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Dirichlet problems without asymptotic
conditions on the nonlinear term
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Dedicated with immense esteem to Jean Mawhin
on occasion of his 75th birthday

Abstract. This paper is devoted, with my great esteem, to Jean
Mawhin. Jean Mawhin, who is for me a great teacher and a very good
friend, is a fundamental reference for the research in nonlinear dif-
ferential problems dealt both with topological and variational methods.
Here, owing to this occasion in honor of Jean Mawhin, Dirichlet prob-
lems depending on a parameter are investigated, ensuring the existence
of non-zero solutions without requiring asymptotic conditions neither
at zero nor at infinity on the nonlinear term which, in addition, is not
forced by subcritical or critical growth. The approach is based on a com-
bination of variational and topological tools that in turn are developed
by starting from a fundamental estimate.
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1. Introduction

Nonlinear eigenvalue problems have been widely investigated over years (see,
for instance, [1, 2, 3, 10, 12, 20, 21, 26, 27, 30, 33, 37] and the references therein)
and even today they are a major topic of nonlinear analysis (see, for instance,
[8, 9, 23, 24, 31, 34]). In this paper, the following Dirichlet problem depending
on a positive parameter λ is investigated −∆u = λf(u) in Ω

u = 0 on ∂Ω,
(Dλ)

where Ω is a bounded domain in Rn, n ≥ 3, and f : R → R is a continuous
function. Precisely, by requiring only an algebraic condition on the nonlinear
term, which expresses a suitable growth of f in an arbitrary real interval [d, s],
the existence of at least one non-zero solution for (Dλ) is obtained for each λ
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belonging to a precise real interval (see Corollary 3.2). Our results are true
also for n = 1 and, as an example, here, a special case is presented.

Theorem 1.1. Let f : [0,+∞[→ [0,+∞[ be a continuous function. Assume
that there are two positive constants d, s, with d < s, such that

maxt∈[0,s] f(t)

s
<

∫ d

0

f(t)dt

d2
. (1.1)

Then, for each λ ∈

8
d2∫ d

0

f(t)dt

, 8
s

max
t∈[0,s]

f(t)

, the problem

 −u
′′ = λf(u) in ]0, 1[

u(0) = u(1) = 0
(Tλ)

admits at least one positive classical solution uλ ∈ C2([0, 1]) such that ‖uλ‖∞ ≤
s.

In Theorem 1.1, no asymptotic condition at zero and at infinity on f is
requested. The unique assumption is essentially a suitable growth on f in an
arbitrary interval [d, s], that is, condition (1.1). Clearly, if f is sublinear at
zero, that is

lim
t→0+

f(t)

t
= +∞, (1.2)

condition (1.1) in Theorem 1.1 is satisfied and the interval of parameters be-
comes ]

0, 8 sup
s>0

s

max
t∈[0,s]

f(t)

[
.

Of course, condition (1.2) is in turn more general than the classical

f(0) > 0. (1.3)

On the contrary, condition (1.1) can be satisfied also in the cases for which f
is superlinear, or linear, at zero, that is, Dirichlet problems (Tλ) (and, more
generally, (Dλ)) may admit positive solutions even if condition (1.2) is not
verified.

The existence of non-zero solutions for nonlinear Dirichlet problems (Dλ)
has been widely studied in several papers by topological methods (see for in-
stance the paper of Amann [1]) as well as, by variational methods (see for
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instance the paper of Crandall-Rabinowitz [20]). In these latest papers, one of
the key assumptions in order to obtain solutions for ordinary and elliptic case
respectively, is condition (1.3). Moreover, also nonlinear problems with specific
equations having a nonlinear term satisfying (1.2) and for which f(0) = 0 have
been studied. In this direction, we recall the paper of Boccardo-Escobado-
Peral [10], where the existence of one non-zero solution, without requiring the
restriction of a subcritical growth on the nonlinear term, is established, as well
as the paper of Ambrosetti-Brezis-Cerami [3], where the existence of two pos-
itive solutions, under a growth at most critical, has been obtained again for a
combined effect of concave and convex nonlinearities. It is worth noticing that,
in all previous cited papers, the existence of the best parameter λ∗, for which
the problem (Dλ) admits positive solutions for each λ ≤ λ∗, has been proved.
However, such a parameter λ∗ has not been numerically determined, but only
lower or upper bound estimations have been obtained. Indeed, on estimates
from above, that is upper bounds of λ∗, there is a very wide literature (see, for
instance, [3, 19, 20, 22, 34] and the references therein), while, at the best of
our knowledge, only few papers are devoted to estimate from below the best
value λ∗. Precisely, a lower bound of λ∗ has been established in [34] for the
specific nonlinear term f(u) = uq + up, 0 < q < 1 < p, and only for n = 1.
In [7], in the case n = 2, and in [11] when f(0) 6= 0. In this paper, as a conse-
quence of our main result a lower bound of the best parameter λ∗ is obtained.
For instance, in the ordinary case, from Theorem 1.1 the following estimate is
established

