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Dedicated to J. L. Mawhin at the occasion of his 75th birthday

Abstract. Based on a recent characterization of the strong maximum
principle, [3], this paper gives some periodic-parabolic counterparts of
some of the results of Chapters 8 and 9 of J. López-Gómez [22]. Among
them count some pivotal monotonicity properties of the principal eigen-
value σ[P+V,B, QT ], as well as its concavity with respect to the periodic
potential V through a point-wise periodic-parabolic Donsker–Varadhan
min-max characterization. Finally, based on these findings, this paper
sharpens, substantially, some classical results of A. Beltramo and P.
Hess [4], K. J. Brown and S. S. Lin [6], and P. Hess [14] on the ex-
istence and uniqueness of principal eigenvalues for weighted boundary
value problems.
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1. Introduction

For any given T > 0, this paper studies the existence of principal eigenvalues, λ,
for the T -periodic-parabolic weighted boundary value problem{

∂tϕ+ Lϕ = λW (x, t)ϕ in Ω× [0, T ],
Bϕ = 0 on ∂Ω× [0, T ],

(1)

under the following general assumptions:

(A1) Ω is a bounded subdomain (open and connected set) of RN , N ≥ 1, of
class C2+θ for some 0 < θ ≤ 1, whose boundary, ∂Ω, consists of two
disjoint open and closed subsets, Γ0 and Γ1, such that ∂Ω := Γ0 ∪ Γ1 (as
they are disjoint, Γ0 and Γ1 must be of class C2+θ).

(A2) L is a non-autonomous differential operator of the form

L = L(x, t) := −
N∑

i,j=1

aij(x, t)
∂2

∂xi∂xj
+

N∑
j=1

bj(x, t)
∂

∂xj
+ c(x, t),
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with aij = aij , bj , c ∈ F for all i, j ∈ {1, ..., N}, where

F :=
{
u ∈ Cθ, θ2 (Ω̄× R;R) : u(·, T + t) = u(·, t) for all t ∈ R

}
. (2)

Similarly, W ∈ F . So, L− λW has exactly the same type as L, because
c−λW ∈ F . Moreover, the operator L is assumed to be uniformly elliptic
in Q̄T , where QT stands for the (open) parabolic cylinder

QT := Ω× (0, T ).

In other words, there exists µ > 0 such that

N∑
i,j=1

aij(x, t)ξiξj ≥ µ |ξ|2 for all (x, t, ξ) ∈ Q̄T × RN ,

where | · | stands for the Euclidean norm of RN .

(A3) B : C(Γ0)⊕ C1(Ω ∪ Γ1)→ C(∂Ω) stands for the boundary operator

Bξ :=

{
ξ on Γ0
∂ξ
∂ν + β(x)ξ on Γ1

for each ξ ∈ C(Γ0)⊕ C1(Ω ∪ Γ1), where β ∈ C1+θ(Γ1) and

ν = (ν1, ..., νN ) ∈ C1+θ(∂Ω;RN )

is an outward pointing nowhere tangent vector field. Occasionally, we will
emphasize the dependence of B on β by setting B = B[β]. Naturally,
we simply set D = B if Γ1 = ∅ (Dirichlet b.c.), or N = B if Γ0 = ∅ and
β = 0 (Neumann b.c.).

Thus, the functions c(x, t) and β(x) can change sign, in strong contrast with
the classical setting of A. Beltramo and P. Hess [4], substantially refined by P.
Hess [14, Ch. II], where c, β ≥ 0 and either Γ0, or Γ1, is empty. Note that B
is the Dirichlet boundary operator on Γ0, and the Neumann, or a first order
regular oblique derivative boundary operator, on Γ1. Naturally, either Γ0, or
Γ1, can be empty.

Subsequently, besides the space F introduced in (2), we also consider the
Banach space of Hölder continuous T -periodic functions

E :=
{
u ∈ C2+θ,1+ θ

2 (Ω̄× R;R) : u(·, T + t) = u(·, t) for all t ∈ R
}

and the periodic-parabolic operator

P := ∂t + L(x, t).
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By a principal eigenvalue of the eigenvalue problem (1) it is meant a value of
λ ∈ R for which (1) possesses a positive eigenfunction, ϕ ∈ E. The main goal
of this paper is analyzing the existence and multiplicity of eigenvalues of (1) by
adapting to the periodic-parabolic context the methodology of J. López-Gómez
[18], later refined in [19] and [22, Ch. 9], in order to sharpen the classical results
of P. Hess and T. Kato [15]. Naturally, the principal eigenvalues of the weighted
problem (1) are given by the zeroes of the principal eigenvalue

Σ(λ) = σ[P − λW,B, QT ], λ ∈ R, (3)

of the tern (P−λW,B, QT ), whose existence and uniqueness, under the general
setting of this paper, goes back to [2, 3].

Throughout this paper, a function h ∈ E is said to be a supersolution of
the tern (P,B, QT ) if{

Ph ≥ 0 in QT ,
Bh ≥ 0 on ∂QT = ∂Ω× [0, T ].

If, in addition, some of these inequalities is strict, 
, then h is said to be a
strict supersolution of (P,B, QT ). A significant portion of the mathematical
analysis carried out in this paper is based on the next result, going back to
Theorem 1.2 of [3] in its greatest generality. Based on the abstract theory of
D. Daners and P. Koch-Medina [10], it extends to a periodic-parabolic context
the corresponding elliptic counterparts of J. López-Gómez & M. Molina-Meyer
[23] and H. Amann & J. López-Gómez [2]. A special version, for β ≥ 0, had
been recently given by R. Peng and X. Q. Zhao [25].

Theorem 1.1. Suppose (A1), (A2) and (A3). Then, the following conditions
are equivalent:

(a) σ[P,B, QT ] > 0.

(b) (P,B, QT ) possesses a non-negative strict supersolution h ∈ E.

(c) The resolvent operator of (P,B, QT ) is strongly positive, i.e., any strict
supersolution u ∈ E of (P,B, QT ) satisfies u � 0, in the sense that
u(x, t) > 0 for all t ∈ [0, T ] and x ∈ Ω ∪ Γ1, and

∂νu(x, t) < 0 for all t ∈ [0, T ] and x ∈ u−1(0) ∩ Γ0.

In other words, (P,B, QT ) satisfies the strong maximum principle.

Based on Theorem 1.1 one can easily derive all monotonicity properties
of σ[P,B, QT ] given in Section 2, as well as infer the point-wise min-max
characterizations of the principal eigenvalue of Donsker–Varadhan type given
in Section 3. In Section 4, based on these min-max characterizations, we will
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adopt the methodology of J. López-Gómez [19, 21, 22], in order to establish
the concavity of σ[P + V,B, QT ] with respect to the periodic potential V ∈ F .
The most pioneering results in this vain go back to T. Kato [16]. Our proof
is based on a technical device of H. Berestycki, L. Nirenberg and S. R. S.
Varadhan [5] based on the Donsker–Varadhan characterization of the principal
eigenvalue, [13]. Later, in Section 5, the concavity with respect to V will
provide us with the concavity of Σ(λ) with respect to the parameter λ ∈ R
and the real analyticity of Σ(λ), which is derived from a classical result of
F. Rellich [26] sharpened by T. Kato [17]. From all these results one can easily
derive some important global properties of Σ(λ) that provide us with some
substantial improvements of those collected by P. Hess in Chapter II of [14],
where it was imposed, in addition, that c ≥ 0 and β ≥ 0, and that either Γ0,
or Γ1, is empty. Actually, in Sections 6 and 7 we characterize the existence,
uniqueness, multiplicity and simplicity of the principal eigenvalues of (1) in
all possible cases. Crucially, in this paper we are not requiring (P,B, QT )
to satisfy the strong maximum principle. So, our analysis is much sharper
and versatile than the classical one of P. Hess [14, Ch. II]. As a result, the
problem (1) can admit two principal eigenvalues with the same sign, which is
a situation not previously considered, even in the elliptic counterpart of (1),
by the classical theory of A. Manes & A. M. Micheletti [24] and P. Hess & T.
Kato [15].

