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Global stability, or instability, of
positive equilibria of p-Laplacian

boundary value problems with p-convex
nonlinearities
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Abstract. We consider the parabolic, initial value problem

vt = ∆p(v) + λg(x, v)φp(v), in Ω× (0,∞),

v = 0, in ∂Ω× (0,∞), (IVP)

v = v0 > 0, in Ω× {0},

where Ω is a bounded domain in RN , for some integer N > 1, with
smooth boundary ∂Ω, φp(s) := |s|p−1 sgn s, s ∈ R, and ∆p denotes
the p-Laplacian, with p > max{2, N}, v0 ∈ C0(Ω), and λ > 0. The
function g : Ω×[0,∞)→ (0,∞) is C0 and, for each x ∈ Ω, the function
g(x, ·) : [0,∞)→ (0,∞) is Lipschitz continuous and strictly increasing.

Clearly, (IVP) has the trivial solution v ≡ 0, for all λ > 0. In
addition, there exists 0 < λmin(g) < λmax(g) such that:

• if λ 6∈ (λmin(g), λmax(g)) then (IVP) has no non-trivial, positive
equilibrium;

• there exists a closed, connected set of positive equilibria bifurcating
from (λmax(g), 0) and ‘meeting infinity’ at λ = λmin(g).

We prove the following results on the positive solutions of (IVP):

• if 0 < λ < λmin(g) then the trivial solution is globally asymptoti-
cally stable;

• if λmin(g) < λ < λmax(g) then the trivial solution is locally
asymptotically stable and all non-trivial, positive equilibria are
unstable;

• if λmax(g) < λ then any non-trivial solution blows up in finite
time.
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1. Introduction

We consider the parabolic, initial-boundary value problem

vt = ∆p(v) + λg(x, v)φp(v), in Ω× (0,∞),

v = 0, in ∂Ω× (0,∞),

v = v0 > 0, in Ω× {0},
(1)

where Ω is a bounded domain in RN , for some integer N > 1, with smooth
boundary ∂Ω, φp(s) := |s|p−1 sgn s, s ∈ R, and ∆p denotes the p-Laplacian,
with p > max{2, N}, v0 ∈ C0(Ω), and λ > 0.

We suppose that g : Ω× [0,∞)→ (0,∞) is C0 and, for each x ∈ Ω,

g(x, ·) : [0,∞)→ (0,∞) is strictly increasing, (2)

0 < g0(x) := g(x, 0) < g∞(x) := lim
ξ→∞

g(x, ξ), and g∞ ∈ L∞(Ω). (3)

We also suppose that g is Lipschitz with respect to ξ, in the following sense:
for any K > 0 there exists LK such that

|g(x, ξ1)− g(x, ξ2)| 6 LK |ξ1 − ξ2|, x ∈ Ω, 0 6 ξ1, ξ2 6 K. (4)

We are interested in positive solutions of (1), so we introduce the following
notation: C0

+(Ω) (respectively W 1,p
0,+(Ω)) denotes the set of ω ∈ C0(Ω) (respec-

tively ω ∈W 1,p
0 (Ω)) with ω > 0 on Ω.

It is known that for any v0 ∈ C0
+(Ω) and fixed λ > 0 the problem (1) has

a unique, positive solution t→ vλg,v0(t) ∈W 1,p
0,+(Ω), on some maximal interval

(0, T ), where we may have T <∞ or T =∞ (what we mean by a solution will
be made precise in Theorem 4.1 below). We are interested in the asymptotic
behaviour of these solutions. This asymptotic behaviour is determined by the
structure of the set of positive equilibria of (1), so we first describe this.

