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Abstract. We are concerned with multiplicity and bifurcation results
for solutions of nonlinear second order differential equations with gen-
eral linear part and periodic boundary conditions. We impose asymp-
totic conditions on the nonlinearity and let the parameter vary. We
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1. Introduction

We consider nonlinear second order differential equations with general linear
part and periodic boundary conditions

u′′ + b(x)u′ + c(x)u+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u′(0)− u′(2π) = 0,
(1)

where the coefficients b, c ∈ L1(0, 2π) with c bounded from above; i.e., c(x) ≤ c0
for a.e. x ∈ (0, 2π) for some (fixed) constant c0 ∈ R. The non-homogeneous
term h ∈ L1(0, 2π), and the nonlinearity g : (0, 2π) × R → R (which may
be unbounded) is an L1(0, 2π)-Carathéodory function which is sublinear in u
at infinity (i.e., g(x, u) = o(|u|) as |u| → ∞), uniformly for a.e. x ∈ (0, 2π)
(see conditions (C1) and (C2) below). The (real) parameter λ varies in some
neighborhood of λ1, where λ1 ∈ R is the principal eigenvalue (see below) of the
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second order linear periodic boundary value problem

−u′′ − b(x)u′ − c(x)u = λu, a.e. on (0, 2π),

u(0)− u(2π) = u′(0)− u′(2π) = 0,
(2)

where λ is a real spectral parameter.
Throughout this paper, we shall use standard notations for Lebesgue spaces

Lp(0, 2π), Sobolev spaces W k,p(0, 2π) (with W k,2(0, 2π) denoted by Hk(0, 2π)),
and spaces of continuous functions Ck([0, 2π]), where k is a non-negative integer
and p ∈ R with p ≥ 1 (see e.g. [1, 6])).

It should be pointed out that all functions defined on (0, 2π) are understood
to be appropriately extended to the entire real line as 2π-periodic functions
(possibly in a discontinuous fashion or in the a.e. sense if only Lebesgue mea-
surable, for e.g., so as to agree at 0 and 2π, if need be). Also the period 2π is
used only as a placeholder for convenience, any fixed period T > 0 will work.

By a solution to Eq.(1) we mean a function u ∈W 2,1
P (0, 2π) which satisfies

the first equation in (1) a.e., where

W 2,1
P (0, 2π) :=

{
u ∈W 2,1(0, 2π) : u(0)− u(2π) = u′(0)− u′(2π) = 0

}
.

(Observe that by the Fundamental Theorem of Calculus the space W 2,1(0, 2π)
is equivalent to AC1([0, 2π]); i.e., the collection of absolutely continuous u such
that u′ is also absolutely continuous on [0, 2π], see e.g. [1].)

Periodic solutions of nonlinear second order ordinary differential equations
have been studied extensively. For a more recent account of the progress in
this area (in the framework of resonance and nonresonance problems), we re-
fer to the excellent monograph by A. Fonda [6]. Let us mention that when
the function g ≡ 0, then the Fredholm Alternative type arguments describe
completely the structure of the solution-set for Eq.(1) once the existence and
isolation of the eigenvalue λ1 are shown. That is, if λ 6= λ1 (near λ1), then
Eq.(1) is uniquely solvable for every h ∈ L1(0, 2π). Otherwise, it is solvable
only for those h ∈ L1(0, 2π) that are orthogonal (in the sense of ‘duality pair-
ing’) to the eigenspace associated with λ1, and the associated solutions can be
taken as large (in an appropriate norm) as one would like since solutions are
(uniquely) determined ‘modulo’ the associated eigenspace.

However, when g 6≡ 0 is a (genuine) nonlinearity, the structure of the
solution-set may be quite different from that of the linear problem. Therefore,
we are interested in the solution-set structure for the nonlinear problem (1) for
λ in a neighborhood of λ1, and the nonlinearity g (which may be unbounded)
satisfies some asymptotic conditions. In particular, we are concerned with the
existence of multiple large-norm solutions.

Roughly speaking, in addition to a (fairly) general existence result (see
Theorem 3.1), our results state that as long as the nonlinearity g satisfies
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(asymptotically) a ‘sign-like’ condition, then when λ is in an interval on one
side of the principal eigenvalue λ1 (see Section 2 below), Eq.(1) has at least
two solutions, provided h is in an appropriate range (using the duality pairing)
which includes orthogonality. Moreover, as λ → λ1 (strictly from one side),
the norm of these solutions become infinitely large, whereas all solutions with
λ on the other side (of λ1) are uniformly bounded. In this way, we locate
the solution-set and describe its behavior in terms of bifurcation from infinity
as the parameter λ varies. Our asymptotic conditions include (very) ‘strong
resonances’ (see Theorem 3.2); i.e., g → 0 as |u| → ∞ at λ = λ1, and no
‘decay-rate’ at infinity is required; ‘weaker resonances’ (see Theorem 3.4) such
as the so-called Landesman-Lazer type conditions (i.e., g 9 0 as |u| → ∞); as
well as an asymptotic (‘one-sided’) oscillatory behavior (see Theorem 3.5); i.e.,
asymptotically g has infinitely many discrete-countable ‘bounce-off’ zeros in u.
We point out that the case when the nonlinearity g is unbounded is included
in our results as well.

We use an abstract set up on appropriate spaces, establish a priori esti-
mates, and use a combination of degree theory (see e.g. Mawhin [10]), continu-
ation methods and Rabinowitz bifurcation from infinity techniques ([7, 12, 17,
18, 19, 20]) to prove our results. An important ingredient in obtaining the nec-
essary estimates is the use of comparison principles and estimates for the linear
problem obtained in Section 2 below (under somewhat weaker conditions than
those usually considered in the literature; particularly in the one-dimensional
case (see e.g. [3, 4, 16])).