2. Some basic properties of the principal eigenvalue

This section collects some useful properties of σ[P + V,B, QT ] that are direct
consequences from Theorem 1.1. The next one establishes its monotonicity
with respect to the potential V .

Proposition 2.1. Let V1, V2 ∈ F such that V1 � V2. Then,

σ[P + V1,B, QT ] < σ[P + V2,B, QT ].

Proof. Let ϕ1 ∈ E, ϕ1 � 0, be an eigenfunction associated to the principal
eigenvalue σ1 := σ[P + V1;B, QT ]. Then,

(P + V2 − σ1)ϕ1 = (V2 − V1)ϕ1 
 0 in QT .

Thus, ϕ1 provides us with a positive strict supersolution of the tern (P + V2 −
σ1,B, QT ). Therefore, by Theorem 1.1,

0 < σ[P + V2 − σ1,B, QT ] = σ[P + V2,B, QT ]− σ1

= σ[P + V2,B, QT ]− σ[P + V1,B, QT ],

which ends the proof.
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The next two consequences of Proposition 2.1 provide us with the continu-
ous dependence of the principal eigenvalue with respect to V .

Corollary 2.2. Let Vn ∈ F , n ≥ 1, be a sequence of potentials such that

lim
n→∞

Vn = V in C(Q̄T ).

Then,
lim
n→∞

σ[P + Vn,B, QT ] = σ[P + V,B, QT ].

Proof. For every ε > 0 there exists a natural number n0 = n0(ε) > 1 such that

V − ε ≤ Vn ≤ V + ε in Q̄T for all n ≥ n0.

Thus, thanks to Proposition 2.1, for every n ≥ n0,

σ[P + V,B, QT ]− ε ≤ σ[P + Vn,B, QT ] ≤ σ[P + V,B, QT ] + ε,

which ends the proof.

Naturally, as a byproduct, Corollary 2.2 yields

Corollary 2.3. For every W ∈ F , the map Σ : R → R defined by (3) is
continuous.

Next, we will adapt Propositions 3.1, 3.2 and 3.5 of C. Cano-Casanova and
J. López-Gómez [7] to the periodic-parabolic setting of this paper. Essentially,
they establish the monotonicities of the principal eigenvalue with respect to β
and Ω, as well as the dominance of σ[P,D, QT ].

Proposition 2.4. Suppose Γ1 6= ∅ and β1, β2 ∈ C1+θ(Γ1) satisfy β1 � β2.
Then,

σ[P,B[β1], QT ] < σ[P,B[β2], QT ].

Proof. Let ϕ1 ∈ E, ϕ1 � 0, be a principal eigenfunction associated to the
principal eigenvalue σ[P,B[β1], QT ]. Then,

(P − σ[P,B[β1], QT ])ϕ1 = 0 in QT ,

ϕ1 = 0 on Γ0, and

B[β2]ϕ1 = B[β1]ϕ1 + (β2 − β1)ϕ1 = (β2 − β1)ϕ1 
 0 on Γ1

because β2 
 β1 and ϕ1(x, t) > 0 for all t ∈ [0, T ] and x ∈ Ω ∪ Γ1. Thus, ϕ1

provides us with a strict positive supersolution of

(P − σ[P,B[β1], QT ],B[β2], QT ).
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Therefore, owing to Theorem 1.1,

0 < σ[P − σ[P,B[β1], QT ],B[β2], QT ] = σ[P,B[β2], QT ]− σ[P,B[β1], QT ].

The proof is complete.

Proposition 2.5. σ[P,B, QT ] < σ[P,D, QT ] if Γ1 6= ∅.

Proof. Let ϕ� 0 be a principal eigenfunction associated to σ[P,B, QT ]. Then,
according to Theorem 1.1,

ϕ(x, t) > 0 for all x ∈ Ω ∪ Γ1 and t ∈ [0, T ].

Thus, Dϕ(x, t) = ϕ(x, t) > 0 for all x ∈ Γ1 and t ∈ [0, T ]. Hence,

Dϕ = ϕ 
 0 on ∂Ω× [0, T ].

So, ϕ provides us with a positive strict supersolution of

(P − σ[P,B, QT ],D, QT )

and therefore, by Theorem 1.1,

0 < σ[P − σ[P,B, QT ],D, QT ] = σ[P,D, QT ]− σ[P,B, QT ],

which ends the proof.

Suppose Γ1 6= ∅. Then, for every proper subdomain of Ω, Ω0, of class C2+θ

with
dist (Γ1, ∂Ω0 ∩ Ω) > 0, (4)

we denote by B[Ω0] the boundary operator defined by

B[Ω0]ξ :=

{
ξ on ∂Ω0 ∩ Ω,
Bξ on ∂Ω0 ∩ ∂Ω,

(5)

for each ξ ∈ C(Γ0)⊕ C1(Ω ∪ Γ1). In particular, B[Ω0] = D if Ω̄0 ⊂ Ω, because,
in such case, ∂Ω0 ⊂ Ω. When Γ1 = ∅, by definition, B = D and we simply
set B[Ω0] := D. The next result establishes the monotonicity of the principal
eigenvalue with respect to Ω.

Proposition 2.6. Let Ω0 be a proper subdomain of Ω of class C2+θ satisfy-
ing (4) if Γ1 6= ∅. Then,

σ[P,B, QT ] < σ[P,B[Ω0],Ω0 × (0, T )],

where B[Ω0] is the boundary operator defined by (5).
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Proof. Let ϕ � 0 be a principal eigenfunction associated to σ[P,B, QT ]. By
definition,

(P − σ[P,B, QT ])ϕ = 0 in Ω0 × (0, T ),

because Ω0 ⊂ Ω. Moreover, by construction, ϕ > 0 on (∂Ω0 ∩ Ω)× [0, T ],
ϕ = 0 on (∂Ω0 ∩ Γ0)× [0, T ],
∂νϕ+ βϕ = 0 on (∂Ω0 ∩ Γ1)× [0, T ].

Note that ∂Ω0∩Ω 6= ∅, because Ω0  Ω. Thus, ϕ|Ω0
provides us with a positive

strict supersolution of the tern

(P − σ[P,B, QT ],B[Ω0],Ω0 × (0, T )).

Therefore, thanks again to Theorem 1.1,

0 < σ[P − σ[P,B, QT ],B[Ω0],Ω0 × (0, T )]

= σ[P,B[Ω0],Ω0 × (0, T )]− σ[P,B, QT ],

which ends the proof.

As an immediate consequence of Propositions 2.4 and 2.6, the next result
holds.

Corollary 2.7. Suppose Γ1 6= ∅. Then, for every subdomain of class C2+θ of
Ω, Ω0, satisfying (4) if Γ1 6= ∅, and any β1, β2 ∈ C1+θ(Γ1) with β1 � β2,

σ[P,B[β1,Ω], QT ] < σ[P,B[β2,Ω0],Ω0 × (0, T )]. (6)

The same conclusion holds if β1 ≤ β2 and Ω0 ( Ω.

We conclude this section with an extremely useful consequence of the unique-
ness of the principal eigenvalue. It should be compared with [14, Lem. 15.3].