For a given λ > 0, a positive equilibrium is a time-independent solution
u ∈W 1,p

0,+(Ω) of (1), that is, u satisfies ∆p(u)+λg(u)φp(u) = 0 (this will be made
precise in Section 3 below). For convenience, we also call (λ, u) an equilibrium.
For any λ > 0 the function v ≡ 0 (or (λ, v) = (λ, 0)) is a (trivial) equilibrium.
Regarding non-trivial equilibria, we have the following results (see Theorem 3.1
below for a more precise description). There exists 0 < λmin(g) < λmax(g) <∞
such that:

• if λ 6∈ (λmin(g), λmax(g)) then (1) has no non-trivial, positive equilibrium
in W 1,p

0,+(Ω);
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• there exists a closed, connected set of positive equilibria (λ, e) bifurcating
from (λmax(g), 0) in R×W 1,p

0,+(Ω) and ‘meeting infinity’ at λ = λmin(g).

In some radially symmetric cases, when Ω is a ball, it is known that when
λmin(g) < λ < λmax(g) there is a unique, non-trivial equilibrium eλ ∈W 1,p

0,+(Ω).
This is discussed briefly in Section 6 below.

We will prove the following results on the asymptotic behaviour of the
positive solutions of (1). For any 0 6= v0 ∈ C0

+(Ω):

• if 0 < λ < λmin(g) then lim
t→∞

‖vλg,v0(t)‖0,p = 0

(so the trivial solution is globally asymptotically stable);

• if λmin(g) < λ < λmax(g) then:

• if v0 is ‘small’ then lim
t→∞

‖vλg,v0(t)‖0,p = 0

(so the trivial solution is locally asymptotically stable);
• if v0 is ‘large’ then lim

t→∞
|vλg,v0(t)|0 =∞;

• all the non-trivial, positive equilibria are unstable;

• if λmax(g) < λ then there exists T <∞ such that lim
t↗T
|vλg,v0(·)|0 =∞.

These results are consistent with a bifurcation analysis of the corresponding
semilinear (p = 2) problem, using the ‘principle of linearised stability’ to obtain
local stability. Such problems have been extensively investigated, see [9] and
the references therein for a summary of the main results. However, we do not
use bifurcation theory to obtain our results, which usually yields local stability
results. Instead, we use a mixture of comparison and compactness arguments
to obtain the above results.

For the quasilinear problem involving the p-Laplacian operator considered
here, these results are consistent with the results on ‘linearised stability’ in the
‘p-convex’ case in [10] (condition (2) is termed ‘p-convex’ in [10]; this terminol-
ogy has been used in other publication for very similar, but slightly different,
conditions). However, the term ‘linearised stability’ in [10] refers to the sign of
the principal eigenvalue of the linearisation of the problem at an equilibrium
solution, not to the dynamic (time-dependent) stability that we consider. For
the quasilinear problem considered here it is not clear that ‘linearised stability’,
in this sense, implies stability in the usual dynamic sense. Even if such a result
could be proved, it would give local rather than global stability.

Similar results to those obtained here have been obtained in [3, 4] for a
quasilinear problem involving the mean-curvature operator in 1-dimension. The
mean-curvature operator is significantly different to the p-Laplacian operator
considered here, so our results do not follow from those of [3, 4], even in 1-
dimension.
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2. Preliminaries

2.1. Notation

We let C0(Ω) denote the standard space of real valued, continuous functions
defined on Ω, with the standard sup-norm on | · |0 (throughout, all function
spaces will be real); Lq(Ω), q > 1, denotes the standard space of functions on Ω
whose qth power is integrable, with norm ‖ · ‖q; W 1,p

0 (Ω) denotes the standard,
first order Sobolev space of functions on Ω which are zero on ∂Ω, with norm
‖ ·‖1,p, and its dual space is denoted by W−1,p′(Ω), where p′ := p/(p−1) is the

conjugate exponent of p. By our assumption that p > N , the space W 1,p
0 (Ω) is

compactly embedded into C0(Ω).
If h : Ω × [0,∞) → R is continuous then, for any ω ∈ C0

+(Ω), we define

h(ω) ∈ C0
+(Ω) by

h(ω)(x) := h(x, ω(x)), x ∈ Ω.

Clearly, the ‘Nemitskii’ mapping ω → h(ω) : C0
+(Ω) → C0

+(Ω) is continuous.
In particular, we repeatedly use the Nemitskii mapping φp : ω → φp(ω) :
C0

+(Ω)→ C0
+(Ω).

