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Abstract. We review recent results on the existence of weak 2π-
periodic solutions in time and space for a class of semilinear wave
equations with non-monotone nonlinearity. Similar results exist for
Dirichlet-periodic boundary conditions but, for the sake of clarity, we
exclude them in this presentation.
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1. Introduction

In the study of the range of semilinear operators L+N , finding weak solutions
to the wave equation

�u+ g(u) := utt − uxx + g(u) = f(x, t) (1)

subject to double-periodic conditions

u(x, t) = u(x, t+ 2π) = u(x+ 2π, t) for all x, t ∈ R, (2)

provides a rich source of open questions. Up to minor modifications, the results
here reviewed extend to (1) subject to the Dirichlet-periodic condition

u(0, t) = u(π, t) = 0, u(x, t) = u(x, t+ 2π) for all x ∈ (0, π), t ∈ R. (3)

Professor Jean Mawhin is a pioneer in this field. His work points out the
role of the interaction of the numerical range of N (i. e., the range of g′) with
the spectrum of L (i.e., the spectrum of −�, subject to either (2) or (3)), in
the solvability of these problems. Such spectra are given by σ(−�) = {j2 −
k2; j, k = 0, 1, . . .} for condition (2) and by σd(−�) = {j2−k2; j = 0, 1, . . . ; k =
1, 2, . . .} for condition (3).
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For example, from [22] it follows that if g is monotone and[
lim inf
|u|→∞

g(u)

u
, lim sup
|u|→∞

g(u)

u

]
∩ σ(−�) = ∅, (4)

then (1)–(2), as well as (1)–(3), has a solution. The same result may be obtained
from related developments in [4, 7, 8, 25, 27, 29, 30]. Arguing as in Theorem 3
of [14] one sees that (4) may be extended to

lim inf
|u|→∞

g(u)

u
∈ (λk, λk+1), and lim sup

|u|→∞

g(u)

u
< ν

(
lim inf
|u|→∞

g(u)

u

)
, (5)

where ν(a) > a, a /∈ σ(−�) is the smallest value for which �u+au+−ν(a)u− =
0 subject to (2) has a weak solution. That is (a, ν(a)) belongs to the Fucik
spectrum of � subject to (2).

Similar results occur in systems and wave equations in several space vari-
ables, see [2, 4, 5, 24, 32, 33]. All these works assume the range of g′ not to
include eigenvalues of infinite multiplicity in its interior. Note that only 0 is an
eigenvalue of infinite multiplicity both for (1)-(2) and (1)-(3).

When the periodicity condition (2) is replaced by

u(x, t) = u(x, t+ 2π) = u(x+ L, t) for all x, t ∈ R, (6)

and L is not a rational multiple of π the spectrum σ(�) may have multiple
eigenvalues of infinite multiplicity and may not be a discrete. Here again pro-
fessor Mawhin is a pioneer in the field with his work in [23, 21]. For additional
analysis of this case the reader is referred to [28]. Little is known on the solv-
ability of (1)-(6) when L is not a rational multiple of π. In [9] existence results
for cases where σ(�) is discrete and all the eigenvalues have finite multiplicity
are found including cases where the range of g′ may include multiple eigenvalues
of infinite multiplicty.

If in (1) we replace � by an elliptic operator, N need not be monotone as
compactness arguments based on the absence of eigenvalues of infinite multi-
plicity suffice.

From now on we let Ω := (0, 2π)× (0, 2π) and

αk,j(x, t) = sin(kx) cos(jt), βk,j(x, t) = sin(kx) sin(jt),

γk,j(x, t) = cos(kx) cos(jt), and δk,j(x, t) = cos(kx) sin(jt).
(7)

Let K be the closed subspace of L2(Ω) spanned by

{αk,k, βk,k, γk,k, δk,k ; k = 0, 1, 2, . . .}.