Proposition 2.8. Let V ∈ F be independent of x ∈ Ω, i.e., V (x, t) = V (t) for
all (x, t) ∈ QT . Then,

σ[P + V (t),B, QT ] = σ[P,B, QT ] +
1

T

∫ T

0

V (t) dt. (7)

Proof. Let ϕ� 0 be a principal eigenfunction associated to σ[P,B, QT ]. The
proof consists in searching for a real function h ∈ C1(R) such that

ψ(x, t) := eh(t)ϕ(x, t), (x, t) ∈ Q̄T ,
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provides us with a principal eigenfunction of (P + V (t),B, QT ). Since

(P + V (t))ψ(x, t) =
(
σ[P,B, QT ] + h′(t) + V (t)

)
ψ(x, t),

it becomes apparent that making the choice

h(t) =
t

T

∫ T

0

V −
∫ t

0

V, t ∈ [0, T ],

we have that h(0) = h(T ) = 0 and

h′(t) + V (t) =
1

T

∫ T

0

V

for all t ∈ [0, T ]. Thus,

(P + V (t))ψ(x, t) =

(
σ[P,B, QT ] +

1

T

∫ T

0

V

)
ψ(x, t).

Therefore, by the uniqueness of the principal eigenvalue, (7) holds.

As a byproduct of (7), for every V ∈ F independent on x ∈ Ω, we have that

Σ(λ) := σ[P + λV (t),B, QT ] = σ[P,B, QT ] + λV̄

for all λ ∈ R, where, as usual, we are denoting by V̄ the average

V̄ :=
1

T

∫ T

0

V (t) dt.

Thus, the graph of Σ(λ) is a straight line with slope V̄ . Note that V̄ can have
any sign if V changes sign, which cannot occur in the elliptic counterpart of
the theory.

We conclude this section with the next fundamental result.

Theorem 2.9. σ[P,B, QT ] is an algebraically simple eigenvalue of (P,B, QT ).

Proof. Through this proof, we set σ := σ[P,B, QT ]. By the construction of
σ in [3], σ is geometrically simple. To show that it is algebraically simple we
should see that, for any given associated eigenfunction, ϕ � 0, the boundary
value problem {

(P − σ)u = ϕ in QT ,
Bu = 0 on ∂Ω× [0, T ],
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cannot admit a solution in E. On the contrary, suppose that it admits a
solution, u ∈ E. Then, for all ω > 0, we have that{

(P + ω)u = (σ + ω)u+ ϕ in QT ,
Bu = 0 on ∂Ω× [0, T ].

Thus, according to Theorem 1.1, for sufficiently large ω > 0, we have that

u = (σ + ω)(P + ω)−1u+ (P + ω)−1ϕ. (8)

On the other hand, since Pϕ = σϕ, it becomes apparent that

(P + ω)−1ϕ =
1

σ + ω
ϕ and spr (P + ω)−1 =

1

σ + ω
.

Thus, dividing by σ + ω the identity (8) yields(
spr (P + ω)−1 − (P + ω)−1

)
u =

ϕ

(ω + σ)2
� 0.

In particular,
ϕ ∈ R

[
spr (P + ω)−1 − (P + ω)−1

]
,

which contradicts Theorem 6.1(f) of [22].

3. Donsker–Varadhan min-max characterizations

This section gives two point-wise min-max characterizations of the principal
eigenvalue σ[P,B, QT ]. These results adapt to a periodic–parabolic context
the celebrated formula of M. D. Donsker and S. R. S. Varadhan [13]. The first
one can be stated as follows.

Theorem 3.1. Let C denote the set

C := {ψ ∈ E : ψ(x, t) > 0 for all (x, t) ∈ QT and Bψ ≥ 0 on ∂Ω× [0, T ]} .

Then,

σ[P,B, QT ] = sup
ψ∈C

inf
QT

Pψ
ψ

= max
ψ∈C

inf
QT

Pψ
ψ
. (9)

Proof. Set σ1 := σ[P,B, QT ] and pick λ < σ1. Then,

σ[P − λ,B, QT ] = σ1 − λ > 0

and hence, by Theorem 1.1, (P−λ,B, QT ) satisfies Theorem 1.1(c). Thus, the
problem {

(P − λ)ψ = 1 in QT ,
Bψ = 0 on ∂Ω× [0, T ],
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admits a unique solution in E, ψ1, and ψ1 � 0. In particular, ψ1 ∈ C and
hence, C 6= ∅. Moreover, since ψ1(x, t) > 0 for all (x, t) ∈ QT , it follows that

λ <
Pψ1

ψ1
in QT .

Thus,

λ ≤ inf
QT

Pψ1

ψ1
≤ sup
ψ∈C

inf
QT

Pψ
ψ
. (10)

As this estimate holds for each λ < σ1, it becomes apparent that

σ1 ≤ sup
ψ∈C

inf
QT

Pψ
ψ
.

To prove the equality, we can argue by contradiction. Suppose

σ1 < sup
ψ∈C

inf
QT

Pψ
ψ
.

Then, there are ε > 0 and ψ ∈ C such that

σ1 + ε <
Pψ(x, t)

ψ(x, t)
for all (x, t) ∈ QT .

As this entails {
(P − σ1 − ε)ψ > 0 in QT ,
Bψ ≥ 0 on ∂Ω× [0, T ],

the function ψ provides us with a supersolution of (P − σ1 − ε,B, QT ). Thus,
by Theorem 1.1,

0 < σ[P − σ1 − ε,B, QT ] = −ε < 0,

which is impossible. Therefore,

σ1 = sup
ψ∈C

inf
QT

Pψ
ψ
,

which provides us with the first identity of (9).
Finally, let ϕ1 ∈ E, ϕ1 � 0, be a principal eigenfunction associated to σ1.

Then, by definition, {
Pϕ1 = σ1ϕ1 in QT ,
Bϕ1 = 0 on ∂Ω× [0, T ],

and ϕ1 ∈ C. Thus,

σ1 = inf
QT

Pϕ1

ϕ1
.
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Consequently, we also have that

σ1 = max
ψ∈C

inf
QT

Pψ
ψ
.

The proof is completed.

The next results allows us shortening C in the statement of Theorem 3.1.

Theorem 3.2. Let C+ be the subset of C defined by

C+ :=
{
ψ ∈ E : ψ(x, t) > 0 for all (x, t) ∈ Q̄T and Bψ ≥ 0 on ∂Ω× [0, T ]

}
.

Then,

σ1 := σ[P,B, QT ] = sup
ψ∈C+

inf
QT

Pψ
ψ
. (11)

Proof. Let λ < σ1 be. Then, arguing as in Theorem 3.1, it follows from The-
orem 1.1 that (P − λ,B, QT ) satisfies Theorem 1.1(c). Now, consider the
auxiliary problem {

(P − λ)ψ = 1 in QT ,
Bψ = 1 on ∂Ω× [0, T ],

(12)

and a function h ∈ E such that

Bh = 1 on ∂Ω× [0, T ].

Then, the change of variable
ψ = h+ w

transforms (12) into{
(P − λ)w = 1− (P − λ)h in QT ,
Bw = 0 on ∂Ω× [0, T ].

Then, owing to Theorem 1.1(c), the function

ψ := h+ (P − λ)−1[1− (P − λ)h]

provides us with the unique solution of (12) in E. By Theorem 1.1(c), ψ � 0.
In particular, ψ(x, t) > 0 for all x ∈ Ω ∪ Γ1 and t ∈ [0, T ]. Moreover, since
Bh = 1 on ∂Ω×[0, T ], we also have that h = ψ = 1 on Γ0 and hence, ψ(x, t) > 0
for all x ∈ ∂Ω and t ∈ [0, T ]. So, ψ ∈ C+. As, due to (12), we also have that

λ <
Pψ1(x, t)

ψ1(x, t)
for all (x, t) ∈ QT ,
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it becomes apparent that

λ ≤ inf
QT

Pψ1

ψ1
≤ sup
ψ∈C+

inf
QT

Pψ
ψ
. (13)

Therefore, since this inequality holds for every λ < σ1, we find that

σ1 ≤ sup
ψ∈C+

inf
QT

Pψ
ψ
.