2.2. The p-Laplacian

Formally, the p-Laplacian is defined by

∆pω := ∇ · (|∇ω|p−2∇ω),

for suitable ω, where |v| := (v2
1 + · · ·+ v2

N )1/2 for v ∈ RN . More precisely, for

any ω ∈W 1,p
0 (Ω), we define ∆p(ω) ∈W−1,p′(Ω) by∫

Ω

∆p(ω)ϕ := −
∫

Ω

|∇ω|p−2∇ω · ∇ϕ, ∀ϕ ∈W 1,p
0 (Ω). (5)

A precise definition of what is meant by a solution of (1) will be given in
Section 4.1 below.

2.3. Principal eigenvalues of the p-Laplacian

We briefly consider the weighted, nonlinear eigenvalue problem

−∆p(ψ) = µρφp(ψ), ψ ∈W 1,p
0 (Ω), (6)

where µ ∈ R and the weight function ρ ∈ L1(Ω). We say that µ is an eigenvalue
of (6), with eigenfunction ψ ∈W 1,p

0 (Ω)\{0}, if the following weak formulation
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of (6) holds∫
Ω

|∇ψ|p−2∇ψ · ∇ϕ = µ

∫
Ω

ρφp(ψ)ϕ, ∀ϕ ∈W 1,p
0 (Ω). (7)

A principal eigenvalue of (6) is an eigenvalue µ0 which has a positive eigenfunc-
tion ψ0 ∈ W 1,p

0,+(Ω) (which we will normalise by, say, |ψ0|0 = 1). The following
result is well known — see, for example, [6, Sections 3-4].

Lemma 2.1. Suppose that the weight function ρ satisfies: ρ > 0 on Ω, with
ρ > 0 on a set of positive Lebesgue measure. Then the eigenvalue problem (6)
has a unique principal eigenvalue µ0(ρ). This eigenvalue has the properties,
µ0(ρ) > 0, ψ0(ρ) > 0 on Ω, and∫

Ω

|∇ω|p > µ0(ρ)

∫
Ω

ρ|ω|p, ∀ω ∈W 1,p
0 (Ω). (8)

In addition, if ρ1, ρ2 are two such weight functions, then

ρ1 6 ρ2 on Ω and ρ1 < ρ2 on a set of positive Lebesgue measure

=⇒ µ0(ρ1) > µ0(ρ2).

Now, since g∞ ∈ L∞(Ω), we may define

0 < λmin(g) := µ0(g∞) < λmax(g) := µ0(g0),

and we denote the corresponding eigenfunctions by ψmin(g), ψmax(g).

3. Non-trivial, positive equilibria of (1)

A positive equilibrium of (1) is a solution of the problem

−∆p(u) = λg(u)φp(u), u ∈W 1,p
0,+(Ω). (9)

More precisely, a solution of (9) is defined to be a function u ∈W 1,p
0,+(Ω) which

satisfies the following weak formulation of (9),∫
Ω

|∇u|p−2∇u · ∇ϕ = λ

∫
Ω

g(u)φp(u)ϕ, ∀ϕ ∈W 1,p
0 (Ω). (10)

For convenience, we also call (λ, u) an equilibrium.
Clearly, for any λ ∈ R, the function u = 0 is a (trivial) positive equilibrium.

We denote the set of non-trivial, positive equilibria by

E+ := {(λ, u) : λ ∈ (0,∞), 0 6= u ∈W 1,p
0,+(Ω) satisfies (9)}.

We can say somewhat more about the overall structure of the set E+. In fact,
we have the following global-bifurcation-type description of E+.
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Theorem 3.1. (a) (λ, u) ∈ E+ =⇒ λ ∈ (λmin(g), λmax(g)) and u > 0 on Ω.

(b) If (λn, un) ∈ E+, n = 1, 2, . . . , then

lim
n→∞

λn = λmin(g) ⇐⇒ lim
n→∞

‖un‖1,p =∞,

lim
n→∞

λn = λmax(g) ⇐⇒ lim
n→∞

‖un‖1,p = 0.