λ∗ ≥ 8 sup
s>0

s

max
[0,s]

f
.

Summarizing, in this paper two novel aspects, which are different among them,
are pointed out. On one hand, the existence of non-zero solutions to (Dλ) with-
out requiring the sublinearity at zero of the nonlinear term (see Corollary 3.2
and Example 3.10) and, on the other hand, when the nonlinear term is sublin-
ear at zero, a precise lower bound of the best parameter for which (Dλ) admits
positive solutions is given (see Corollary 3.3, Remark 3.12 and Example 3.11).

The paper is organized as follows. The main result, Theorem 3.1, is pre-
sented in Section 3 and it establishes the existence of positive solutions for
elliptic Dirichlet problems without requiring any condition at zero and at infin-
ity. As a consequence, Corollary 3.2 and Corollary 3.3 are obtained. The first
one is the parametric version of Theorem 3.1 and the second one is a special case
when the nonlinear term is sublinear at zero. It is also pointed out that such re-
sults are true for the ordinary case (see Corollary 3.6). It is worth noticing that
Corollary 3.2 can be applied to problems where the nonlinear term may be not
sublinear at zero for which the classical results as [1] and [20] cannot be applied
(see Remark 3.8 and Example 3.10) and Corollary 3.3 establishes a lower bound
of the best parameter λ∗ (see Example 3.11 and Remark 3.12). Previously, in
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Section 2, the result given in [11], that is Theorem 2.1, is recalled. Here, a
variational proof, different from the topological proof established in [11], based
on the fixed point theorem obtained by Arino-Gautier-Penot [5], is proposed.
We point out that a fundamental tool for such proofs, both variational and
topological, is a fruitful estimate due to Talenti in [36] (see the beginning of
Section 2).

2. Preliminaries and introductory results

Fix a bounded domain Ω ⊆ Rn, n ≥ 3, with a C1,1− boundary ∂Ω and
v ∈ L∞(Ω). Moreover, consider the problem −∆u = v(x) in Ω

u = 0 on ∂Ω.
(P )

It is well known that (P ) admits a unique strong solution u ∈ W 1,2
0 (Ω) ∩

W 2,p(Ω), for all p ≥ 1 (see, for instance, [25, Theorem 9.15]); in particular,
u ∈ L∞(Ω) (see, for instance, [25, Theorem 7.10]). Moreover, by [36, Theorem 2
and Remark 1] one has

‖u‖∞ ≤ B‖v‖∞ (2.1)

where

B =
1

2nπ

(
Γ
(

1 +
n

2

)
|Ω|
) 2

n

. (2.2)

Now, we point out the following result.

Theorem 2.1. Let f : R → R be a continuous function. Assume that there is
r > 0 such that

max
t∈[−Br,Br]

|f(t)| ≤ r, (2.3)

where B is given by (2.2).

Then, the problem  −∆u = f(u) in Ω

u = 0 on ∂Ω
(D)

admits at least one strong solution u0 ∈W 1,2
0 (Ω)∩W 2,p(Ω), for all p ≥ 1, such

that ‖u0‖∞ ≤ Br.
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Proof. Let fr : R → R be the continuous function defined as follows

fr(t) =


f(t) if |t| ≤ Br

f(Br) if t > Br

f(−Br) if t < −Br.

