e−τ2

∫ L

0

∫ τ2

τ1

|µ2(s)| z2 (x, 1, s, t) dsdx+ µ1

∫ L

0

p2tdx

− e−τ2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, σ, s, t)dsdσdx. (44)

Proof. Differentiating L5, and using the fifth equation in (8), we obtain

L′
5(t) = −2

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sσ |µ2 (s)| z (x, σ, s, t) zσ(x, σ, s, t)dsdσdx

= −
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sσ |µ2(s)| z2(x, σ, s, t)dsdσdx

− d

dσ

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sσ |µ2(s)| z2(x, σ, s, t)dsdσdx.

Hence

L′
5(t) = −

∫ L

0

∫ 1

0

∫ τ2

τ1

se−sσ |µ2(s)| z2(x, σ, s, t)dsdσdx

−
∫ L

0

∫ τ2

τ1

e−s |µ2(s)| z2 (x, 1, s, t) dsdx+

∫ τ2

τ1

|µ2(s)| ds︸ ︷︷ ︸
<µ1

∫ L

0

p2tdx.

Recalling e−s ≤ e−sσ ≤ 1, for all σ ∈ [0, 1], and −e−s ≤ −e−τ2 , for all s ∈
[τ1, τ2], we obtain (44).

Next, we define a Lyapunov functional L and show that it is equivalent to
the energy functional E.

Lemma 3.8. For N sufficiently large, the functional defined by

L (t) := NE (t) +

5∑
i=1

NiLi(t), ∀t ≥ 0, (45)

where N and Ni are positive real numbers to be chosen appropriately later,
satisfies

c1E (t) ≤ L (t) ≤ c2E (t) , ∀t ≥ 0, (46)

for two positive constants c1 and c2.
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Proof. Let L (t) =

5∑
i=1

NiLi(t), we obtain

|L (t)| ≤ ρN1

∫ L

0

|vtv| dx+ ρN2

∫ L

0

|vt (γv − p)| dx

+ µN3

∫ L

0

|pt (γv − p)| dx+ τN4

∫ L

0

∣∣∣∣θ(∫ x

0

q (y, t) dy

)∣∣∣∣ dx
+N5

∫ L

0

∫ 1

0

∫ τ2

τ1

∣∣se−sσµ2 (s) z
2 (x, σ, s, t)

∣∣ dsdσdx.
Exploiting Young’s, Poincaré’s, Cauchy-Schwarz inequalities, (21), and the fact
that e−sρ ≤ 1 for all ρ ∈ [0, 1], we obtain

|L (t)| ≤ r

∫ 1

0

[
v2t + p2t + v2x + (γvx − px)

2
+ θ2 + q2

]
dx

+ r

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2 (s)| z2(x, σ, s, t)dsdσdx ≤ cE (t) .

Consequently, |L(t) − NE(t)| ≤ cE(t), which yields (N − c)E (t) ≤ L (t) ≤
(N + c)E (t) . By choosing N large enough, we obtain estimate (46).

Now, we are ready to prove an exponential decay result.

Proof of Theorem 3.1. By differentiating (45) and recalling (23), (28), (32),
(37), (42) and (44), we obtain that

L′ (t) ≤−
[ργ
2
N2 − ρN1 − ε2N3 − ε3N4

] ∫ L

0

v2t dx−
[α1

2
N1 − ε1N2

] ∫ L

0

v2xdx

−
[
β

2
N3 −

γ2β2

α1
N1 −

(
α2
1

4ε1
+

η2

4ε1
+ γβ

)
N2

] ∫ L

0

(γv − p)
2
x dx

−
[
C1N − ρ

2γ
N2 −

(
Cµ2

1

β
+
γ2µ2

4ε2
+ µ

)
N3 − µ1N5

] ∫ L

0

p2tdx

−
[
k

2
N4 −

η2

α1
N1 − ε1N2

] ∫ L

0

θ2dx

−
[
δN −

(
kτ +

Cqδ
2

2k
+
η2τ2

4ε3

)
N4

] ∫ L

0

q2dx

−
[
e−τ2N5 −

Cµ1

β
N3

] ∫ L

0

∫ τ2

τ1

|µ2(s)| z2 (x, 1, s, t) dsdx

− e−τ2N5

∫ L

0

∫ 1

0

∫ τ2

τ1

s |µ2(s)| z2(x, σ, s, t)dsdσdx. (47)
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At this point, we need to choose carefully our constants. We set

ε1 =
1

N2
, ε2 =

1

N3
and ε3 =

1

N4
.

Furthermore, we choose N1 large enough so that
α1

2
N1 − 1 > 0.

Once N1 is fixed, we then choose large constants N2 and N4 such that

ργ

2
N2 − ρN1 − 2 > 0,

k

2
N4 −

η2

α1
N1 − 1 > 0.

Then, we choose N3 large enough so that

β

2
N3 −

γ2β2

α1
N1 −

(
α2
1

4
N2 +

η2

4
N2 + γβ

)
N2 > 0.

Next, we select N5 large enough so that

e−τ2N5 −
Cµ1

β
N3 > 0.

For fixed N2, N3, N4 and N5, we choose N large enough such that (46) remains
valid and

C1N − ρ

2γ
N2 −

(
Cµ2

1

β
+
γ2µ2

4
N3 + µ

)
N3 − µ1N5 > 0,

δN −
(
kτ +

Cqδ
2

2k
+
η2τ2

4
N4

)
N4 > 0.

Finally, we deduce that there exist positive constant c3 such that (47) becomes

L′ (t) ≤ −c3E(t), ∀t ≥ 0. (48)

Next, combining (46) and (48), we have

L′ (t) ≤ −λ1L (t) , ∀t ≥ 0, (49)

where λ1 =
c3
c2
> 0, A simple integration of (48) over (0, t) yields

L (t) ≤ L (0) e−λ1t, ∀t ≥ 0. (50)

At last, by combining (46) and (50) we obtain (22) with λ0 =
c2E (0)

c1
, which

completes the proof.
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