(c) There exists a set S+ ⊂ E+ such that S+ ∪ (λmax(g), 0) is closed and
connected, and

PR S+ := {λ : (λ, u) ∈ S+, for some 0 6= u ∈W 1,p
0,+(Ω)}

= (λmin(g), λmax(g)).
(11)

Proof. (a) These results follow immediately from (2), (3), Lemma 2.1 and the
definitions of λmin(g) and λmax(g), together with the form of equation (9).

(b) Consider a sequence (λn, un) ∈ E+, n = 1, 2, . . . , such that

lim
n→∞

λn = λ∞ ∈ [λmin(g), λmax(g)] and lim
n→∞

‖un‖1,p = N∞.

(i) Suppose that 0 < N∞ < ∞. Then, by the compactness properties de-
scribed on p. 299 of [7], we may suppose that there exists 0 6= u∞ ∈
W 1,p

0,+(Ω) such that ‖un − u∞‖1,p → 0 and (λ∞, u∞) ∈ E+. Part (a) now
implies that λmin(g) < λ∞ < λmax(g).

(ii) Suppose that N∞ = ∞. By defining wn := un/‖un‖1,p, n = 1, 2, . . . , we
may suppose (by compactness and our assumption that g∞ ∈ L∞(Ω))
that there exists 0 6= w∞ ∈W 1,p

0,+(Ω) such that ‖wn − w∞‖1,p → 0 and

−∆p(w∞) = λ∞gφp(w∞),

g(x) = lim
n→∞

g(x, un(x)), x ∈ Ω.
(12)

By (2) and (3), 0 < g 6 g∞ ∈ L∞(Ω), so by Lemma 2.1 and (12),
w∞(x) > 0 for each x ∈ Ω, so that un(x) → ∞, and g(x) = g∞(x).
Hence, λ∞ = λmin(g).

(iii) Suppose that 0 = N∞. A similar (slightly simpler) argument to that of
part (ii) shows that in this case λ∞ = λmax(g).

Combining the results of (i)-(iii) now proves part (b) of the theorem.

(c) We will use the Rabinowitz-type global bifurcation results in [7] to prove
this. To do this it is convenient to extend the domain of g in (9) to Ω× R, by
setting g(x,−ξ) = −g(x, ξ), x ∈ Ω, ξ > 0. Clearly, this has no effect on the
positive solutions of (9).
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Let N ⊂ R ×W 1,p
0 (Ω) denote the set of non-trivial solutions of (9), with

N its closure, and let S denote the (maximal) connected component of N
containing (λmax(g), 0). The results in [7] (in particular, [7, Theorem 1.1]
and [7, Lemma 3.1]) show that S is unbounded in R ×W 1,p

0 (Ω) and has the
decomposition

S = {(λmax(g), 0)} ∪ S+ ∪ S−,

where
S± := {(λ,w) ∈ S : ±w(x) > 0 for all x ∈ Ω}.

We note that there are some very minor differences between equation (9) and
the problem discussed in [7]. For instance our g0 depends on x but the cor-
responding term in [7] is constant. However, it can be seen that the results
from [7] that we use are still valid in our case.

Clearly, S+ ⊂ E+. Furthermore, it follows from the form of our extended
function g in (9) that S+ = −S−, so both the sets S± must be unbounded,
and the sets {(λmax(g), 0)} ∪ S± are connected. The relation (11) now follows
from the connectedness and unboundedness of S+, together with the results of
parts (a), (b) of the theorem. This proves part (c), and so completes the proof
of Theorem 3.1.

4. Time-dependent solutions of (1)

In Section 3 we discussed equilibrium (time-independent) solutions of (1). In
this section we will discuss time-dependent solutions of (1). We first describe
an existence and uniqueness result, and then a comparison result, which will
be used to determine the long-time behaviour of the solutions.