Moreover, put Fr(t) =

∫ t

0

fr(τ)dτ for all t ∈ R. Clearly, one has fr(t) ≤

max
t∈[−Br,Br]

|f(t)| for all t ∈ R, for which from (2.3) we get

fr(t) ≤ r (2.4)

for all t ∈ R. Now, take X = W 1,2
0 (Ω) endowed with the norm

‖u‖ =

(∫
Ω

|∇u(x)|2dx
) 1

2

,

and put

Φ(u) =
1

2
‖u‖2 Ψr(u) =

∫
Ω

Fr(u(x))dx Ir(u) = Φ(u)−Ψr(u)

for all u ∈ X. Standard computations show that Ir is continuously Fréchet
differentiable and weakly lower semi-continuous. Moreover, from (2.4) it follows
that Ir is coercive. Therefore, the direct method of the calculus of variations
(see, for instance, [29, Theorem 1.1]) ensures the existence of a global minimizer
u0. It follows that I ′r(u0) = 0 and u0 is a weak solution of the problem −∆u = fr(u) in Ω

u = 0 on ∂Ω.

Owing to (2.1) one has ‖u0‖∞ ≤ B‖fr(u0)‖∞. So, from (2.4) one has

‖u0‖∞ ≤ B supt∈R |fr(t)| ≤ Br, that is

‖u0‖∞ ≤ Br.

Therefore, one has f(u0(x)) = fr(u0(x)) for all x ∈ Ω for which u0 is also a
weak solution of (D) and the conclusion is achieved.

As a consequence of Theorem 2.1 the following result is obtained.
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Corollary 2.2. Let f : R → R be a nonnegative continuous function such
that f(0) > 0. Put

λ̄ =
1

B
sup
s>0

s

max
t∈[0,s]

f(t)
,

where B is given by (2.2).
Then for each λ ∈]0, λ̄[, problem (Dλ) admits at least one positive strong

solution uλ ∈W 1,2
0 (Ω) ∩W 2,p(Ω), for all p ≥ 1.

Proof. Let f∗ : R → R be the nonnegative continuous function defined as
follows

f∗(t) =

 f(t) if t ≥ 0

f(0) if t < 0

and fix λ ∈]0, λ̄[. So, there is s > 0 such that λ <
1

B

s

max
t∈[0,s]

f∗(t)
. Clearly, by

setting r =
s

B
, one has max

t∈[−Br,Br]
|λf∗(t)| < r. Hence, Theorem 2.1 ensures

the existence of one weak solution uλ for the problem −∆u = λf∗(u) in Ω

u = 0 on ∂Ω

which is non-zero since f∗(0) 6= 0 and, then it is positive owing to the strong
maximum principle. It follows that uλ is also a weak solution of (Dλ) and the
conclusion is achieved.

Remark 2.3. If in Corollary 2.2, we assume in addition that lim
t→+∞

f(t)

t
= +∞

then the conclusion also for λ = λ̄ holds true and, moreover, one has

‖uλ‖∞ ≤ s̄ ∀λ ∈]0, λ̄],

where s̄ > 0 is such that λ̄ =
1

B

s̄

max[0,s̄] f
.

Indeed, one has lim
s→0+

s

max[0,s] f
= lim

s→+∞

s

max[0,s] f
= 0 for which the func-

tion
s

max[0,s] f
admits a point of global maximum s̄ in ]0,+∞[ and λ̄ =

1

B
maxs∈]0,+∞[

s

max[0,s] f
, so that the same proof of Corollary 2.2 ensures the

conclusion.
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Remark 2.4. Clearly, the existence of a non-trivial solution to problem (Dλ)
in Corollary 2.2 is deduced from the assumption f(0) > 0. Moreover, such a
condition, without requiring that f be nonnegative everywhere and by standard
computations (see, for instance, [16, Lemma 2.3]), ensures that the obtained
solution is nonnegative in Ω.

Remark 2.5. Theorem 2.1 and Corollary 2.2 also for the ordinary case, that
is n = 1, are true. Indeed, fixed v ∈ L∞(]a, b[), the problem −u

′′ = v(x) in ]a, b[

u(a) = u(b) = 0

admits a unique solution u ∈W 2,∞(]a, b[) such that

‖u‖∞ ≤
(b− a)2

8
‖v‖∞

(see, for instance, [6, Lemma 1(1) and Lemma 2(3)]). As an example, we report
below a version of Corollary 2.2 for n = 1.

Corollary 2.6. Let f : R → R be a nonnegative continuous function such
that f(0) > 0. Put

λ̄ = 8 sup
s>0

s

max
t∈[0,s]

f(t)
.

Then for each λ ∈]0, λ̄[, problem (Tλ) admits at least one positive classical
solution uλ.