Finally, since C+ ⊂ C,

σ1 ≤ sup
ψ∈C+

inf
QT

Pψ
ψ
≤ sup
ψ∈C

inf
QT

Pψ
ψ
.

Consequently, (11) follows from Theorem 3.1.

4. Concavity with respect to the potential

This section establishes the concavity of the map

F −→ R
V 7→ σ[V ] := σ[P + V,B, QT ]

with respect to potential V . This sharpens some classical results of T. Kato [16]
and Lemma 5.2 of P. Hess [14], assuming positivity of c(x, t) and β(x). Al-
though D. Daners and P. Koch removed these restrictions on Section 14 of [10]
under slightly less general boundary conditions than our’s, in this paper we
are providing an elementary proof of this feature avoiding the use of abstract
functional analytic methods. Our proof reveals in a rather direct way the role
played by the ellipticity of the differential operator L in the underlying theorem,
which can be stated as follows.

Theorem 4.1. For every V1, V2 ∈ F and % ∈ [0, 1], the following inequality
holds

σ[%V1 + (1− %)V2] ≥ % σ[V1] + (1− %)σ[V2]. (14)

Proof. Throughout this proof, we will set

ξ := (ξ1, ..., ξN ), ψ := (ψ1, ..., ψN ) ∈ RN .

Since L is strongly uniformly elliptic in Q̄T with aij = aji, setting

A(x, t) := (aij(x, t))1≤i,j≤N ,
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it is apparent that, for every (x, t) ∈ Ω̄× [0, T ], the bilinear form

a(ξ, ψ) :=

N∑
i,j=1

aij(x, t)ξiψj = 〈A(x, t)ξ, ψ〉, ξ, ψ ∈ RN ,

defines a scalar product in RN . Thus, setting

|ξ|a :=
√
a(ξ, ξ), ξ ∈ RN ,

we find from the Cauchy–Schwarz inequality that

2a(ξ, ψ) = 2

N∑
i,j=1

aij(x, t)ξiψj ≤ 2|ξ|a|ψ|a ≤ |ξ|2a + |ψ|2a

=

N∑
i,j=1

aij(x, t)ξiξj +

N∑
i,j=1

aij(x, t)ψiψj

(15)

for all ξ, ψ ∈ RN and (x, t) ∈ Ω̄ × [0, T ]. From this inequality it is easily seen
that the map Q : E → F defined by

Q(u) = −
N∑

i,j=1

aij(x, t)
∂u

∂xi

∂u

∂xj
= −a(∇u,∇u), u ∈ E,

is concave. Indeed, by (15), the following chain of inequalities holds for every
u1, u2 ∈ E and % ∈ [0, 1]:

Q(%u1 + (1− %)u2) = −a(∇(%u1 + (1− %)u2),∇(%u1 + (1− %)u2))

= %2Q(u1) + (1− %)2Q(u2)− 2%(1− %)a(∇u1,∇u2)

≥ %2Q(u1) + (1− %)2Q(u2) + %(1− %)(Q(u1) +Q(u2))

= %Q(u1) + (1− %)Q(u2).

Therefore, the map G : E → F defined by

G(u) := (P − c)u+ c+Q(u), u ∈ E,

is concave, because Q(u) is concave and u 7→ (P − c)u is linear and, hence,
concave. Our interest in G comes from the fact that, for every ψ ∈ C+,

Pψ
ψ

= G(logψ), (16)

which can be established through a direct, elementary, calculation, whose de-
tails are omitted here.
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Subsequently, we considerer V1, V2 ∈ F , % ∈ [0, 1] and ψ1, ψ2 ∈ C+ arbitrary.
Since ψ ∈ C+ implies ψ, 1/ψ ∈ C(Q̄T ) and ∇ψ ∈ C(Q̄T ,RN ), we have that
ψ%1 , ψ

1−%
2 ∈ C+. Thus, the concavity of G(u) yields

[P + %V1 + (1− %)V2](ψ%1ψ
1−%
2 )

ψ%1ψ
1−%
2

= %V1 + (1− %)V2 +
P(ψ%1ψ

1−%
2 )

ψ%1ψ
1−%
2

= %V1 + (1− %)V2 +G(log[ψ%1ψ
1−%
2 ])

= %V1 + (1− %)V2 +G(% logψ1 + (1− %) logψ2)

≥ %V1 + (1− %)V2 + %G(logψ1) + (1− %)G(logψ2)

= %
(P + V1)ψ1

ψ1
+ (1− %)

(P + V2)ψ2

ψ2

≥ % inf
QT

(P + V1)ψ1

ψ1
+ (1− %) inf

QT

(P + V2)ψ2

ψ2
.

Consequently, since the previous inequality holds for every ψ1, ψ2 ∈ C+, we
find that

sup
ψ∈C+

inf
QT

[P + %V1 + (1− %)V2]ψ

ψ
≥ % inf

QT

(P + V1)ψ1

ψ1
+ (1− %) inf

QT

(P + V2)ψ2

ψ2
.

Therefore, by Theorem 3.2,

σ[%V1 + (1− %)V2] ≥ % sup
ψ1∈C+

inf
QT

(P + V1)ψ1

ψ1
+ (1− %) sup

ψ2∈C+

inf
QT

(P + V2)ψ2

ψ2

= %σ[V1] + (1− %)σ[V2],

which ends the proof.

5. Analyticity of Σ(λ) := σ[P + λV,B, QT ]

The main result of this section establishes the analyticity of the principal eigen-
value Σ(λ) (see (3)) with respect to λ. It extends Lemma 15.1 of P. Hess [14],
under the assumption that c(x, t) and β(x) are non-negative, to our more gen-
eral setting. Unfortunately, the proof of [14, Lem. 15.1] contains a gap, as
there was not detailed how to infer the analyticity from M. G. Crandall and P.
H. Rabinowitz [8]. For it, one might adapt the proof of [20, Lem. 2.1.1]. The
main result of this section reads as follows.

Theorem 5.1. For every V ∈ F , the map

Σ(λ) := σ[P + λV,B, QT ], λ ∈ R, (17)
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is real analytic and concave in the sense that Σ′′(λ) ≤ 0 for all λ ∈ R. Fur-
thermore, either Σ′′ ≡ 0 in R, or there exists a discrete subset Z ⊂ R such that
Σ′′(λ) < 0 for all λ ∈ R\Z.