That is, K is the null space of the wave operator � subject to (2). If v ∈ K
then there are unique 2π-periodic null-average functions v1 and v2 and a unique
number v̄ such that v(x, t) = v̄ + v1(t+ x) + v2(t− x).
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We let H denote the Sobolev space of functions u such that u as well as its
first order partial derivatives belong to L2(Ω). The norm in L2(Ω) is denoted
by ‖ ‖ and the norm in H by ‖ ‖1. We let Y = K⊥ ∩ H. We say that
u = y + v ∈ Y ⊕K is a weak solution of (1)-(2) if∫

Ω

{(ytŷt − yxŷx)− (g(u)− f)(ŷ + v̂)} dxdt = 0, (8)

for all ŷ + v̂ ∈ Y ⊕K.

2. Existence of forced vibrations

In [20, 35] it was established that � + N subject to (2) has dense range in
L2(Ω) when g′(u) ∩ σ(−�) = ∅ for u large. That is, for all f in a dense subset
of L2(Ω), the equation (1)-(2) has a weak solution. Note that here it is not
assumed g to be monotone. More precisely, if there are constants α, β, c ∈ R,
α ≤ β, such that σ(�) ∩ [α, β] = ∅, that g : R → R is globally Lipschitz
continuous, and

−c+
α

2
s2 ≤

∫ s

0

g(t) dt ≤ c+
β

2
s2 for all s ∈ R, (9)

then (1)-(2) has a solution for each f in a dense set of L2(Ω). However, to
date, it is not known if such a range (the set of all such f ’s) is all of L2(Ω).

The arguments in [20, 35] do not provide a characterization of the f ’s for
which (1)-(2) has a solution. Nevertheless, in [12, 15, 16], sufficient conditions
for f to be in the range of u 7→ �(u) + g(u) are provided when

g(s) = λs+ h(s), with − λ /∈ σ(�) and lim
|u|→+∞

h′(u) = 0. (10)

It is readily verified that functions satisfying (10) satisfy (9).
In order to find sufficient conditions on f for (1)-(2), or (1)-(3), to have a

solution the concept of functions flat on characteristics was introduced in [16].

Definition 2.1. We say that φ is not flat on characteristics if given ε > 0
there exists δ > 0 such that m({x ∈ [0, π]; |φ(x, r ± x) − ρ| < δ}) < ε for all
r, ρ ∈ R, where m stands for the one dimensional Lebesgue measure.

In [12, Theorem 5.1] the following was proven.

Theorem 2.2. Let −λ /∈ σ(�) and f(x, t) = cq(x, t) ∈ Lp(Ω), p ≥ 2 and φ the
solution to �(φ) + λφ = q(x, t), φ(x, t) = φ(x+ 2π, t) = φ(x, t+ 2π), x, t ∈ R.
If φ is not flat on characteristics then there exist c0 such that for |c| ≥ c0 the
equation (1)-(2) has a weak solution u ∈ Lp(Ω).
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Earlier versions of Theorem 2.2 are found in [15, 16] where the existence of
bounded solutions is considered. The proofs in [12, 15, 16] are based on first
establishing the existence of approximate solutions and then establishing the
convergence of such approximations using the compactness of (� + λI)−1 on
the range of � and convergence in K in Lp using that the projection on K of
such approximations are large due to the size of the parameter c.

3. Non-existence of continuous solutions

If |g′| is bounded away from 0 (hence g is strictly monotone) and f is smooth,
in [7, 29] it is shown smoothness of f implies smoothness of solutions to (1)-(2).
As credited by P. Rabinowitz in [29], the ideas for showing such regularity go
back to L. Nirenberg.

On the other hand, for non-monotone nonlinearities one cannot expect reg-
ularity of the solutions as shown by the following theorem and lemma.

Theorem 3.1. Assume that h(s) = g(s) − λs is a differentiable function with
support in [0, D] for some D > 0, that λ > 0, that −λ /∈ σ(�) and that
h′(D/2) < −λD/2. Then there is c0 > 0 such that if |c| > c0 the problem
(1)-(2) has no continuous solution for f(x, t) = c sin(x+ t).

For the proof of Theorem 3.1 the reader is referred to [10, Theorem 2.1].

In contrast with Theorem 3.1 we have the following existence result.