Let us recall that some results on multiplicity or bifurcation from infinity
for nonlinear problems with periodic boundary conditions have been obtained
before under a different set of conditions (see e.g. [5, 6, 8, 12] and references
therein). However, our results are more in line with those in [12, 13] and
references therein; herein we consider a more general linear part and more
general nonlinearities.

We wish to mention that a systematic study of periodic solutions of (au-
tonomous) nonlinear differential equations with small parameters was initiated
by H. Poincaré in his celebrated treatise on celestial mechanics ([14]) in con-
nection with the three body problem (also see [11, 15]). Since then, a great
deal of work has been devoted to the study of periodic solutions of nonlinear
differential equations depending on parameters in many different directions;
especially using homotopy, continuation, as well as global methods (see e.g.
[6, 7, 10, 17, 18]). In the last fifty years Professor Mawhin has tremendously
contributed in an unparalleled way to the development of the theory of peri-
odic solutions of nonlinear differential equations; which most likely served as a
catalyst to his introducing the coincidence degree theory ([10]); an extension of
Leray-Schauder degree to nonlinear problems which cannot necessarily be writ-
ten as compact perturbations of the identity. It is with an immense gratitude
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that we write this paper on periodic solutions in his honor.
This paper is organized as follows. In Section 2, we consider the linear

problem and obtain the necessary comparison principles and estimates that
will be needed for the nonlinear problem. As indicated above, these results are
of independent interest in their own right. In Section 3, we give the general
assumptions on the data, state our main results for nonlinear problems, and
give some simple illustrative examples (for the reader’s convenience) along the
way. In Section 4, we cast the problem in an abstract setting and establish
the necessary a priori estimates for possible solutions. Finally, Section 5 is
devoted to the proofs of our main results. Remarks are included throughout
as appropriate, and a visual rendition sketch of a bifurcation diagram for a
‘bounce-off’ oscillatory nonlinearity is given in Section 3.

2. A general periodic linear eigenproblem and estimates

In this section, we consider the issue of comparison principle(s) and the ex-
istence of a (unique) principle eigenvalue for a general (i.e., not necessarily
symmetric) linear periodic problems with (possibly) unbounded coefficients.
We also obtain some estimates on the linear problem that will prove useful
when considering nonlinear problems.

Pick µ ∈ R be such that µ > c0; which implies that µ−c(x) ≥ µ−c0 > 0 for
a.e. x ∈ (0, 2π). Consider the (‘augmented’) linear differential operator defined
on W 2,1

P (0, 2π) by

Lµu = −u′′ − b(x)u′ − c(x)u+ µu. (3)

We first set a(x) := e
∫ x
0
b(s) ds, and multiply Lµu by the ‘integrating factor’

a(x). It follows that the operator Lµ is transformed into the linear differential
operator

Sµu := − (a(x)u′)
′
+ a(x)(µ− c(x))u; (4)

which (despite its appearance) is not necessarily symmetric on W 2,1
P (0, 2π).

Observe that a pair (λ, ϕ) with ϕ ∈W 2,1
P (0, 2π)\{0} is an eigenpair for the

eigenvalue problem
Lµu = λu (5)

if and only if it is also an eigenpair for the eigenvalue problem with weight

Sµu = λa(x)u. (6)

We shall show that the eigenvalue problem (5) has a (real) positive principal
eigenvalue with a positive (i.e., bounded away from zero) eigenfunction on the
closed interval [0, 2π], even when b, c ∈ L1(0, 2π) are not necessarily locally
bounded (with c bounded from above only), as indicated. We first investigate
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some properties of the linear differential operator Lµ on the space W 2,1
P (0, 2π).

As a first result in that direction, we have the following order-preserving or
weak minimum/comparison principle.

Proposition 2.1. Suppose that u ∈ W 2,1
P (0, 2π) satisfies the differential in-

equality Lµu ≥ 0 for a.e. x ∈ (0, 2π). Then u ≥ 0 on [0, 2π].

Proof. Let u ∈ W 2,1
P (0, 2π) be such that Lµu ≥ 0 for a.e. x ∈ (0, 2π), by using

the ‘integrating factor’ a(x) := e
∫ x
0
b(s) ds, it follows immediately that Sµu ≥ 0

for a.e. x ∈ (0, 2π); which implies that (a(x)u′)′ ≤ a(x)(µ − c(x))u for a.e.
x ∈ (0, 2π).

Now, suppose that u(x) < 0 for some x ∈ [0, 2π], then u has a negative
minimum value in this interval, say at x0 ∈ [0, 2π]. Therefore, there is a
neighborhood Iδ := (x0 − δ, x0 + δ) such that u(x0) ≤ u(x) < 0 for all x ∈ Iδ
and u′(x0) = 0, where we have used the continuity of u(x) and (possibly)
the 2π-periodic extension of u if x0 is an end-point of the interval [0, 2π]. It
follows that (a(x)u′)′ ≤ a(x)(µ−c(x))u < a(x)(µ−c0)u < 0 for a.e. x ∈ Iδ. The
Fundamental Theorem of Calculus immediately implies that a(x)u′ is (strictly)
decreasing in Iδ. Since u′(x0) = 0 (i.e., a(x0)u′(x0) = 0), we obtain that
a(x)u′(x) > 0 for x ∈ (x0 − δ, x0) and a(x)u′(x) < 0 for x ∈ (x0, x0 + δ); that
is, u′(x) > 0 for x ∈ (x0− δ, x0); which implies that u(x) is (strictly) increasing
in (x0 − δ, x0). This is a contradiction with the fact that u(x0) is a (negative)
minimum value of the function u. Therefore, u(x) ≥ 0 on [0, 2π], and the proof
is complete.