4.1. Existence and uniqueness of positive solutions

Existence and uniqueness properties of solutions of the time-dependent prob-
lem (1) are known, and the results that we require were summarised in [14,
Section 3]. We will briefly restate these results here – for further details see [14],
and the references therein.

To state precisely what we mean by a solution of (1) we define the spaces

Σ(T ) := C([0, T ), L2(Ω)) ∩ C((0, T ),W 1,p
0 (Ω)) ∩ W 1,2

loc ((0, T ), L2(Ω)), T > 0

(we allow T = ∞ here, and likewise for other such numbers below). The
space W 1,2((0, T ), L2(Ω)) is defined on p. 378 of [13], using the notation
H1((0, T ), L2(Ω)); the loc version can be defined by a simple adaptation of
this definition. We will search for a solution of (1) in Σ(T ), for some T > 0.
Thus, in this setting, a solution v will be regarded as a time-dependent map-
ping t → v(t) : (0, T ) → W 1,p

0 (Ω), with ∆p(v(t)) ∈ W−1,p′(Ω) defined in a



200 BRYAN P. RYNNE

weak sense, for each t ∈ (0, T ) (see [14]), and satisfying the initial condition at
t = 0 as a limit in L2(Ω). More (or less) regularity at t = 0 can be attained, de-
pending on the regularity of v0 (for example if v0 ∈W 1,p

0,+(Ω) then the solution

will belong to C([0, T ),W 1,p
0 (Ω))), but the above setting will suffice here.

In view of this, we will rewrite (1) in the form

dv

dt
= ∆p(v) + λg(v)φp(v), v(0) = v0 ∈ C0

+(Ω). (13)

The following theorem summarises known results on the existence and unique-
ness of solutions of (13), together with various additional properties which will
be required below. For details and references, see the proofs of Theorem 3.1 and
Corollary 3.4 in [14], together with the discussion in [5], which also describes
most of these results, with further explanations. We note that the theorem
does not require g to satisfy the monotonicity condition (2).

Theorem 4.1. Suppose that g satisfies conditions (3) and (4) on Ω × [0,∞),
and λ > 0, v0 ∈ C0

+(Ω). Then (13) has a unique solution vλg,v0 ∈ Σ(Tλg,v0),
defined on a maximal interval [0, Tλg,v0), for some Tλg,v0 > 0, having the fol-
lowing properties:

(a) vλg,v0(0) = v0 and vλg,v0(t) ∈W 1,p
0,+(Ω) for all t ∈ (0, Tλg,v0);

(b) the function vλg,v0 : [0, Tλg,v0) → L2(Ω) is differentiable at almost all
t ∈ [0, Tλg,v0), and at such t,

d vλg,v0
dt

(t) , ∆p(vλg,v0(t)) ∈ L2(Ω),

and

d vλg,v0
dt

(t) = ∆p(vλg,v0(t)) + λg(vλg,v0(t))φp(vλg,v0(t)), in L2(Ω);

(c) the interval [0, Tλg,v0) on which the solution vλg,v0 exists is maximal, in
the sense that

Tλg,v0 <∞ =⇒ lim
t↗Tλg,v0

|vλg,v0(t)|0 =∞. (14)

If Tλg,v0 <∞ then the solution vλg,v0 is said to blow up in finite time.

4.2. Comparison results

We now consider the auxiliary problem

dw

dt
= ∆p(w) + λγφp(w), w(0) = w0 ∈ C0

+(Ω), (15)
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where γ ∈ L∞(Ω) is independent of w, and γ > 0 on Ω. This is a special case
of (13) (with g(x, ξ) having the form γ(x)) so, by Theorem 4.1, the problem (15)
has a unique solution wλγ,w0

defined on a maximal interval [0, Tλγ,w0
).

Remark 4.2. Theorem 4.1 was stated for continuous functions g depending
on (x, ξ) (and Lipschitz with respect to ξ), but as noted in [14, Remark 3.3],
the result is valid for the problem (15), containing an x-dependent function
γ ∈ L∞(Ω).