Proof. Set
T (λ) := P + λV, λ ∈ R,

and regard T (λ), λ ∈ R, as a family of closed operators with domain E and
values in F . Then, for every λ0 ∈ R, we can express

T (λ)u = T u+ (λ− λ0)T (1)u, u ∈ E,

where
T := P + λ0V, T (1) := V,

and there exists a constant C > 0 such that

‖T (1)u‖F = ‖V u‖F ≤ C‖u‖E + ‖T u‖F , (18)

where

‖v‖F := ‖v‖∞ + sup
x,y∈Ω,x6=y,
t∈[0,T ]

|v(x, t)− v(y, t)|
|x− y|θ

+ sup
t,s∈[0,T ],t6=s,

x∈Ω̄

|v(x, t)− v(x, s)|
|t− s| θ2

for all v ∈ F , and

‖u‖E := ‖u‖C2,1(Q̄T ) +
∑
|α|≤2

sup
x,y∈Ω,x 6=y,
t∈[0,T ]

|Dα
xv(x, t)−Dα

xv(y, t)|
|x− y|θ

+
∑
|β|≤1

sup
t,s∈[0,T ],t6=s,

x∈Ω̄

|Dβ
t v(x, t)−Dβ

t v(x, s)|
|t− s| θ2

for all u ∈ E. Note that, by definition,

‖u‖F ≤ ‖u‖E for all u ∈ E. (19)

To prove (18), we can argue as follows. By definition of the norm, for every
u ∈ E,

‖V u‖F = ‖V u‖∞ + sup
x,y∈Ω,x 6=y,
t∈[0,T ]

|V (x, t)u(x, t)− V (y, t)u(y, t)|
|x− y|θ

+ sup
t,s∈[0,T ],t6=s,

x∈Ω̄

|V (x, t)u(x, t)− V (x, s)u(x, s)|
|t− s| θ2

.
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Obviously, the first term can be estimated as follows

‖V u‖∞ ≤ ‖V ‖∞‖u‖∞ ≤ ‖V ‖F ‖u‖F .

To estimate the second term, let x, y ∈ Ω be with x 6= y and pick t ∈ [0, T ].
Then,

|V (x, t)u(x, t)−V (y, t)u(y, t)|
|x− y|θ

≤ |V (x, t)u(x, t)− V (x, t)u(y, t)|
|x− y|θ

+
|V (x, t)u(y, t)− V (y, t)u(y, t)|

|x− y|θ

≤ ‖V ‖∞
|u(x, t)−u(y, t)|
|x− y|θ

+
|V (x, t)−V (y, t)|
|x− y|θ

‖u‖∞

≤ ‖V ‖∞‖u‖F + ‖V ‖F ‖u‖∞ ≤ 2‖V ‖F ‖u‖F

and hence,

sup
x,y∈Ω,x 6=y,
t∈[0,T ]

|V (x, t)u(x, t)− V (y, t)u(y, t)|
|x− y|θ

≤ 2‖V ‖F ‖u‖F .

Similarly,
|V (x, t)u(x, t)− V (x, s)u(x, s)|

|t− s| θ2
≤ 2‖V ‖F ‖u‖F .

Hence, taking sups yields

sup
t,s∈[0,T ],t6=s,

x∈Ω̄

|V (x, t)u(x, t)− V (x, s)u(x, s)|
|t− s| θ2

≤ 2‖V ‖F ‖u‖F .

Thus, setting C := 5‖V ‖F and using (19), we find that, for every u ∈ E,

‖T (1)u‖F = ‖V u‖F ≤ 5‖V ‖F ‖u‖F ≤ C‖u‖F + ‖T u‖F ≤ C‖u‖E + ‖T u‖F

and so, (18) holds. Consequently, according to Theorem 2.6 of Section VII.2.2
of T. Kato [17], which extends a previous result of F. Rellich [26] for self-adjoint
families, T (λ) is a real holomorphic family of type (A). Thus, by Remark 2.9
of Section VII.2.3 of T. Kato [17], it follows from Theorem 2.9 that Σ(λ) is real
analytic in λ, as well as the map

R → F
λ 7→ ϕ(λ)

where ϕ(λ)� 0 is the unique eigenfunction of Σ(λ) such that
∫
QT

ϕ2(λ) = 1.
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Now, we will show that

Σ′′(λ) ≤ 0 for all λ ∈ R. (20)

Although this is a rather standard fact on concave functions from elementary
calculus, by the sake of completeness we will give complete details here. Ac-
cording to Theorem 4.1, for every λ1, λ2 ∈ R and % ∈ (0, 1],

Σ(%λ1 + (1− %)λ2) = σ[P + %λ1V + (1− %)λ2V,B, QT ]

≥ % σ[P + λ1V,B, QT ] + (1− %)σ[P + λ2V,B, QT ]

= %Σ(λ1) + (1− %)Σ(λ2).

Thus,
Σ(λ2 + %(λ1 − λ2)) ≥ Σ(λ2) + %(Σ(λ1)− Σ(λ2))

and hence,
Σ(λ2 + %(λ1 − λ2))− Σ(λ2)

%
≥ Σ(λ1)− Σ(λ2).

Therefore, for every % ∈ (0, 1] and λ1, λ2 ∈ R with λ1 > λ2,

Σ(λ2 + %(λ1 − λ2))− Σ(λ2)

%(λ1 − λ2)
≥ Σ(λ1)− Σ(λ2)

λ1 − λ2
. (21)

Consequently, letting % ↓ 0 yields

lim
%→0

Σ(λ2 + %(λ1 − λ2))− Σ(λ2)

%(λ1 − λ2)
≥ Σ(λ1)− Σ(λ2)

λ1 − λ2

for every λ1 > λ2. In other words,

Σ′(λ2) ≥ Σ(λ1)− Σ(λ2)

λ1 − λ2
if λ1 > λ2.

So, by the mean value theorem, we find that, for every λ1, λ2 ∈ R with λ1 > λ2,
there exists λ ∈ (λ2, λ1) such that

Σ′(λ2) ≥ Σ′(λ). (22)

So, Σ′′(λ) ≤ 0 for all λ ∈ R. Indeed, if there would exist λ2 ∈ R such that
Σ′′(λ2) > 0, then Σ′ should be increasing in a neighborhood of λ2, which
contradicts (22). Finally, since Σ is real analytic, also Σ′′ is real analytic and
therefore, either Σ′′ = 0, or the set of zeroes of Σ′′ must be discrete, possibly
empty. The proof is complete.

Naturally, combining Proposition 2.1 with Theorem 5.1 the next result
holds.
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Proposition 5.2. For any given V ∈ F , the map

Σ(λ) := ΣV (λ) = σ[P + λV,B, QT ], λ ∈ R,

satisfies the following properties:

(a) V 
 0 implies Σ′(λ) > 0 for all λ ∈ R.

(b) V � 0 implies Σ′(λ) < 0 for all λ ∈ R.

Proof. Suppose that V 
 0 on QT . Then, by Proposition 2.1 and Theorem 5.1,
we find that Σ′(λ) ≥ 0 for all λ ∈ R. Moreover, by analyticity, either Σ′ ≡ 0, or
Σ′ vanishes, at most, on a discrete set. Since V 
 0, Σ(λ) cannot be constant.
Thus, it satisfies the second option. Let us suppose that Σ′(λ0) = 0 for some
λ0 ∈ R. Then, by Theorem 5.1,

0 ≤ Σ′(λ) = Σ′(λ)− Σ′(λ0) =

∫ λ

λ0

Σ′′ ≤ 0 for all λ ≥ λ0.

So, Σ′ = 0 in [λ0,∞) which is impossible. Therefore, Σ′(λ) > 0 for all λ ∈ R,
which ends the proof of Part (a).

Now, suppose that V � 0 in QT . Then,

ΣV (λ) = Σ−V (−λ) for all λ ∈ R, (23)

and hence, since −V 
 0, Part (a) yields

Σ′V (λ) = −Σ′−V (−λ) < 0

for all λ ∈ R, which ends the proof of Part (b).

6. Global behavior of Σ(λ) := σ[P + λV,B, QT ]

The next result provides us with a simple periodic-parabolic counterpart of [22,
Th. 9.1]. Note that both results differ substantially.