This proposition immediately implies that λ = 0 is not an eigenvalue of the
differential operator Lµ in Eq.(5), since any possible eigenfunction would be
identically zero in this case. We now want to show that λ = 0 is actually in the
‘resolvent’ of Lµ; that is; to show that the equation Lµu = e(x) has a (unique)

solution u ∈ W 2,1
P (0, 2π) for every e ∈ L1(0, 2π). For that purpose, we need

the following a priori estimate; which will be also useful in studying nonlinear
problems.

Lemma 2.2. There exists a constant α := α(b, c, µ) > 0 such that

|Lµu|L1(0,2π)
≥ α|u|

W
2,1
P

(0,2π)
for all u ∈W 2,1

P (0, 2π). (7)

Proof. Suppose the conclusion doe not hold. Then, there is a sequence (un) ⊂
W 2,1
P (0, 2π) \ {0} such that for all n ∈ N one has that

|Lµun|L1(0,2π)
≤ 1

n
|un|

W
2,1
P

(0,2π)
.

Setting vn := un/|un|
W

2,1
P

(0,2π)
and Lµvn = hn, we get that |vn|

W
2,1
P

(0,2π)
= 1 for

all n ∈ N, and that hn → 0 in L1(0, 2π) as n→∞. By the continuous imbed-
ding of W 2,1

P (0, 2π) into C1
P [0, 2π], one has that there exist a constant C1 > 0
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(independent of n) such that |vn|
C1
P

[0,2π]
≤ C1. Moreover, since W 2,1

P (0, 2π) is

compactly imbedded into W 1,1
P (0, 2π), one has (by going to a subsequence rela-

beled (vn), if need be) that there is a function v ∈W 1,1
P (0, 2π) such that vn → v

in W 1,1
P (0, 2π) as n→∞; which implies (for a subsequence similarly relabeled

if need be) that vn(x) → v(x) and v′n(x) → v′(x) for a.e. x ∈ (0, 2π) (see e.g.
[1, Theorem 4.9]). Since |b(x)v′n(x)| ≤ C1|b(x)| and |c(x)vn(x)| ≤ C1|c(x)| for
a.e. x ∈ (0, 2π), it follows from the Lebesgue Dominated Convergence Theorem
that b(·)v′n → b(·)v′ and c(·)v → c(·)v in L1(0, 2π) as n→∞. This and the fact
that v′′n = −hn − b(x)v′n − c(x)vn + µvn imply that v′′n → −b(x)v′ − c(x)v+ µv
in L1(0, 2π) with vn → v in W 1,1

P (0, 2π) as n → ∞. The (strong) closedness

(see e.g. [1, p. 204, Remark4]) of the differentiation-operator from W 1,1
P (0, 2π)

into L1(0, 2π) implies that v ∈ W 2,1
P (0, 2π) and that vn → v in W 2,1

P (0, 2π) as
n→∞ with v′′ = −b(x)v′− c(x)v+µv for a.e. x ∈ (0, 2π); that is, Lµv = 0 for
a.e. x ∈ (0, 2π). It follows immediately from Proposition 2.1 that v ≡ 0. This
is a contradiction with the fact that |vn|

W
2,1
P

(0,2π)
= 1 for all n ∈ N and vn → v

in W 2,1
P (0, 2π) as n→∞. The proof is complete.

Since the linear operator Lµ : W 2,1
P b L1(0, 2π) → L1(0, 2π) is compactly

and densely defined, takes bounded sets in W 2,1
P (0, 2π) into bounded sets in

L1(0, 2π) and is one-to-one (see Lemma 2.2), we claim that it is onto L1(0, 2π);
i.e., Lµ is invertible on L1(0, 2π). In fact, one has the following existence (and
uniqueness) result.

Lemma 2.3. For every e ∈ L1(0, 2π), the equation Lµu = e(x) a.e. in (0, 2π)

has a (unique) 2π-periodic solution u ∈W 2,1
P (0, 2π).

Proof. Uniqueness follows from Proposition 2.1 or Lemma 2.2. To prove exis-
tence, we use the topological degree theory by considering the homotopy

−u′′ + θ (−b(x)u′ + (µ− c(x))u) + (1− θ)(µ− c0)u = θe(x) a.e. in (0, 2π),

where θ ∈ [0, 1]. Notice that the homotopy reduces to the equation Lµu = e(x)
when θ = 1, and when θ = 0 it reduces to the periodic linear differential
equation with constant coefficients −u′′+(µ−c0)u = 0 on [0, 2π], where µ−c0 >
0. It therefore suffices to show that all possible solutions to the homotopy are
(uniformly) bounded inW 2,1

P (0, 2π) independently of θ ∈ [0, 1]. Indeed, suppose

that this is not the case, then one can find sequences (un) ⊂W 2,1
P (0, 2π) \ {0}

and (θn) ⊂ [0, 1] such that for all n ∈ N, |un|
W

2,1
P

(0,2π)
≥ n and

u′′n = θn (−b(x)u′n + (µ− c(x))un) + (1− θn)(µ− c0)un− θne(x) a.e. in (0, 2π).