We now describe a ‘comparison’ result for solutions of (13) and (15). For any
T > 0 and functions ω1, ω2 ∈ Σ(T ), we write ω1 > ω2 on [0, T ) if ω1(t) > ω2(t),
on Ω, for each t ∈ [0, T ). Also, in inequalities involving γ, we may regard γ as
a function on Ω× [0,∞) which is constant with respect to ξ ∈ [0,∞).

Lemma 4.3. (a) If g > γ > 0 on Ω× [0,∞) and v0 > w0 > 0 on Ω, then

Tλg,v0 6 Tλγ,w0
and vλg,v0 > wλγ,w0

on [0, Tλg,v0).

(b) If 0 6 g 6 γ on Ω× [0,∞) and v0 6 w0 on Ω, then

Tλg,v0 > Tλγ,w0
and vλg,v0 6 wλγ,w0

on [0, Tλγ,w0
).

Proof. The proof follows, with minor modifications, the proof of [12, Theo-
rem 2.5]. We omit the details. However, we note that [12, Theorem 2.5]
considers equations of the form vt = ∆p(v) + λφp(v), but the proof can be
adapted to give the above result; the argument in [12] is based on the proof of
[8, Lemma 3.1, Ch. VI], which considered the equation vt = ∆p(v).

In the next section we will use the comparison result Lemma 4.3 to describe
the behaviour of solutions of (13). The following results will be useful for this.

Lemma 4.4. Suppose that 0 6= w0 ∈ C0
+(Ω).

(a) If λ < µ0(γ) then Tλγ,w0
=∞ and lim

t→∞
‖wλγ,w0

(t)‖1,p = 0.

(b) If λ > µ0(γ), then Tλγ,w0
<∞.

Proof. (a) By following the proof of [12, Theorem 3.1], it can be shown that
Tλγ,w0 = ∞ and |wλγ,w0(·)|0 is bounded on [0,∞) (the paper [12] deals with
the case γ ≡ 1 but the extension to the case of general γ is straightforward,
using a comparison theorem similar to Lemma 4.3, which is, as noted above,
based on [12, Theorem 2.5]).

The argument in the proof of part (a) of [14, Theorem 4.1] now shows that
wλγ,w0 must converge, in W 1,p

0,+(Ω), to an equilibrium solution of equation (6),
with µ = λ and ρ = γ. But by assumption, λ < µ0(γ), so Lemma 2.1 shows
that the only equilibrium available is the trivial solution.
(b) This can be proved by following the proof of [12, Theorem 3.5].
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5. Global stability or instability of the equilibria of (1)

For any λ > 0 the time-dependent problem (13) has the trivial equilibrium
solution u = 0, and also, by Theorem 3.1, for any λ ∈ (λmin(g), λmax(g))
there is at least one non-trivial, positive equilibrium. We will now consider the
stability, and instability, of these equilibria.

Theorem 5.1. Suppose that 0 6= v0 ∈ C0
+(Ω).

(a) 0 < λ < λmin(g) =⇒ Tλg,v0 =∞ and lim
t→∞

‖vλg,v0(t)‖1,p = 0.

(b) If λmin(g) < λ < λmax(g) and eλ ∈ E+ then:

(i) α < 1 and v0 < αeλ =⇒ Tλg,v0 =∞ and lim
t→∞

‖vλg,v0(t)‖1,p = 0;

(ii) β > 1 and v0 > βeλ =⇒ Tλg,v0 <∞.

(c) λmax(g) < λ =⇒ Tλg,v0 <∞.

Proof. Parts (a) and (c). The proofs of these parts of the theorem are simple
modifications of the proofs of parts (a) and (c) of [14, Theorem 4.1]. We note
that, for each x ∈ Ω, the function g(x, ·) is decreasing in [14], whereas it is
increasing here, so the roles of g0 and g∞, and µ0(g0) and µ0(g∞), need to be
interchanged in the comparison arguments used here, compared to those used
in [14].

