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Abstract. Given a C∞ manifold X, denote by Cm
X the sheaf of m-

times differentiable real-valued functions and by Dm,r
X the sheaf of dif-

ferential operators of order ≤ m with coefficient functions of class C r.
We prove that the natural morphism Dm−r,r

X −→H omRX (Cm
X ,C

r
X) is

an isomorphism.
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1. Introduction

Sheaves were invented by Jean Leray [6] as a special mathematical tool which
provides a unified approach for establishing connections between local and
global properties of topological spaces (in particular geometric objects). It is
a powerful method for studying many problems in contemporary algebra, ge-
ometry, topology, and analysis (see [5] for more details and references therein).
There are many natural examples of sheaves [5].

Leray defined cohomology groups for continuous maps, and related them
to the cohomology of the source space by means of the spectral sequence that
was introduced for this purpose. Henri Cartan reformulated sheaf theory and,
together with Jean-Pierre Serre, gave striking applications to the theory of an-
alytic spaces in their seminal work [2]. Subsequently Serre, and Grothendieck
extended these methods to algebraic geometry. Indeed, the latter’s use of
schemes led to a complete reconceptualization of the subject and the devel-
opment of new and powerful methods. Finally Sato introduced D-modules,
creating micro-local analysis (see [9] and any references therein). For this rea-
son it seems natural to apply this theory to differential operators.

In this paper, we investigate the relationship between the sheaf of linear
differential operators that satisfies a certain condition to be given in Section 2
and the sheaf of R-linear morphisms of certain sheaves.

The paper is organized as follows. In Section 2, we recall some basic def-
initions and state the main theorem. Finally, we prove in Section 3 the main
theorem by cases.
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2. Basic Facts and Main Theorem

Let X be an n-dimensional C∞-manifold and m a nonnegative integer. We de-
note by Cm

X the sheaf of real-valued functions of class Cm on X. Furthermore,
for 0 ≤ r ≤ ∞, we denote by Dm,r

X the sheaf of differential operators of order
≤ m with coefficients of class C r. Note that, for any nonnegative integer r,
the sheaf D0,r

X coincide with the sheaf C r
X , i.e.

D0,r
X = C r

X .

As is usually the case in the literature, we recall that RX denotes the
constant sheaf on the C∞ manifold X, and C∞X denotes the sheaf of C∞ real-
valued functions on X.

Moreover, we also recall that, for any local coordinate system (xi)1≤i≤n of
X, a section P of the sheaf Dm,r

X on U , is given by (see [3, p. 13])

P =
∑
|α|≤m

aα(x)∂αx , (1)

where aα are real-valued functions of class C r.
In (1), α stands for the multi-index α := (α1, . . . , αn), where, for every

1 ≤ i ≤ n, αi ∈ {0, 1, 2, . . . }, and

∂αx := ∂α1
1 · · · ∂αnn .

We also set by classical conventions:

|α| :=
∑

αi and α! := α1! · · ·αn!.

The number |α| is called the order or degree of α.
For x0 ∈ X, one defines the sheaf Mm

X,x0
as the subsheaf of Cm

X of functions
vanishing up to order m at x0. Note that Mm

X,x0
(U) = Cm

X (U) for x0 /∈ U .
More precisely, the module Mm

X,x0
(U) consists of Cm-functions ϕ : U −→ R

such that, for all |α| ≤ m,
(∂α|Uϕ)(x0) = 0.

Let us denote by
H omRX (Cm

X ,C
r
X),

the sheaf of R-linear morphisms from the sheaf of real-valued Cm-functions to
the sheaf of real-valued C r

X -functions on X.
For any nonnegative integers m and r such that m ≥ r, we consider the

natural morphism

θ : Dm−r,r
X −→ H omRX (Cm

X ,C
r
X)

P 7−→ θ(P ),
(2)
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defined, for any section ϕ of Cm
X , by θ(P )ϕ := P (ϕ).

On the other hand, we set

Dm−r,r
X = 0, if m− r < 0. (3)

Our main result is as follows.

Theorem 2.1. For any nonnegative integers m and r, the natural morphism

θ : Dm−r,r
X −→ H omRX (Cm

X ,C
r
X)

P 7−→ θ(P ) : ϕ 7−→ θ(P )ϕ := P (ϕ),

is an isomorphism.

Theorem 2.1 is associated, in a natural way, with Peetre’s theorem ([7, 8]).
Peetre proves the following:

Theorem 2.2 (Peetre [7, 8]). Let X be a smooth manifold. Let DX and C∞X
denote the sheaves of differential operators of finite order and of C∞X real-valued
functions on X, respectively. Then we have

DX
∼= H omRX (C∞X ,C∞X ). (4)

Note that the Peetre’s Theorem appeared first in 1959 (see [7] for more
details). The proof was incomplete and this was pointed out by M. Carleson [8].
In that proof, Peetre considered the family of functions {aα} given in (1) to be
finite at each of the local chart. This gap, in the proof, was later rectified by
the same author in the article [8] published a year later, in 1960. The new proof
given in [8] is quite different from the original, and the modified technique led
to a more general representation formula for linear maps P of DX into suitable
subspaces of DX , P being assumed to shrink supports, so as to correspond with
a sheaf homomorphism.