Theorem 6.1. Given V ∈ F , consider the map Σ(λ) defined in (17). Then:

(a) If there exists x+ ∈ Ω such that V (x+, t) > 0 for all t ∈ [0, T ], or,
alternatively, ∫ T

0

min
x∈Ω̄

V (x, t) dt > 0, (24)

then,
lim
λ↓−∞

Σ(λ) = −∞. (25)
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(b) If there exists x− ∈ Ω such that V (x−, t) < 0 for all t ∈ [0, T ], or,
alternatively, ∫ T

0

max
x∈Ω̄

V (x, t) dt < 0, (26)

then,
lim
λ↑∞

Σ(λ) = −∞. (27)

(c) If there exist x+, x− ∈ Ω such that V (x+, t) > 0 and V (x−, t) < 0 for all
t ∈ [0, T ], then (25) and (27) are satisfied and hence, for some λ0 ∈ R,

Σ(λ0) = max
λ∈R

Σ(λ). (28)

Moreover, Σ′(λ0) = 0,Σ′(λ) > 0 if λ < λ0, and Σ′(λ) < 0 if λ > λ0. So,
λ0 is unique.

Proof. Suppose that there exists x+ ∈ Ω such that V (x+, t) > 0 for all t ∈
[0, T ]. Then, by continuity, there exists R > 0 such that

B+ := BR(x+) b Ω and min
B̄+×[0,T ]

V = ω > 0.

Thus, according to Proposition 2.6,

Σ(λ) = σ[P + λV,B, QT ] < σ[P + λV,D, B+ × (0, T )],

and hence, by Proposition 2.1, we find that

Σ(λ) < σ[P,D, B+ × (0, T )] + λω for all λ < 0.

Letting λ ↓ −∞ in this inequality yields (25).
Now, suppose (24). Then, thanks to Propositions 2.1 and 2.8, it becomes

apparent that, for every λ < 0,

Σ(λ) = σ[P + λV,B, QT ] ≤ σ[P + λmin
x∈Ω̄

V (x, t),B, QT ]

= σ[P,B, QT ] +
λ

T

∫ T

0

min
x∈Ω̄

V (x, t) dt.

Therefore, by (24), letting λ ↓ −∞ in this inequality also provides us with (25).
This completes the proof of Part (a). Part (b) follows easily from (23), by
applying Part (a) to the potential −V .

Finally, suppose that there exist x+, x− ∈ Ω such that

V (x+, t) > 0 and V (x+, t) < 0 for all t ∈ [0, T ].
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Then, by Parts (a) and (b), (25) and (27) hold. Thus, there exists λ0 ∈ R
satisfying (28). Obviously, Σ′(λ0) = 0. Suppose that Σ′(λ−) ≤ 0 for some
λ− < λ0. Then,

0 ≤ −Σ′(λ−) = Σ′(λ0)− Σ′(λ−) =

∫ λ0

λ−

Σ′′ ≤ 0

and hence,

Σ′(λ−) = −
∫ λ0

λ−

Σ′′ = 0.

So, Σ′′ = 0 on [λ−, λ0], which implies Σ′′ = 0 in R, by analyticity. Conse-
quently, there are two constants, a, b ∈ R, such that,

Σ(λ) = aλ+ b for all λ ∈ R.

By (25) and (27), this is impossible. Therefore, Σ′(λ) > 0 for all λ < λ0

Similarly, Σ′(λ) < 0 for all λ > λ0. This ends the proof.

As illustrated by Figure 1, the two sufficient conditions for (25) established
by Theorem 6.1(a) are supplementary, even when V 
 0.

Figure 1: Two admissible nodal configurations of V .

In Figure 1, the dark regions represent the set of (x, t) ∈ QT where V (x, t) >
0, while the white regions are the portions of QT where V (x, t) = 0. In Case
(A), V (x, t) > 0 for all t ∈ [0, T ] as soon as x ∈ Ω is chosen appropriately, but∫ T

0

min
x∈Ω̄

V (x, t) dt = 0.
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Contrarily, in Case (B), there cannot exist a point x ∈ Ω for which V (x, t) > 0
for all t ∈ [0, T ], though∫ T

0

min
x∈Ω̄

V (x, t) dt ≥
∫ t2

t1

min
x∈Ω̄

V (x, t) dt > 0

provided V (x, t) > 0 for all (x, t) ∈ Ω̄ × (t1, t2). Similarly, the two sufficient
conditions for (27) established by Theorem 6.1(b) are supplementary, even in
case V � 0.

Note that, since∫ T

0

min
x∈Ω̄

V (x, t) dt ≤
∫ T

0

max
x∈Ω̄

V (x, t) dt,

conditions (24) and (26) cannot hold simultaneously. Moreover, if there exists
x+ ∈ Ω for which V (x+, t) > 0 for all t ∈ [0, T ], then∫ T

0

max
x∈Ω̄

V (x, t) dt ≥
∫ T

0

V (x+, t) dt > 0

and hence, (26) fails. Similarly, if there exists x− ∈ Ω such that V (x−, t) < 0
for all t ∈ [0, T ], then∫ T

0

min
x∈Ω̄

V (x, t) dt ≤
∫ T

0

V (x−, t) dt < 0

and so, (24) fails.
Note that, under the assumptions of Theorem 6.1(a),∫ T

0

max
x∈Ω̄

V (x, t) dt > 0. (29)

Similarly, any of the assumptions of Theorem 6.1(b) implies∫ T

0

min
x∈Ω̄

V (x, t) dt < 0. (30)

Therefore, the next result provides us with a substantial extension of Theo-
rem 6.1. The first assertions of Parts (a) and (b) generalize [14, Lem. 15.4],
going back to A. Beltramo and P. Hess [4], where it was assumed that c ≥ 0
and β ≥ 0, and Proposition 3.2 of D. Daners [9], where no assumption on the
sign of c(x, t) was imposed, but only for Dirichlet boundary conditions.

Theorem 6.2. Given V ∈ F , consider the map Σ(λ) defined in (17). Then:
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(a) Condition (29) implies limλ↓−∞ Σ(λ) = −∞, and∫ T

0

max
x∈Ω̄

V (x, t) dt < 0 (31)

implies limλ↓−∞ Σ(λ) =∞.

(b) Condition (30) implies limλ↑∞ Σ(λ) = −∞, and∫ T

0

min
x∈Ω̄

V (x, t) dt > 0 (32)

implies limλ↑∞ Σ(λ) =∞.

(c) If ∫ T

0

min
x∈Ω̄

V (x, t) dt < 0 <

∫ T

0

max
x∈Ω̄

V (x, t) dt,

then Σ(λ0) = maxλ∈R Σ(λ) holds for some λ0 ∈ R. Moreover, Σ′(λ0) =
0,Σ′(λ) > 0 if λ < λ0, and Σ′(λ) < 0 if λ > λ0. Thus, λ0 is unique.

Proof. Since Part (b) follows easily from Part (a) and, arguing as in Theo-
rem 6.1, Part (c) is an easy consequence of Parts (a) and (b), it suffices to
prove Part (a). Suppose (29). Then, arguing as in A. Beltramo and P. Hess [4],
there exists a T -periodic function κ ∈ C2(R; Ω) such that∫ T

0

V (κ(t), t) dt > 0.

Essentially, κ(t) follows the points where V (·, t) takes the maximum, even if
they lie on the boundary! Let ψ : RN ×R→ RN ×R be the C2-diffeomorphism
defined by

(y, t) = ψ(x, t) := (x− κ(t), t).

Then, the original boundary value problem{
Pϕ+ λV ϕ = Σ(λ)ϕ in Ω× R,
Bϕ = 0 on ∂Ω× R, (33)

where ϕ ∈ E, ϕ� 0, is transformed into{
Pψϕψ + λVψϕψ = Σ(λ)ϕψ in ψ(Ω× R),
Bψϕψ = 0 on the lateral boundary of ψ(Ω× R),

(34)

where Pψ is a certain periodic-parabolic operator of the same type as P (see
the proof of [14, Lem. 15.4]), Bψ is a boundary operator of the same type as
B whose explicit expression is not important here, and

Vψ = V ◦ ψ−1|ψ(Ω̄×R), ϕψ = ϕ ◦ ψ−1|ψ(Ω̄×R).
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By construction,

p :=

∫ T

0

Vψ(0, t) dt =

∫ T

0

V (κ(t), t) dt > 0.