Setting vn := un/|un|
W

2,1
P

(0,2π)
and using the fact that W 2,1

P (0, 2π) is continu-

ously imbedded into C1
P [0, 2π] and compactly imbedded into W 1,1

P (0, 2π), the
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Lebesgue Dominated Convergence Theorem, the closedness of the differentia-
tion operator, and arguments similar to those used in the proof of Lemma 2.2,
it follows that there exist v ∈W 2,1

P (0, 2π) and θ0 ∈ [0, 1] such that (by going if

necessary to subsequences similarly relabeled) vn → v in W 2,1
P (0, 2π), θn → θ0

as n→∞, and v satisfies the homogeneous linear equation

−v′′ − θ0b(x)v′ + θ0(µ− c(x))v + (1− θ0)(µ− c0)v = 0 for a.e. in (0, 2π).

Since θ0b ∈ L1(0, 2π) and θ0(µ− c(x)) + (1− θ0)(µ− c0) ≥ µ− c0 > 0 for a.e.
x ∈ (0, 2π), it follows from arguments used in the proof of Proposition 2.1 that
v ≥ 0 and v ≤ 0; that is, v = 0. This is a contradiction with the fact that
|vn|

W
2,1
P

(0,2π)
= 1 for all n ∈ N and vn → v in W 2,1

P (0, 2π) as n→∞. The proof

is complete.

Now, we wish to show that a strong minimum/comparison principle also
holds for the differential operator Lµ under the weak assumptions imposed on
the coefficient-functions b and c. That is, a strong positivity or strong order
preserving property holds for the second order differential operator Lµ. (Some
techniques from [21] and periodicity prove useful here.)

Proposition 2.4. Suppose that u ∈ W 2,1
P (0, 2π) satisfies the differential in-

equality Lµu ≥ 0 for a.e. x ∈ (0, 2π) with u 6≡ 0, then u > 0 on the closed
interval [0, 2π]; that is u is positive and bounded away from zero on the whole
closed interval [0, 2π], unless it is identically zero.

Proof. Since u ∈W 2,1
P (0, 2π) satisfies the differential inequality Lµu ≥ 0 for a.e.

x ∈ (0, 2π), one has immediately that Sµu ≥ 0 for a.e. x ∈ (0, 2π). Moreover,
it follows from Proposition 2.1 that u(x) ≥ 0 for all x ∈ [0, 2π]. Since u 6≡ 0 is
2π-periodic, one has that either u > 0 on [0, 2π] (in which case the conclusion
holds), or otherwise, one may assume (without loss of generality) that there is
a point x0 ∈ (0, 2π] such that u(x0) = 0 and u(x) > 0 for all x ∈ (x0 − δ, x0),
where δ ∈ (0, 2π) is a (fixed) constant; that is, the function u has a strict local
minimum at a point x0 in a (deleted) left-neighborhood of x0; which implies
that u′(x0) ≤ 0. Actually, the 2π-periodicity of u implies that u′(x0) = 0
for otherwise one reaches a contradiction in the light of Proposition 2.1 (by
possibly extending the function u periodically if x0 = 2π, and hence x0 = 0 as
well). It follows that a(x0)u′(x0) = 0, and by using the Fundamental Theorem
of Calculus and (4), one has that u(x) =

∫ x
x0
u′(s) ds and that −a(x)u′(x) ≤∫ x0

x
a(s)(µ − c(s))u(s) ds for all x ∈ (x0 − δ, x0). This implies that −u′(x) ≤

v(x)
(
a0
∫ 2π

0
a(s)(µ− c(s)) ds

)
, where v(x) := max

s∈[x,x0]
u(s) > 0 and a−10 =

min
s∈[0,2π]

a(s). Therefore, by the Fundamental Theorem of Calculus again, one
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has that

u(x) ≤ (x0 − x)v(x)

(
a0

∫ 2π

0

a(s)(µ− c(s)) ds
)

for all x ∈ (x0 − δ, x0).

For every n ∈ N such that n > 1/δ, let xn ∈ [x0 − 1
n , x0) be a point such that

max
[x0− 1

n ,x0]
u(s) := u(xn); which exists since the function u is continuous on the

compact interval [x0− 1
n , x0]. Given that [xn, x0] ⊂ [x0− 1

n , x0], it follows that
v(xn) := max

[xn,x0]
u(s) = u(xn), and 0 < x0 − xn ≤ 1/n for all n ∈ N such that

n > 1/δ. Therefore, by setting A := a0
∫ 2π

0
a(s)(µ− c(s)) ds, one has that

0 < u(xn) ≤ (x0 − xn)v(xn)A ≤ A

n
v(xn) =

A

n
u(xn) < u(xn)

for all n ∈ N such that n > max (A, 1/δ). This is a contradiction. Thus,
u(x) > 0 on the closed interval [0, 2π], and the proof is complete.