Lemma 3.2. Let

g(t) =

{
τ1t+ h(t) if t ≤ 0

τ2t+ h(t) if t > 0,
(11)

with τ1, τ2 > 0, and h continuous such that

lim
|s|→∞

h(s)

s
= 0. (12)

If f(x, t) = p(x + t) or f(x, t) = p(x − t), with p : R → R, p ∈ L2[0, 2π], and
p(ξ + 2π) = p(ξ) for all ξ ∈ R, then the equation (1)–(2) has a solution.

Note that the above lemma allows for resonance (−τ1,−τ2 ∈ σ(�)) and
jumping nonlinearities (τ1 6= τ2). Its proof goes as follows. One lets

Γ = {γ : R→ R; γ is increasing, continuous and γ(t) ≤ g(t) for all t ∈ R}.

and

g1(t) := sup
γ∈Γ

γ(t). (13)
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The function g1 is continuous, non-decreasing, for all α ∈ R the set g−1(α) is
a closed interval, and if g(a) < g(t) for all t > a then g(a) = g1(a).

For each ξ ∈ R there exists aξ, bξ ∈ R such that g−1
1 ({ξ)}) = [aξ, bξ]. Given

f(x, t) = p(x + t), we define v(s) := bp(s). Due to τ1 > 0, τ2 > 0, and (12),
v ∈ L2(0, 2π). Also g(v(ξ)) = p(ξ). Thus u(x, t) = v(x + t) ∈ K and is a
weak solution to (1)-(2). These solutions may have jump discontinuities along
characteristic lines where g−1

1 is not single valued. Furthermore, such solutions
need not be unique. For example, if p(s) = ξ is constant in a segment [c, d],
and aξ < bξ then defining, for any y ∈ (c, d), vy(ζ) = ap(ζ) for ζ ∈ [c, y),
vy(ζ) = bp(ζ) for ζ ∈ (y, d], and uy(x, t) = vy(x + t) we have a continuum of
solutions to (1)-(2).

4. Bifurcation

Finally we consider, subject to the periodicity condition (2), the one parameter
equation

utt − uxx + g(x, t, u, λ) = 0, x, t, u, λ ∈ R. (14)

with g(x, t, u) = g(x + 2π, t) = g(x, t + 2π). If g(x, t, u, λ) = λG(x, t, u),
G(x, t, u) = 0, and Gu(x, t, 0) = 1 one sees that (0, λk) is a point of bifurcation
for every λk ∈ σ(−�). More precisely, there is a connected set of nonzero solu-
tions to (14)-(2) containing (0, λk) in its closure. This fact is proven imitating
the arguments for the case in which � is replaced by a second elliptic operator
when λk 6= 0, and a more detailed analysis for λk = 0 as shown in [31].

Bifurcation from infinity. Recently, bifurcation from infinity was considered
in [13] resulting in the following theorem.

Theorem 4.1. Let −λ0 ∈ σ(�), h : R → R a bounded continuous function.
Suppose there exists M > 0, γ > 1, and A > 0 such that

|h′(s)| ≤ |s|−γ for all |s| ≥M, and lim
s→±∞

h(s) = ±A. (15)

If g(s) = λs + h(s), then there is ε0 such that if 0 < λ0 − λ < ε0 the problem
(1)-(2) has a nontrivial weak solution uλ = vλ + yλ ∈ (K ⊕ Y ) ∩ L∞(Ω).
Furthermore, if λ→ λ0, then ‖vλ‖+ ‖yλ‖1 →∞.

For λ0 6= 0 the proof of Theorem 4.1 relies on the properties of sets of the
form {(x, t); |p(x, t)| < ε}, for p a trigonometric polynomial of a given degree,
using the Nazarov-Turan lemma, see [19]. The case λ0 = 0, relies on the fact
that constant functions belongs to the kernel K. This case does not extend
to the boundary condition (3) due to the absence of constant functions in the
kernel of � subject to this boundary condition.
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Imperfect bifurcation. In [11], see also [6], the equation (14) for

g(x, t, u, λ) = λ(u+ λH)2k + λR(t, x, u+ λH) (16)

subject to (2) and assuming that

lim
v→0

Rv(t, x, v)

v2k−1
= 0, and k a positive integer (17)

is considered. Sufficient conditions on H 6= 0 are provided for the existence of
solutions that accumulate at (0, 0). Since H 6= 0 this is known as imperfect
bifurcation.
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