Moreover, since Vψ is uniformly continuous, there exists ε > 0 such that B̄ε ×
R ⊂ ψ(Ω× R) and

Vψ(y, t) ≥ c(t) = Vψ(0, t)− p

2T
for all (y, t) ∈ B̄ε × R,

where Bε stands for the ball of radius ε centered at 0.
According to (34), the restriction h := ϕψ|B̄ε×R provides us with a positive

strict supersolution of

(Pψ + λVψ − Σ(λ),D, Bε × (0, T )) .

Thus, thanks to Theorem 1.1,

σ [Pψ + λVψ − Σ(λ),D, Bε × (0, T )] > 0.

Equivalently,
Σ(λ) < σ [Pψ + λVψ,D, Bε × (0, T )] .

Since Vψ ≥ c, we have that λVψ ≤ λc for all λ < 0. Hence, by Propositions 2.1
and 2.8, it becomes apparent that

Σ(λ) < σ [Pψ + λc(t),D, Bε × (0, T )] = σ [Pψ,D, Bε × (0, T )] +
λ

T

∫ T

0

c(t) dt.

On the other hand, by the definition of c(t) and p, we have that∫ T

0

c(t) dt =

∫ T

0

Vψ(0, t) dt− p

2
= p− p

2
=
p

2
.

Therefore,

Σ(λ) < σ [Pψ,D, Bε × (0, T )] +
pλ

2T
for all λ < 0.

Since p > 0, letting λ→ −∞ shows that Σ(λ)→ −∞. This ends the proof of
the first claim.

Finally, suppose (31). Then, for every λ < 0, we have that

λV (x, t) ≥ λmax
x∈Ω̄

V (x, t)

and hence, by Propositions 2.1 and 2.8,

Σ(λ) ≥ σ[P,B,Ω× (0, T )] +
λ

T

∫ T

0

max
x∈Ω̄

V (x, t) dt.

Thanks to (31), letting λ ↓ −∞ in the previous estimate yields Σ(λ)→∞ and
concludes the proof.
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Although the construction in the first part of the proof follows mutatis
mutandis the proof of Lemma 15.4 of P. Hess [14], the second half seems new.
Anyway, thanks to Theorem 1.1, it is considerably shorter than the extremely
intricate comparison argument of the proof of [14, Lem. 15.4].

7. Principal eigenvalues of the weighted boundary value
problem

This section studies the weighted boundary value problem{
Pϕ = λW (x, t)ϕ in QT ,
Bϕ = 0 on ∂Ω× [0, T ],

(35)

where W ∈ F and λ ∈ R. Denoting V := −W and setting

Σ(λ) := σ[P + λV,B, QT ] = σ[P − λW,B, QT ], λ ∈ R,

it is apparent that λ∗ ∈ R is a principal eigenvalue of (35) if Σ(λ∗) = 0.
The next theorem characterizes the existence of the principal eigenvalue

of (35) when W 
 0, i.e., V = −W � 0.

Theorem 7.1. Suppose W 
 0, which implies
∫ T

0
maxx∈Ω̄W (x, t) dt > 0.

Then, (35) possesses a principal eigenvalue if and only if

Σ(−∞) := lim
λ↓−∞

Σ(λ) > 0. (36)

Moreover, it is unique if it exists and if we denote it by λ∗, then, λ∗ is a simple
eigenvalue of (P − λW,W ) as discussed by Crandall and Rabinowitz [8], i.e.,

Wϕ∗ /∈ R[P − λ∗W ] (37)

for all principal eigenfunction ϕ∗ � 0 of (35) associated to λ∗.

Proof. Since V = −W � 0, according to Proposition 5.2, Σ′(λ) < 0 for all
λ ∈ R. Thus, the limit (36) is well defined. It might be finite, or infinity.
Indeed, if

min
Q̄T

W > 0, (38)

then, for every λ < 0, we have that

Σ(λ) = σ[P − λW,B, QT ] ≥ σ[P,B, QT ]− λmin
Q̄T

W

and hence, letting λ ↓ −∞ yields Σ(−∞) = ∞. Now, instead of (38), assume
that there exists an open set Ω0 b Ω such that

W = 0 on Ω0 × [0, T ].
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Then,
Σ(λ) = σ[P − λW,B, QT ] ≤ σ[P,D,Ω0 × (0, T )]

for all λ ∈ R and hence,

Σ(−∞) ≤ σ[P,D,Ω0 × (0, T )].

On the other hand, by Theorem 6.1(b),

lim
λ↑∞

Σ(λ) = −∞. (39)

Suppose Σ(−∞) > 0. Then, Σ(λ1) > 0 for some λ1 ∈ R and hence, by (39),
there exists a unique λ∗ ∈ R such that Σ(λ∗) = 0. Conversely, if there exists
λ∗ ∈ R such that Σ(λ∗) = 0, then, Σ(λ) > 0 for all λ < λ∗ and therefore,
Σ(−∞) > 0.

It remains to prove (37). Let ϕ(λ) denote the principal eigenfunction asso-
ciated to Σ(λ) normalized so that

∫
QT

ϕ2(λ) = 1. By Theorem 5.1, Σ(λ) and

ϕ(λ) are real analytic in λ. Thus, differentiating with respect to λ the identity

(P − λW )ϕ(λ) = Σ(λ)ϕ(λ), λ ∈ R,

we find that

(P − λW )ϕ′(λ)−Wϕ(λ) = Σ′(λ)ϕ(λ) + Σ(λ)ϕ′(λ), λ ∈ R.

Thus, since Σ(λ∗) = 0, particularizing at λ = λ∗ yields

(P − λ∗W )ϕ′(λ∗) = Wϕ(λ∗) + Σ′(λ∗)ϕ(λ∗). (40)

Set ϕ∗ := ϕ(λ∗). To prove (37) we can argue by contradiction. Suppose that

Wϕ∗ ∈ R[P − λ∗W ].

Then, (40) implies
Σ′(λ∗)ϕ∗ ∈ R[P − λ∗W ]

and, since Σ′(λ∗) < 0, it becomes apparent that

N [P − λ∗W ] = span [ϕ∗] and ϕ∗ ∈ R[P − λ∗W ].

As, for every ω > 0, we have that

(P − λ∗W + ω)ϕ∗ = ωϕ∗

and, owing to Theorem 1.1, (P − λ∗W + ω)−1 is strongly order preserving,
because

σ[P − λ∗W + ω,B, QT ] = ω > 0,
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by the Krein–Rutman theorem (see [22, Th. 6.3]), it becomes apparent that

1

ω
= spect (P − λ∗W + ω)−1.

On the other hand, since ϕ∗ ∈ R[P − λ∗W ], there exists u ∈ E such that

(P − λ∗W + ω)u = ωu+ ϕ∗.

Equivalently,
1

ω
u− (P − λ∗W + ω)−1u =

1

ω
ϕ∗ > 0,

which contradicts Theorem 6.3(f)(b) of [22] and ends the proof.

Remark 7.2. Based on a very recent technical device of D. Daners and C.
Thornett [12], one can characterize the non-negative potentials W for which
Σ(−∞) <∞. This analysis will appear in [11].

Remark 7.3. Under the assumptions of Theorem 7.1, when Σ(−∞) > 0 we
have that  λ∗ > 0 if Σ(0) > 0,

λ∗ = 0 if Σ(0) = 0,
λ∗ < 0 if Σ(0) < 0,

as it has been illustrated in Figure 2.