Now, we let K :=
{
u ∈ H1

P (0, 2π) : u ≥ 0
}
⊂ H1

P (0, 2π) be the (solid) cone

with non-empty interior. Setting Tµ := L−1µ : L1(0, 2π) → W 2,1
P (0, 2π) b

L1(0, 2π), it follows from Lemma 2.3 that (the scalar) zero is not an eigenvalue
of the compact linear operator Tµ : L1(0, 2π) → L1(0, 2π); although, it is
always in the spectrum of Tµ (see e.g. [1, p. 164, Theorem 6.8]). Moreover,
due to Proposition 2.4, one can show that Tµ has a positive spectral radius
r := r(Tµ) > 0. By Proposition 2.1, one has that Tµ(K) ⊂ K. Since (the
restriction) Tµ : H1

P (0, 2π) → H1
P (0, 2π) satisfies all the assumptions of the

Krein-Rutman Theorem, it follows that r(Tµ) is a (real) positive eigenvalue
of Tµ with an eigenfunction φ1 ∈ K, φ1 6≡ 0. In addition, r(T ∗µ) = r(Tµ)
is also an eigenvalue of the adjoint T ∗µ with an eigenfunction φ∗1 ∈ K∗ :={
f ∈

(
H1
P (0, 2π)

)∗
: f(x) ≥ 0 for all x ∈ K

}
called the dual cone of K; which

in this instance is also a cone in
(
H1
P (0, 2π)

)∗
since one can easily show that

K∗∩ (−K∗) = {0} by using the definition of K∗ and the fact that H1
P (0, 2π) =

K −K (i.e., the cone K “reproduces” the space H1
P (0, 2π)).

Before proceeding, we want to make a few observations that will be needed
later on. First observe that φ1 ∈ W 2,1

P (0, 2π) since it is in the range of Tµ
(i.e., regularity of solutions). Also, notice that by using the (equivalent) inner

product (u, v) :=
∫ 2π

0
u′v′ dx +

∫ 2π

0
(µ − c(x))uv dx for all u, v ∈ H1

P (0, 2π) (or
simply the standard inner product), it follows from the Riesz-Fréchet Repre-
sentation Theorem (see e.g. [1, p. 135, Theorem 5.5]) that the Hilbert space
H1
P (0, 2π) may be (isometrically) identified with its dual; i.e.,

(
H1
P (0, 2π)

)∗ ∼=
H1
P (0, 2π)), and hence φ∗1 may be identified with an element of H1

P (0, 2π),
still denoted by φ∗1 ∈ H1

P (0, 2π) ⊂ L∞(0, 2π). Furthermore, using the fact
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that the dual
(
L1(0, 2π)

)∗
= L∞(0, 2π) by the Riesz Representation The-

orem (see e.g. [1, p. 99, Theorem 4.11]), one has that the duality pairing
〈·, ·〉 := 〈·, ·〉

(L∞(0,2π)),L1(0,2π))
implies that

〈L∗µ(φ∗1), u〉 def= 〈φ∗1, Lµ(u)〉
(L∞(0,2π),L1(0,2π))

= (φ∗1, u)−
∫ 2π

0

b(x)φ∗1u
′ dx

for all u ∈ Dom(Lµ) = W 2,1
P (0, 2π) ⊂ L1(0, 2π) (see e.g. [1, p. 44]); that is,

〈L∗µ(φ∗1), u〉 = 〈φ∗1, Lµ(u)〉 =

∫ 2π

0

φ∗1
′u′ dx+

∫ 2π

0

(µ− c(x))φ∗1u dx

−
∫ 2π

0

b(x)φ∗1u
′ dx

for all u ∈ Dom(Lµ) = W 2,1
P (0, 2π). This type of identity holds true for L0 and

L∗0 as well (i.e., when µ = 0); it boils down to multiplying φ∗1 ∈ H1
P (0, 2π) ⊂

L∞(0, 2π) by L0(u) for any u ∈ W 2,1
P (0, 2π) and integrating over [0, 2π]. (It

will be used repeatedly in the sequel.)

Now, under the weaker conditions imposed on the coefficients of the linear
operator Lµ, it follows from Proposition 2.4 above and the (stronger version of)
the Krein-Rutman Theorem that φ1 is in the interior of the cone K and that
the corresponding eigenvalue is simple. However, by using the periodicity of
φ1 and the uniqueness of solutions to linear initial value problems, we present
below a shorter and simpler proof adapted to our specific situation since it also
allows us to get more information on the (‘dual’) eigenfunction φ∗1. Indeed, we
have the following result.

Proposition 2.5. The linear spectral problem

L0u := −u′′ − b(x)u′ − c(x)u = λu, u ∈W 2,1
P (0, 2π), (8)

has a real simple eigenvalue λ1 with nonnegative eigenfunction φ1 ∈W 2,1
P (0, 2π)

which is actually positive; i.e., bounded away from zero on the whole closed
interval [0, 2π]. Moreover, λ1 is also a real eigenvalue of the adjoint operator
L∗0 of L0 with a nonnegative eigenfunction φ∗1.

If, in addition, the coefficient b ∈ ACP ([0, 2π]) = W 1,1
P (0, 2π), then φ∗1 is

also positive on the closed interval [0, 2π].

Proof. As above, we first consider the (‘augmented’) invertible linear operator
Lµ given by Lµu = −u′′− b(x)u′+ (µ− c(x))u whose inverse is denoted by Tµ.
Then, by the Krein-Rutman Theorem, the spectral problem Tµφ = λφ has a
(real) eigenvalue λ := r(Tµ) > 0 with a nonnegative eigenfunction φ1 as indi-
cated above. Applying Lµ on both sides, one deduces that Lµφ1 = (r(Tµ))−1φ1;
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which implies immediately that λ1 := (r(Tµ))−1−µ is an eigenvalue of the op-
erator L0u := −u′′ − b(x)u′ − c(x)u with nonnegative eigenfunction φ1, and
that it is also an eigenvalue of the operator L∗0 with a nonnegative eigenfunction
φ∗1. Now, if there is x0 ∈ [0, 2π] such that φ1(x0) = 0, then x0 is a minimum
point for φ1, and hence (extending φ1 by 2π-periodicity if x0 is a boundary
point) φ′1(x0) = 0 as well since φ1 ∈ W 2,1

P (0, 2π) ⊂ C1
P ([0, 2π]). Therefore,

uniqueness results for (Carathéodory) solutions (see e.g. [21]) to initial value
problems for second order homogeneous linear ordinary differential equations
with L1(0, 2π)-coefficients (written as integral solutions to a first order system
and use of generalized Gronwall’s inequality on their norm) would imply that
the only solution to L0φ1 − λ1φ1 = 0 a.e. is given by φ1 ≡ 0 on [0, 2π]; which
would contradict the fact that φ1 is an eigenfunction. Thus φ1 is positive (and
hence bounded away from zero) on [0, 2π] as needed.