3. Proof of Theorem 2.1

To prove Theorem 2.1, we need some intermediary results which are summa-
rized into lemmas below.

First, let us recall the following classical result (see, for instance [4, Lemma
1.1.1, p. 5]).

Lemma 3.1. Let {Ui}i∈I be a finite open covering of the unit sphere Sn−1.
Then, there exists a family of nonnegative real-valued functions of class C∞

σi : Sn−1 −→ R such that

(i) suppσi ⊆ Ui, for all i,
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(ii) 0 ≤ σi(x) ≤ 1, for all x ∈ Sn−1, i ∈ I,

(iii)
∑
i∈I

σi(x) = 1, for all x ∈ Sn−1.

In keeping with the notations of Lemma 3.1, we let, for every i ∈ I, ψi :
Rn \ {0} −→ R be the map given by

ψi(x) = σi

(
x

||x||

)
. (5)

Clearly, ψi is C∞ on Rn \ {0}. Next, let m ∈ N and η : Rn −→ R be a Cm

real-valued function such that (∂αη)(0) = 0, for all |α| ≤ m. For every i ∈ I
and every multi-index α, set

(∂α(ψi · η))(x) =


∑

{β:β≤α}

(
α

β

)
(∂βψi)(x)(∂α−βη)(x), if x 6= 0,

0, if x = 0.

(6)

It is clear that
η =

∑
i∈I

ψi · η. (7)

Therefore, we have the following.

Lemma 3.2. Let U be an open neighborhood of 0 in Rn. For m ≥ 0 and
η ∈ Mm

Rn,0(U), every function ψiη ∈ Cm
Rn(U \ {0}) extends as a function of

Mm
Rn,0(U).

Proof. Consider the map

λ : Rn \ {0} −→ Sn−1, λ(x) = x/||x||.

Then ψi = σi ◦ λ. One checks that for any β ∈ Nn, there exists a constant
C > 0 such that

||∂βλ(x)|| ≤ C · ||x||−|β|,

and a similar result holds for ψi:

||∂βψi(x)|| ≤ C · ||x||−|β|.

On the other hand, since η ∈ Mm
Rn,0(U), for |α| ≤ m, one has, by Taylor’s

formula,

∂βη(x) = ||x||m−|β|ε(x), with ε(x)→ 0 when x→ 0.
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Therefore
||∂βψi · ∂α−βη|| ≤ C · ||x||−|β| · ||x||m−|α|+|β|ε(x),

that is,
||∂βψi · ∂α−βη|| ≤ C||x||m−|α|ε(x).

Since, by the formula (6), ∂α(ψ ·η) is a linear combination of ∂βψi ·∂α−βη, the
result follows.

Furthermore, we have the following.

Lemma 3.3. For any open neighborhood U of 0 in Rn and nonnegative integer
m, if u ∈H omRRn (Cm

Rn ,C
0
Rn)(U), then

u(Mm
Rn,0) ⊆M 0

Rn,0.

Proof. First, let us consider the unit sphere Sn−1, and denote by N and S the
north and south poles of Sn−1.

Next, consider the following open covering of Sn−1: {U1, U2}, where U1

contains N and does not intersect some open neighborhood V1 of S, and, sim-
ilarly, U2 contains S and does not intersect some open neighborhood V2 of N .
By Lemma 3.1, we let {σ1, σ2} be a partition of unity subordinate to the cov-
ering {U1, U2}, and let ψ1, ψ2 be functions derived from the σi as in (5). We
denote by R+Vi the open cone generated by Vi, i = 1, 2. It is obvious that ψi
vanishes on R+Vi, and so does (ψi|U )σ ≡ ψi · σ, for any σ ∈ Mm

Rn,0(U). As

u : Cm
Rn |U −→ C 0

Rn |U is a sheaf morphism, it follows that

u(ψiσ)|R+Vi
= 0,

thus, since u(ψi · σ) is continuous,

u(ψi · σ)|
R+Vi

= 0,

from which we deduce that u(ψi · σ)(0) = 0, for every i = 1, 2. Thus,

u(σ)(0) = u(ψ1σ)(0) + u(ψ2σ)(0) = 0,

and hence,
u(σ) ∈M 0

Rn,0(U),

which completes the proof.

We are now set for the proof of a particular case of Theorem 2.1: the
isomorphism

Dm−r,r
X

∼= H omRX (Cm
X ,C

r
X),

where the integers m, r are such that 0 ≤ r ≤ m.



362 F. MASSAMBA AND P. P. NTUMBA

Definition 3.4. Let (U, φ) ≡ (U, (x1, · · · , xn)) be a local chart in an n-dimen-
sional C∞-manifold X and Pm be the ring of polynomials in (xi)1≤i≤n of
degree ≤ m. We define by Pm

φ(U) the constant sheaf on φ(U), whose stalk is
Pm.

In keeping with the notations of Definition 3.4 above, we have the following.