Remark 2.7. We recall that for a precise class of nonnegative continuous func-
tions f : R → R satisfying, in particular, the following conditions:

1. f(0) > 0;

2. lim
t→+∞

f(t)

t
= +∞,

Crandall and Rabinowitz in [20] established the existence of λ∗ > 0 such that,
for each λ ∈]0, λ∗[, the problem (Dλ) admits at least two positive weak so-
lutions. Moreover, they also proved that such value λ∗ is the best value for
which the problem admits solutions. However, no lower bound of λ∗ is given
there. We observe that Corollary 2.2 allows us to establish a lower bound of
λ∗. Precisely, one has

λ∗ ≥ λ̄ =
1

B
max
s>0

s

max
t∈[0,s]

f(t)
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(see also Remark 2.3). We recall that, in order to obtain the second solution
in the elliptic case, the classical AR− condition, stronger than condition 2., is
requested (see [4, 35]).

The same remark, also for the ordinary case, can be pointed out. In fact,
Amann in [1] established the same type of result for a two-point boundary
value problem, by obtaining a positive value λ∗ for which the ordinary problem
admits two positive solutions for λ < λ∗, one solution for λ = λ∗, and no
solution for λ > λ∗. As an example, from the result of Amann [1], we obtain
that there is λ∗ > 0 such that the problem −u

′′ = λeu in ]0, 1[

u(0) = u(1) = 0

admits positive classical solutions if and only if λ ∈]0, λ∗]. So, owing to Corol-
lary 2.6 we obtain a lower bound of λ∗, that is,

λ∗ ≥ 8

e
.

Taking also [22, Theorem 3.2, page 367] into account, it follows that

λ∗ ∈
[

8

e
,
π2

e

]
.

Remark 2.8. We recall that Theorem 2.1 has been established in [11] (see
also [13]) by topological methods (see [11, Theorem 1]). We observe that in
order to obtain a non-zero solution by such a result we must assume f(0) 6= 0
(see Corollary 2.2). So, we point out here that the proof of Theorem 2.1 is
variational and it gives us an additional information, that is, the solution is a
global minimizer of the associated functional Ir. Such information allows us
to obtain a positive solution under an assumption which is more general than
f(0) 6= 0, as it is shown in Section 3.

Remark 2.9. The proof of Theorem 2.1 presented here is based on the direct
method of the calculus of variations, which is a fundamental tool of variational
methods. The proof obtained in [11] instead is based on the fixed point theorem
for sequentially weakly continuous maps proved by Arino-Gautier-Penot in [5],
which is a standard tool in topological methods. Both the proofs are based on
an estimate given by Talenti established in [36], which is, hence, fundamental
for our purposes. We wish to recall that such a result has been applied in order
to obtain solutions to nonlinear differential problems for the first time in [28]
(see also [17, 18]), where also set-valued techniques have been used.
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3. Main results

In this Section, we present our main result, Theorem 3.1, and its consequences
and applications. To this end, put R(x) = sup{δ : B(x, δ) ⊆ Ω} for all x ∈ Ω,
and R = supx∈ΩR(x), for which there exists x0 ∈ Ω such that B(x0, R) ⊆ Ω.

We have the following result.

Theorem 3.1. Let f : R → R be a nonnegative continuous function. Assume
that

(a) there is r > 0 such that

max
t∈[0,Br]

f(t) ≤ r,

where B is given by (2.2);

(b) there is d > 0, with d < Br, such that∫ d

0

f(t)dt >
2(2n − 1)

R2
d2.

Then, problem (D) admits at least one strong positive solution u0 ∈W 1,2
0 (Ω)∩

W 2,p(Ω), p ≥ 1, such that ‖u0‖∞ ≤ Br.

Proof. Without loss of generality, we can assume f(t) = f(0) for all t < 0.
From the proof of Theorem 2.1 we obtain that the solution u0 of (D) is a
global minimizer for the functional Ir. Now, put

ud(x) :=



0 if x ∈ Ω \B(x0, R)

2d

R
(R− |x− x0|) if x ∈ B(x0, R) \B(x0, R/2)

d if x ∈ B(x0, R/2).

Clearly, one has that ud ∈ X and ‖ud‖∞ = d < Br for which Fr(d) >
2(2n − 1)

R2
d2. It follows

Ψr(ud)

Φ(ud)
≥ R2

2(2n − 1)

Fr(d)

d2
> 1. Therefore, one has

Ir(ud) < Ir(0) and hence we obtain Ir(u0) ≤ Ir(ud) < 0, for which u0 6= 0 and
from the maximum principle the conclusion follows.