Part (b)-(i). We define g̃α− : Ω× [0,∞)→ (0,∞) by

g̃α−(x, ξ) :=

{
g(x, αeλ(ξ)), ξ > αeλ(x),

g(x, ξ), ξ 6 αeλ(x)
(16)

(and g̃α−∞ will denote the limit of g̃α− as ξ →∞, as in (3)). Since eλ satisfies (9)
we see, by scaling eλ, that the function w = αeλ satisfies the equation

−∆p(w) = λg(eλ)φp(w), (17)

that is, αeλ is an equilibrium solution of (15), with γ = g(eλ). Also, by (2)
and (16), g̃α− 6 g̃α−∞ 6 g(eλ) on Ω× [0,∞), and by assumption, v0 < αeλ, so
by Lemma 4.3

vλg̃α−,v0(t) 6 αeλ, on [0,∞). (18)

It follows immediately from (18) that Tλg̃α−,v0 = ∞ (by Theorem 4.1), and
vλg,v0 = vλg̃α−,v0 (by (16) and uniqueness of solutions).

Next, by (2) and (16), g̃α−∞ < g(eλ) on Ω, so by (17) and Lemma 2.1,

λ = µ0(g(eλ)) < µ0(g̃α−∞ ) = λmin(g̃α−).
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Thus, part (a) of the theorem applies to the solution vλg̃α−,v0 , and since we
have just shown that vλg,v0 = vλg̃α−,v0 , this proves part (b)-(i) of the theorem.

Part (b)-(ii). We now define g̃β+ : Ω× [0,∞)→ (0,∞) by

g̃β+(x, ξ) :=

{
g(x, ξ), ξ > βeλ(x),

g(x, βeλ(ξ)), ξ < βeλ(x).
(19)

In this case the function w = βeλ satisfies (17), and a similar argument to that
in the proof of part (b)-(i) now shows that

vλg̃β+,v0(t) > βeλ on [0, Tλg̃β+,v0), (20)

and hence, vλg,v0 = vλg̃β+,v0 . Also, by (2) and (19), g̃β+
0 > g(eλ) on Ω, so

by (17) and Lemma 2.1,

λ = µ0(g(eλ)) > µ0(g̃β+
0 ) = λmax(g̃β+).

Thus, part (c) of the theorem applies to the solution vλg,v0 = vλg̃β+,v0 , and so
proves part (b)-(ii) of the theorem. This completes the proof of Theorem 5.1.

Part (b) of Theorem 5.1 shows that if λmin(g) < λ < λmax(g) then every
non-trivial, positive equilibrium eλ ∈ E+ is unstable, and the trivial solution
is not globally asymptotically stable. It also gives an indication of the global
asymptotic behaviour of the positive solutions of (13), viz. if v0 is ‘large’ then
vλg,v0 blows up in finite time, and if v0 is ‘small’ then vλg,v0(t) → 0 as t →
∞. However, this result does not deal with all initial conditions v0 ∈ C0

+(Ω).
Specifically, it does not deal with any initial condition v0 which ‘crosses’ all
the non-trivial, positive equilibria. More unfortunately, it does not prove the
stability of the trivial solution, in the sense that there are initial conditions v0

with arbitrarily small norm (either |v0|0 or ‖v0‖1,p) which do not satisfy the
hypothesis in part (b)-(i) of the theorem (for arbitrarily small ε there exist v0

with |v0|0 < ε, but with v0(x) > eλ(x) for x near the boundary ∂Ω). The
following theorem rectifies some of these omissions, and proves stability of the
trivial solution when λmin(g) < λ < λmax(g).

Theorem 5.2. Suppose that λmin(g) < λ < λmax(g). Then there exists ε > 0
such that

|v0|0 < ε =⇒ Tλg,v0 =∞ and lim
t→∞

‖vλg,v0(t)‖1,p = 0. (21)
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Proof. For δ > 0, define gδ ∈ C0(Ω) by

gδ(x) := g(x, δ), x ∈ Ω.