To show that λ1 is simple, let w ∈ W 2,1
P (0, 2π) be an eigenfunction asso-

ciated with λ1. Then, one has that L0(φ1 + tw) = λ1(φ1 + tw) for all t ∈ R.
Since φ1 is positive on [0, 2π] and w is continuous, it follows that for |t| small
one has that φ1 + tw remains positive on [0, 2π], and that for some t ∈ R with
|t| large, φ1 + tw does not remain positive on [0, 2π] since w 6≡ 0. Therefore,
by continuity (and connectedness), one has that there is t0 ∈ R such that
(φ1 + t0w)(x) ≥ 0 on [0, 2π], and (φ1 + t0w)(x0) = 0 for some x0 ∈ [0, 2π]
with L0(φ1 + t0w) − λ1(φ1 + t0w) = 0 a.e. on (0, 2π). The above uniqueness
argument implies that (φ1 + t0w) ≡ 0 on [0, 2π]; that is, w = −t−10 φ1, and the
simplicity of λ1 follows.

If in addition b ∈ ACP ([0, 2π]) = W 1,1
P (0, 2π), then one has that (bφ∗1) ∈

W 1,1
P (0, 2π). Using integration by parts in the pairing, one has that φ∗1 ∈

H1
P (0, 2π) satisfies∫ 2π

0

φ∗1
′u′ dx = −

∫ 2π

0

(bφ∗1)′u dx+

∫ 2π

0

c(x)φ∗1u dx+ λ1

∫ 2π

0

φ∗1u dx

for every u ∈ Dom(L0) = W 2,1
P (0, 2π), and hence in particular for every u ∈

C∞0 (0, 2π); which implies that φ∗1 ∈W 2,1(0, 2π) by the definition of the Sobolev
space W 1,1(0, 2π) (see e.g. [1, p. 202]). Since (bv)′ = b′v + bv′ ∈ L1(0, 2π) for
every v ∈ W 1,1(0, 2π) = AC([0, 2π]), and the (formal) adjoint linear operator
L∗0 is explicitly given by

L∗0v = −v′′ + (b(x)v)
′ − c(x)v = −v′′ + b(x)v′ − (c(x)− b′(x))v,

it follows that L∗0(φ∗1) − λ1φ∗1 = 0 a.e. on (0, 2π) with φ∗1 ∈ W 2,1
P (0, 2π). The

nonnegativity of φ∗1 and the above uniqueness arguments can now be used to
show that φ∗1 is positive on the closed interval [0, 2π]. The proof is complete.

The following result will prove useful in obtaining a priori estimates for
possible solutions to some nonlinear periodic problems in subsequent sections.



BIFURCATION AND MULTIPLICITY FOR PERIODIC BVP 175

Proposition 2.6. There exists a constant λ0 > 0 such that for all p ∈ L1(0, 2π)
with 0 ≤ p(x) ≤ λ0 and all u ∈W 2,1

P (0, 2π) satisfying a.e. the equation

u′′ + b(x)u′ + c(x)u+ λ1u+ p(x)u = 0,

one has that either u = 0 on [0, 2π] or min
[0,2π]

|u(x)| > 0 (i.e., u is either positive

or negative on [0, 2π]).

Proof. Since u ≡ 0 is a solution to the (homogeneous linear periodic) equation,
we may suppose without loss of generality that u ∈ W 2,1

P (0, 2π) \ {0}, and we
claim that under the above assumptions one must have that min

[0,2π]
|u(x)| > 0.

Indeed, assume that the conclusion of the proposition does not hold. Then,
for every n ∈ N there exist pn ∈ L1(0, 2π) with 0 ≤ pn(x) ≤ 1/n a.e. and
un ∈W 2,1

P (0, 2π) with |un|W2,1(0,2π)
= 1 such that min

[0,2π]
|un(x)| = 0 and for a.e.

x ∈ (0, 2π) one has that

u′′n + b(x)u′n + c(x)un + λ1un + pn(x)un = 0.

Using the fact that W 2,1
P (0, 2π) is continuously imbedded into C1

P [0, 2π] and

compactly imbedded into W 1,1
P (0, 2π), the Lebesgue Dominated Convergence

Theorem, the closedness of the differentiation operator, and arguments similar
to those used in the proof of Lemma 2.2, it follows (by going if necessary to
subsequence relabeled (un)) that there exist u ∈ W 2,1

P (0, 2π) \ {0} such that
un → u in W 2,1(0, 2π), |u|

W2,1(0,2π)
= 1, and u′′ + b(x)u′ + c(x)u + λ1u = 0.

Therefore, u is an eigenfunction associated with the simple eigenvalue λ1, and
hence is proportional to φ1. Thus, it has one sign and is bounded away from zero
by Proposition 2.5; i.e., min

[0,2π]
|u(x)| > 0. This fact and the uniform convergence

of un to u in C0
P [0, 2π] imply that there is n0 ∈ N such that for all n ≥ n0 one has

that min
[0,2π]

|un(x)| > 0. This is a contradiction, and the proof is complete.