As a consequence of Theorem 3.1 we obtain the following result.
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Corollary 3.2. Let f : R → R be a nonnegative continuous function. Put
F (t) =

∫ t
0
f(ξ)dξ for all t ∈ R and assume that there are two positive constants

s, d, with d < s, such that

maxt∈[0,s] f(t)

s
<

(
R2

2B(2n − 1)

)
F (d)

d2
. (3.1)

Then for each λ ∈
]

2(2n − 1)

R2

d2

F (d)
,

1

B

s

maxt∈[0,s] f(t)

[
, problem (Dλ) admits

at least one positive strong solution uλ ∈W 1,2
0 (Ω) ∩W 2,p(Ω), p ≥ 1, such that

‖uλ‖∞ ≤ s.

Proof. Fix λ as in the conclusion. Therefore, one has

B
maxt∈[0,s] f(t)

s
<

1

λ
<

(
R2

2(2n − 1)

) ∫ d
0
f(ξ)dξ

d2
.

So, setting r =
s

B
it follows

maxt∈[0,Br] λf(t)

r
< 1 and

R2

2(2n − 1)

∫ d
0
λf(ξ)dξ

d2
>

1, for which Theorem 3.1 ensures the conclusion.

Finally, as a special case of Corollary 3.2, we point out the following result.

Corollary 3.3. Let f : R → R be a nonnegative continuous function such
that

lim
t→0+

f(t)

t
= +∞.

Put

λ̄ =
1

B
sup
s>0

s

max
t∈[0,s]

f(t)
,

where B is given by (2.2).
Then for each λ ∈]0, λ̄[, problem (Dλ) admits at least one positive strong

solution uλ ∈W 1,2
0 (Ω) ∩W 2,p(Ω), p ≥ 1.

Proof. Fix λ < λ̄. Therefore, there is s > 0 such that λ <
1

B

s

maxt∈[0,s] f(t)
.

From limt→0+

R2

2(2n − 1)

F (t)

t2
= +∞ one has that there is d ∈]0, s[ such that

R2

2(2n − 1)

F (d)

d2
>

1

λ
for which

2(2n − 1)

R2

d2

F (d)
< λ <

1

B

s

maxt∈[0,s] f(t)
. Hence,

Corollary 3.2 ensures the conclusion.
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Remark 3.4. Condition (b) in Theorem 3.1 is imposed in order to obtain that
the solution is non-trivial. We recall that in literature this type of condition
has been already considered (see, for instance, [32, Theorem 3.7, (h18)] and [15,
Theorem 3.1, (3.1)]). Moreover, in order to obtain nonnegative solutions to
problem (D), without requiring that f be nonnegative everywhere, it is enough
to assume in Theorem 3.1 only f(0) ≥ 0 (see Remark 2.4).

Remark 3.5. Theorem 3.1 and Corollaries 3.2 and 3.3 hold also for n = 1
(see Remark 2.5). So, in particular, we obtain Theorem 1.1 presented in the
Introduction and the corollary below.

Corollary 3.6. Let f : R → R be a nonnegative continuous function such
that

lim
t→0+

f(t)

t
= +∞.

Put
λ̄ = 8 sup

s>0

s

max
t∈[0,s]

f(t)
.

Then for each λ ∈]0, λ̄[, problem (Tλ) admits at least one positive solution
uλ ∈ C2([0, 1]).

Remark 3.7. If in Corollary 3.3, or in Corollary 3.6, we assume in addition

that lim
t→+∞

f(t)

t
= +∞ then the conclusion also for λ = λ̄ holds true and,

moreover, one has
‖uλ‖∞ ≤ s̄ ∀λ ∈]0, λ̄],

where s̄ > 0 is such that λ̄ =
1

B

s̄

max[0,s̄] f
(see Remark 2.3).

Remark 3.8. Corollary 3.2 ensures the existence of positive solutions to (Dλ)
without any condition at zero or at infinity on the nonlinear term. We note
that, in literature, a condition at zero as (1.3) (or, in some cases, as (1.2)) is
requested (see [1, 2, 10, 20, 26, 37]). Therefore, such a result can be applied to
problems where the nonlinear term is not sublinear at zero, as Example 3.10
below shows. Clearly, results in [1, 2, 10, 20, 26, 37] cannot be applied to the
problem in Example 3.10.