Figure 2: The graph of Σ(λ) when W 
 0 and Σ(−∞) > 0.

Essentially, the proof of (37) is based on the fact that Σ′(λ∗) 6= 0. Thus,
the last assertion of Theorem 7.1 holds true as soon as

Σ(λ∗) = 0 and Σ′(λ∗) 6= 0.

Consequently, the proof of Theorem 7.1 can be easily adapted to get the next
result, whose proof is omitted here.
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Theorem 7.4. Suppose W � 0, which implies
∫ T

0
minx∈Ω̄W (x, t) dt < 0.

Then, (35) possesses a principal eigenvalue if and only if

Σ(∞) := lim
λ↑∞

Σ(λ) > 0.

Moreover, it is unique if it exists and if we denote it by λ∗, then, λ∗ is a simple
eigenvalue of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

According to Proposition 5.2, when W � 0 we have that Σ′(λ) > 0 for all
λ ∈ R. Figure 3 shows the graph of Σ(λ) in this case. Since Σ′(λ) > 0 for all
λ ∈ R, we have that λ∗ < 0 if Σ(0) > 0, λ∗ = 0 if Σ(0) = 0, and λ∗ > 0 if
Σ(0) < 0.

Figure 3: The graph of Σ(λ) when W � 0 and Σ(∞) > 0.

According to Theorems 7.1 and 7.4, if W 6= 0 has constat sign, then, the
problem (35) has a principal eigenvalue, if and only if,

σ[P − λW,B, QT ] > 0 for some λ ∈ R.

In the general case when W changes sign, as a byproduct of Theorem 6.1(c),
the next result holds.

Theorem 7.5. Suppose∫ T

0

min
x∈Ω̄

W (x, t) dt < 0 <

∫ T

0

max
x∈Ω̄

W (x, t) dt. (41)

Then, by Theorem 6.1(c),

lim
λ↓−∞

Σ(λ) = lim
λ↑∞

Σ(λ) = −∞.
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Moreover, there exists a unique λ0 ∈ R such that

Σ(λ0) = max
λ∈R

Σ(λ).

Furthermore, Σ′(λ0) = 0, Σ′(λ) > 0 if λ < λ0, and Σ′(λ) < 0 if λ > λ0.
Therefore, (35) possesses a principal eigenvalue, if and only if, Σ(λ0) ≥ 0.
Moreover, λ0 provides us with unique principal eigenvalue of (35) if Σ(λ0) =
0, while (35) possesses two principal eigenvalues, λ∗− < λ∗+, if Σ(λ0) > 0.
Actually, in this case,

λ∗− < λ0 < λ∗+,

and λ∗− and λ∗+ are simple eigenvalues of (P−λW,W ) as discussed by Crandall
and Rabinowitz [8].

Since Σ′(λ0) = 0, zero cannot be a simple eigenvalue of (P − λ0W,W ) if
Σ(λ0) = 0. When Σ(λ0) > 0, then:

λ∗− < 0 < λ∗+ if Σ(0) > 0,

0 = λ∗− < λ∗+ if Σ(0) = 0 and Σ′(0) > 0,

λ∗− < λ∗+ = 0 if Σ(0) = 0 and Σ′(0) < 0,

0 < λ∗− < λ∗+ if Σ(0) < 0 and Σ′(0) > 0,

λ∗− < λ∗+ < 0 if Σ(0) < 0 and Σ′(0) < 0.

In particular, (35) admits two eigenvalues with contrary sign if, and only if,
σ[P,B, QT ] > 0. Figure 4 shows the graph of Σ(λ) when Σ(0) 6= 0.

Figure 4: The graph of Σ(λ) when W changes sign and Σ(λ0) > 0.

Naturally, from this abstract theory the following generalized version of a
classical result of K. J. Brown and S. S. Lin [6] holds.
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Corollary 7.6. Suppose Σ(0) = 0 and W ∈ F satisfies (41). Then:

(a) The problem (35) possesses a negative principal eigenvalue, λ∗− < 0, if,
and only if, Σ′(0) < 0. Moreover, in such case, λ∗− is the unique non-zero
eigenvalue of (35) and Σ′(λ∗−) > 0. Therefore, λ∗− is a simple eigenvalue
of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

(b) The problem (35) possesses a positive principal eigenvalue, λ∗+ > 0, if,
and only if, Σ′(0) > 0. Moreover, in such case, λ∗+ is the unique non-zero
eigenvalue of (35) and Σ′(λ∗+) < 0. Therefore, λ∗+ is a simple eigenvalue
of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

When, in addition, Σ′(0) = 0, then λ = 0 is the unique principal eigenvalue
of (35), as illustrated in the third picture of Figure 5.

Figure 5 sketches each of the possible cases considered by Corollary 7.6.

Figure 5: The graph of Σ(λ) when W changes sign and Σ(0) = 0.

In the classical elliptic context of K. J. Brown and S. S. Lin [6] and the
periodic-parabolic counterpart of P. Hess [14], it is imposed that Γ0 = ∅, β = 0
on Γ1 = ∂Ω, and c = 0 in QT . In other words, B is the Neumann operator on
∂Ω and c = 0. Thus, since P1 = 0 in QT and B1 = 0 on ∂Ω, it is apparent
that λ = 0 provides us with an eigenvalue of the problem (35), and that ϕ = 1
is a principal eigenfunction associated to λ = 0. Thus, Σ(0) = 0 and

(P − λW )ϕ(λ) = Σ(λ)ϕ(λ), λ ∈ R,

where ϕ(0) = 1 and ϕ(λ) is real analytic. Hence, differentiating with respect
to λ and particularizing at λ = 0, it becomes apparent that

Pϕ′(0)−W = Σ′(0).
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Therefore, integrating in QT yields

Σ′(0) = − 1

|QT |

∫
QT

W (x, t) dx dt, (42)

because ∫
QT

Pϕ′(0) =

∫
QT

∂tϕ
′(0) +

∫
QT

Lϕ′(0) = 0. (43)

Indeed, since ϕ′(0) ∈ F , for every x ∈ Ω̄, we have that∫ T

0

∂tϕ
′(0) = ϕ′(0)(x, T )− ϕ′(0)(x, 0) = 0.

Moreover, for every t ∈ [0, T ], integrating by parts in Ω it becomes apparent
that ∫

Ω

Lψ′(0) dx =

∫
Ω

ϕ′(0)L∗1 dx = 0.

Therefore, (43), and hence (42), holds. Consequently, Corollary 7.6 can be
reformulated in terms of the sign of the total mass

∫
QT

W , providing us with
the following periodic-parabolic counterpart of the main theorem of K. J. Brown
and S. S. Lin [6].

Corollary 7.7. Suppose Γ0 = ∅, β = 0 on Γ1 = ∂Ω, c = 0 in QT , and W ∈ F
satisfies (41). Then:

(a) The problem (35) possesses a negative principal eigenvalue, λ∗− < 0, if,
and only if,

∫
QT

W > 0. Moreover, in such case, λ∗− is the unique non-

zero eigenvalue of (35) and Σ′(λ∗−) > 0. Therefore, λ∗− is a simple eigen-
value of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

(b) The problem (35) possesses a positive principal eigenvalue, λ∗+ > 0, if,
and only if,

∫
QT

W < 0. Moreover, in such case, λ∗+ is the unique non-

zero eigenvalue of (35) and Σ′(λ∗+) < 0. Therefore, λ∗+ is a simple eigen-
value of (P − λW,W ) as discussed by Crandall and Rabinowitz [8].

If
∫
QT

W = 0, then λ = 0 is the unique principal eigenvalue of (35).
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