Remark 2.7. Propositions 2.4 and 2.5 may be used (in conjunction with the
Krein-Rutman Theorem) to show that the eigenvalue λ1 is principal and unique;
i.e., it is the only (real) eigenvalue with a positive eigenfunction φ1 and one-
dimensional eigenspace (see e.g. [1]). Moreover, an analysis of the proof of
Proposition 2.1 and the result in Proposition 2.5 show that if λ 6= λ1 is a real
eigenvalue of the spectral problem (8), then λ > λ1. Indeed, if λ < λ1 is an
eigenvalue of Eq.(8) with eigenfunction u ∈W 2,1

P (0, 2π); i.e., L0u+λu = 0 a.e.
on [0, 2π], then using the fact that φ1 is positive on [0, 2π] and setting v := u/φ1,

one has that −λv = [φ1(·)]−1L0(vφ1). Using direct calculations of L0(vφ1)
through the product rule for derivatives and collecting terms, it follows easily
that v ∈W 2,1

P (0, 2π) satisfies a.e. the homogeneous linear differential equation
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v′′+d(x)v′+(λ−λ1)v = 0 with λ−λ1 < 0, where d(x) = b(x)+2φ′1(x)/φ1(x).
Now, arguments similar to those used in the proof of Proposition 2.1 imply
that v ≥ 0 and −v ≥ 0 for all x ∈ [0, 2π]. That is, v ≡ 0, and hence u ≡ 0;
contradicting the fact that u 6= 0 is an eigenfunction.

3. Main results

From now on, we shall write the nonlinear equation (1) in the equivalent form

u′′ + b(x)u′ + c(x)u+ λ1u+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u′(0)− u′(2π) = 0,
(9)

where λ1 ∈ R is the principal eigenvalue obtained in Proposition 2.5, and the
parameter λ ∈ R will vary in a neighborhood of zero. Therefore, Eq.(1) is
equivalent to

Lu+ λu+ g(x, u) = h(x) a.e. in (0, 2π),

u(0)− u(2π) = u′(0)− u′(2π) = 0,
(10)

where the linear operator L : W 2,1
P (0, 2π)→ L1(0, 2π) is defined by

Lu := u′′ + b(x)u′ + c(x)u+ λ1u

for which the scalar λ = 0 is the principal eigenvalue with associated (positive)
eigenfunction φ1. (Notice that λ = 0 is also a principal eigenvalue of the adjoint
L∗ of L with associated nonnegative eigenfunction φ∗1 6= 0.)

In this section we state our general assumptions on the nonlinearity g
and the function h. We assume that g : (0, 2π) × R → R is an L1(0, 2π)-
Carathéodory function which is sublinear at infinity in u, uniformly a.e. in
x, and satisfies ‘sign-like’ conditions. We also impose asymptotic conditions
on g and their relationship with the forcing term h. These conditions include,
among others, strong resonance conditions, Landesman-Lazer type conditions,
as well as oscillatory conditions. (Some results herein were motivated by [9].)

In addition to a (fairly) general existence result, we state our main results
on multiplicity of solutions (with large norms for λ ‘small’) when λ is in an
interval on one side of the first eigenvalue, and the existence of (at least) one
solution for λ on the other side. The existence of a third solution (with a
somewhat ‘smaller norm’) is also discussed. Simple examples are provided to
motivate and illustrate the results.

As mentioned above, we specifically assume the following general conditions;
the first three of which refer to the nonlinearity g, whereas the last one relate
the nonhomogeneous term h to the asymptotic behavior of g and the null-space
associated with the eigenvalue λ1.
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(C1) g(·, u) is measurable for all u ∈ R, g(x, ·) is continuous for a.e. x ∈ (0, 2π),
and for every r > 0 there is a function γ

r
∈ L1(0, 2π) such that

|g(x, u)| ≤ γ
r
(x), (11)

for a.e. x ∈ (0, 2π) and all u ∈ R with |u| ≤ r.

(C2) lim
|u|→∞

g(x, u)

u
= 0 uniformly a.e. in x; that is, for every ε > 0 there is a

constant rε > 0 such that

|g(x, u)| ≤ ε|u| for a.e. x ∈ (0, 2π) and all u ∈ R with |u| ≥ rε. (12)

(C3) g satisfies ‘sign-like’ conditions, i.e., there are functions A,B ∈ L1(0, 2π)
and constants r < 0 < R such that

g(x, u) ≥ A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,
g(x, u) ≤ B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r.

(C4) Moreover, we assume that the non-homogeneous term h ∈ L1(0, 2π) sat-
isfies the ‘orthogonality-like’ conditions∫ 2π

0

B(x)φ∗1 dx ≤
∫ 2π

0

h(x)φ∗1 dx ≤
∫ 2π

0

A(x)φ∗1 dx, (13)

where as aforementioned φ∗1 is the eigenfunction associated with the (prin-
cipal) eigenvalue λ1 through the dual linear operator.

Before taking up the issue of multiplicity of solutions and the behavior of
the solution-set, we first state an existence result for all λ ≤ λ0 (where λ0
is given by Proposition 2.6), and establish uniform a priori bounds when the
parameter λ lies in appropriate intervals around zero.

Theorem 3.1. Assume that the assumptions (C1)–(C4) hold, then Eq.(9) (or
equivalently Eq.(10)) has at least one solution for every λ ∈ R with λ ≤ λ0.
Moreover, for 0 < λ ≤ λ0, all solutions are uniformly bounded in W 2,1(0, 2π),
independently of λ.