Remark 3.9. When the nonlinear term, in particular, is sublinear at zero,
Corollary 3.3 ensures the existence of positive solutions to (Dλ) for each positive
λ ≤ λ̄. In literature, there are several results in this direction again for specific
equations (see for instance [3, 10]) establishing the existence of the best λ∗ for
which the problem (Dλ) admits solutions. However, no estimate on λ∗ is given
in [3] and [10]. In [34] a lower bound of λ∗ is guaranteed, but only for the
ordinary case (see [34, Corollary 1]. Our result ensures a lower bound of λ∗,
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that is, λ∗ ≥ λ̄, which can be used also for elliptic case differently to result
obtained in [34] which can be applied only to ordinary case (see Remark 3.12
and Example 3.11).

Example 3.10. Let f : R → R be the function defined as follows

f(t) =


t
√
|t| if t < 1,

√
t if 1 ≤ t ≤ 10,

h(t) if t > 10,

where h : [10,+∞[→ R is a completely arbitrary function. Owing to Corol-
lary 3.2, the problem {

−u′′ = 25f(u) in ]0, 1[,
u(0) = u(1) = 0

admits at least one positive classical solution u0 such that ‖u0‖∞ ≤ 10. It is
enough to choose d = 1, s = 10 by verifying that one has 8 1∫ 1

0
t
√
tdt

< 25 < 8 10√
10

.

We explicitly observe that in this case, the nonlinearity f is not sublinear at
zero and its behavior at infinity is completely arbitrary.

Example 3.11. Consider the problem −∆u = µuq + up in Ω

u = 0 on ∂Ω,
(Dµ)

where 0 < q < 1 < p and µ is a positive parameter, and put

µ̄ =

(
1

B

) p−q
p−1 (p− 1)(1− q)

1−q
p−1

(p− q)
p−q
p−1

. (3.2)

Owing to Corollary 3.3 the problem (Dµ) admits at least one positive solution
for each µ ≤ µ̄. So that µ̄ is a lower bound of the best parameter Λ guaranteed
by [3] (see also [34]) for which (Dµ) admits two solutions. Indeed, applying
Corollary 3.3 to  −∆u = λ (µuq + up) in Ω

u = 0 on ∂Ω,
(Dλ

µ)

the existence of solutions is obtained for each λ ≤ λ̄, where

λ̄ =
1

B
max
s>0

s

max
t∈[0,s]

f(t)
=

1

B
max
s>0

s

µsq + sp
=

1

B

1

µ
p−1
p−q

[(
1−q
p−1

) q−1
p−q

+
(

1−q
p−1

) p−1
p−q

] ,
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for which λ̄ ≥ 1 being µ ≤ µ̄.
As an example, by picking Ω = {x ∈ R3 : |x| < 1} and q = 1

2 , p = 3
2 we obtain

µ̄ = 9.

Remark 3.12. Problem (Dµ) has been introduced in [3] (see also [10]) estab-
lishing the existence of Λ > 0 for which it admits solutions if and only if µ ≤ Λ
(also a growth at most critical is assumed in order to obtain a second solution
for µ < Λ). No estimate on such parameter is provided. As a consequence of
Corollary 3.3 we obtain µ̄ as a lower bound of Λ, that is

Λ ≥ µ̄,

(see (3.2) in Example 3.11). In [34], only for the ordinary case, a lower bound
of Λ is given. Our estimate instead can be applied also to the elliptic case (see
Example 3.11).

Remark 3.13. To observe that the proof of our main result is actually a com-
bination of variational and topological tools may be interesting. Indeed, the
assumption (a) of Theorem 3.1 is equivalent to assume that −∆−1r (that is,
the unique solution of −∆u = r in Ω, u∂Ω = 0) is an upper solution of (D).
We also observe that a totally variational proof in order to obtain solutions
for (Dλ) has been obtained in [15] by applying the local minimum theorem
established in [14].
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Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta
Matematica (INdAM).

References

[1] H. Amann, On the number of solutions of asymptotically superlinear two point
boundary value problems, Arch. Rational Mech. Anal. 55 (1974), 207–213.

[2] H. Amann and T. Laetsch, Positive solutions of convex nonlinear eigenvalue
problems, Indiana Univ. Math. J. 25 (1976), 259–270.
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