It follows from the properties of g, and the principal eigenvalue function µ0(·)
(see Lemma 2.1 and [6]), that

gδ > g0 on Ω and lim
δ↘0
|gδ − g0|0 = 0

=⇒ µ0(gδ) < µ0(g0) and lim
δ↘0

µ0(gδ) = µ0(g0)

(the final limiting result is not explicitly stated in [6], but it can readily be
proved using the minimisation characterisation of µ0(ρ) in (1.3) of [6]; the
argument is similar to the proof of [6, Proposition 4.3]). Hence, since λ <
λmax(g) = µ0(g0), we may choose δ sufficiently small that λ < µ0(gδ).

Now, defining the function 1 ∈ C0
+(Ω) by 1(x) := 1, x ∈ Ω, it follows from

Lemma 4.4 (a) that

Tλgδ,1(t) =∞ and |wλgδ,1(t)|0 → 0. (22)

Since the mapping t→ |wλgδ,1(t)|0 is continuous on [0,∞), we may define

κ := max{|wλgδ,1(t)|0 : t > 0}, ε := δ/κ,

w̃ε(x, t) := εwλgδ,1(x, εp−2t), (x, t) ∈ Ω× [0,∞),

and we see that

dw̃ε
dt

= εp−1 dwλgδ,1
dt

= εp−1
(
∆p(wλgδ,1) + λgδφp(wλgδ,1)

)
= ∆p(w̃ε) + λgδφp(w̃ε),

w̃ε = ε1, |w̃ε(t)|0 6 δ, t > 0.

Furthermore, since g(x, ξ) 6 gδ(x) on Ω× [0, δ], a similar comparison argument
to that used in the proof of Theorem 5.1 (b) (i) now shows that

|v0|0 < ε =⇒ 0 6 vλg,v0(t) 6 w̃ε(t) 6 δ, t > 0,

which, by (22), proves that (21) holds with the | · |0 norm. It follows from this,
by the argument in the proof of [14, Theorem 4.1], that (21) holds with the
‖ · ‖1,p norm, which completes the proof of Theorem 5.2.

6. Uniqueness of non-trivial, positive equilibria

The question of the uniqueness of the non-trivial, positive equilibria when
λ ∈ (λmin(g), λmax(g)), under conditions similar to our basic condition (2),
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is clearly of interest here, so we briefly describe some recent results concerning
this question. This problem has received considerable attention, but is still a
long way from being resolved. The main results have been obtained for the
case where Ω is a ball, say the unit ball B1 ⊂ RN , and the function g is radially
symmetric, that is, g has the form g(r, ξ), where r denotes the usual Euclidean
norm |x| in RN . For simplicity, we only discuss the case where g has the form
g(ξ).

We first observe that in this case, given our hypotheses on g, [2, Lemma 2]
shows that any non-trivial solution u ∈ W 1,p

0,+(Ω) of (9) must be radially sym-
metric, that is, u = u(r), with u(1) = 0. Thus, the question of the uniqueness
of the non-trivial solutions of the PDE (9) on B1 reduces to considering the
uniqueness of the solutions of an ODE problem on the interval [−1, 1]. Of
course, if we have such uniqueness then Theorem 5.1 (b) applies to the full
PDE problem on the ball B1 ⊂ RN .

We now briefly describe some of the known results for this case, which apply
to our problem.

The case N = 1.
This case is considered in [10], under the following hypothesis.

• The nonlinearity g(ξ)ξp−1 is ‘strictly p-convex’, as defined in [10, Defini-
tion 3] (which implies that (2) holds, see [10, Remark 6]).

Theorems 1 and 2 in [10] show that if λ ∈ (λmin(g), λmax(g)) then (9) has a
unique solution eλ ∈W 1,p

0,+(Ω) (these theorems combined cover all combinations
of 0 6 λmin(g) < λmax(g) 6∞).

The case N > 1.
This case is considered in [1, 11]. The results as stated in these papers do
not quite cover the problem considered here, but by a slight adaptation of
the arguments in [1] a uniqueness result can be obtained under the following
hypotheses (in our notation):

• the function ξ → ξg′(ξ)/g(ξ) is increasing on (0,∞);
• g′(ξ) > 0 on (0,∞) (which implies that (2) holds).
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