Lemma 3.5. Let (U, φ) be a local chart of X, and u ∈ H omRX (Cm
X ,C

0
X)(U).

If u(φ∗(Pm
φ(U))) = 0, where φ∗(Pm

φ(U)) is the inverse image of Pm
φ(U), then

u = 0.

Proof. One may assume that X is open in Rn. Let ϕ ∈ Cm
X (V ), where V is a

sub-open of X containing x0. Then we have

ϕ = q + ψ,

where q ∈ Pm−1
X (V ) and ψ ∈ Mm

Rn,x0
(V ). Then, by virtue of the hypothesis

and Lemma 3.3, we have

u(ϕ) ∈M 0
Rn,x0

(V ),

therefore

u(ϕ)(x0) = 0.

But since this holds for all x0 ∈ V , sub-open V of X, and ϕ ∈ Cm
X (V ), we

deduce that u = 0.

We are going to consider two cases to prove the Theorem 2.1.

3.1. Case 0 ≤ r ≤ m

Lemma 3.6. Let X be an n-dimensional C∞-manifold and Dm,r
X the sheaf of

differential operators of order ≤ m and whose coefficients are of class C r.
Then, the natural morphism

θ : Dm−r,r
X −→ H omRX (Cm

X ,C
r
X)

P 7−→ θ(P ) : f 7−→ θ(P )f := P (f),
(8)

is an isomorphism.

Proof. The morphism (8) is clearly injective. Indeed, let P be a section of
Dm−r,r
X such that θ(P )(f) = 0 for all polynomials f (in a local chart), then

P = 0. Let us now show that it is surjective.
To this end, let u ∈ H omRX (Cm

X ,C
r
X)(U), where U is an open subset of

X. We will show that u is in fact a differential operator of order ≤ m − r



ON SHEAVES OF DIFFERENTIAL OPERATORS 363

and whose coefficient functions are of class C r. For this purpose, consider the
differential operator

P =
∑

|β|≤m−r

aβ(x)∂βx ,

with the coefficients aβ being of class Cr and defined by induction on |β| in the
following way. Let I : U −→ R be the constant function defined by I(x) = 1,
for any x ∈ U ; and we set

a0(x) = u(I) ≡ a0.

For any multi-index α, suppose that we have defined aβ for all |β| < |α| ≤ m−r;
define aα by setting

aα(x) =

u− ∑
|β|<|α|≤m−r

aβ(x)∂βx

 (xα), (9)

where xα = xα1
1 · · ·xαnn . Clearly, aα ∈ C r

X(U). Denote by ∧α the set of all
multi-indices α′ such that |α′| = |α| ≤ m− r. By easy calculations, one shows
that

∂
α′

1
x1 · · · ∂

α′
n

xn (xα1
1 · · ·xαnn ) =

 α1!α2! · · ·αn! if αi = α′i, i = 1, . . . , n,

0 otherwise.

Without loss of generality, suppose that α′ 6= α in ∧α, and α′1 = α1. Then, for
some 2 ≤ j ≤ n, α′j > αj , we have

∂α
′

x (xα) = ∂
α′

1
x1 · · · ∂

α′
n

xn (xα1
1 · · ·xαnn ) = 0.

It follows that ( ∑
α′∈∧α

aα′(x)∂α
′

x

)
(xα) = 0.

On the other hand, since for any β such that |β| > |α|, we have ∂βx (xα) = 0, it
follows, using (9), that

P (xα) =

 ∑
|β|<|α|≤m−r

aβ(x)∂βx

 (xα) + aα(x)∂αx (xα)

=

 ∑
|β|<|α|≤m−r

aβ(x)∂βx

 (xα) + α!

u− ∑
|β|<|α|≤m−r

aβ(x)∂βx

 (xα),
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with α! := α1!α2! · · ·αn!. Thus, we deduce that, for every xα, with |α| ≤ m−r,u− 1

α!

P − (1− α!)
∑

|β|<|α|≤m−r

aβ(x)∂βx

 (xα) = 0,

which implies thatu− 1

α!

P − (1− α!)
∑

|β|<|α|≤m−r

aβ(x)∂βx

 (Pm−rφ(U) ) = 0.

Hence, by Lemma 3.5,

u =
1

α!

P − (1− α!)
∑

|β|<|α|≤m−r

aβ(x)∂βx

 ,

and the proof is complete.

In particular we deduce, from Lemma 3.6, that H omRX (Cm
X ,C

m
X ) ∼= Cm

X .

3.2. Case m < r

Lemma 3.7. For any nonnegative integers m and r such that m < r,

H omRX (Cm
X ,C

r
X) = 0.

Proof. Since C r
X ⊆ Cm

X , then

H omRX (Cm
X ,C

r
X) ⊆H omRX (Cm

X ,C
m
X ) ∼= Cm

X .

Therefore, we are reduced to prove that given m < r, if u ∈ Cm(U) and also
u · f ∈ C r(U) for any f ∈ Cm(U), then u = 0. Indeed, assume that u is not
identically 0 and let x0 with u(x0) 6= 0. Let v = u−1. Then f = v · u · f would
be of class C r in a neighborhood of x0.
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