Recall that no multiplicity results occur for Eq.(9) when g ≡ 0 and either
λ < 0 or 0 < λ ≤ λ0, since the Fredholm alternative argument guarantees
uniqueness in this case. We claim that, by somewhat strengthening either
(C3) or (C4), we obtain multiplicity results and more importantly describe the
behavior of the solution-set. The first result is motivated by the fact that one
may allow the equality A(x) = B(x) for a.e. x ∈ [0, 2π] in the assumption (C3).
We would like to point that, in this instance, multiplicity may occur only for one
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value of λ; more precisely at λ = 0 (even if g 6≡ 0), with the bifurcation branches
in the (λ, |u|∞)-plane being only (semi-infinite) straight line rays located on
the vertical |u|∞-axis. It suffices to consider any (nonlinearity) g such that
g(x, u) = 0 outside a rectangular region [0, 2π] × [−R,R]. Indeed, for λ = 0,
it is easily seen that the function defined by ut := tφ1 is a solution to Eq.(9)
for every t ∈ R that is such that |t| min

[0,2π]
{φ1(x)} ≥ R; provided h ≡ 0 of

course. Actually an analysis of the proof of the above existence result (or more
precisely, the multiplicity results obtained below) indicates that, provided h is

such that
∫ 2π

0
hφ∗1 dx = 0, λ = 0 is the only parameter-value for which large

solutions exist, and the bifurcation from infinity branches are (semi-infinite)
straight line rays on the |u|∞-axis in the (λ, |u|

C0([0,2π])
)-plane, as described

above. Therefore, the bifurcation from infinity parameter-interval collapses to
just one-point interval {λ} = {0}.

For the rest of the paper, we will be interested in nonlinearities g that
satisfy a sign-like condition and that are not identically null outside a compact
u-interval in R. In the following result we strengthen somewhat the condition
(C3) by requiring strict inequalities (on subsets of ∂Ω of positive measure)
while still retaining the condition (C4).

A simple example to keep in mind here is the (continuous) function g given
by g(x, u) := η+(x)(1 + u2)−1 for u ≥ R > 0 and g(x, u) := −η−(x)(1 + u2)−1

for u ≤ −r < 0, where η± ∈ C0
P [0, 2π] are nonnegative functions which are

positive on subsets of [0, 2π] of positive measure, or a non-bounded coun-
terpart g(x, u) := 3

√
u sin2(u) ± η±(x)(1 + u2)−1. Here, A = B = 0 and∫ 2π

0
hφ∗1 dx = 0 by (C4). Notice that for the bounded case lim

|u|→∞
g(x, u) =

0 and lim
|u|→∞

ug(x, u) = 0 on ∂Ω, whereas for the unbounded counterpart

lim inf
u→∞

g(x, u) = 0 = lim sup
u→−∞

g(x, u) and lim inf
u→∞

ug(x, u) = 0 = lim sup
u→−∞

ug(x, u);

that is, no (linear) decay ‘rate’ at infinity is required. Thus, the terminol-
ogy (asymptotic) ‘very’ strong resonance. Observe also that the so-called
Landesman-Lazer condition (see below) fails since one has equality in (C4);
however, we are able to ‘locate’ and ‘describe’ the solution-branches. The fol-
lowing result is an extension of the main result in [13] to more general linear
operators and more general nonlinearities (also see Remark 3.3 below).

Theorem 3.2. Assume that conditions (C1)–(C2) are met, and that (C3) holds
with strict inequalities on subsets of [0, 2π] of positive measure; that is, there
are functions A,B ∈ L1(0, 2π) and constants r < 0 < R such that

g(x, u) > A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,
g(x, u) < B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r,

Then, provided (C4) holds, there is a constant λ− < 0 such that, for every
ε ∈ (0, |λ−|), Eq.(9) has at least two solutions, denoted (λ+ε , uε) and (λ−ε , vε),
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with −ε < λ±ε < 0 and

lim
ε→0+

min
{
|uε|C0([0,2π])

, |vε|C0([0,2π])

}
=∞;

that is, they bifurcate from infinity since λ±ε → 0 as ε→ 0+.
Moreover, for 0 ≤ λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Therefore, bifurcation from infinity
occurs only (strictly) to the left of the eigenvalue λ1. (In some sense, the
‘strong resonance’ conditions ‘bend’ the bifurcation branches.)

Remark 3.3. An analysis of the proof of this result will show that the con-
ditions on the nonlinearity g may be replaced by the (slightly) more general
(integral) conditions∫ 2π

0

g(x, u)φ∗1 dx >
∫ 2π

0

A(x)φ∗1 dx for all u ∈ R with u ≥ R,∫ 2π

0

g(x, u)φ∗1 dx >
∫ 2π

0

B(x)φ∗1 dx for all u ∈ R with u ≤ R;

which are in particular fulfilled if the coefficient b ∈ ACP ([0, 2π]) = W 1,1
P (0, 2π),

and

g(x, u) ≥ A(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≥ R,
with strict inequality on a subset of (0, 2π) of positive measure,

g(x, u) ≤ B(x) for a.e. x ∈ (0, 2π) and all u ∈ R with u ≤ r,
with strict inequality on a subset of (0, 2π) of positive measure,

since, in this instance, the conditions on the coefficient b imply that the eigen-
function φ∗1 is (strictly) positive on the interval [0, 2π] by Proposition 2.5.

In the following result we strengthen a little bit the condition (C4) by re-
quiring strict inequalities while keeping (C3) as given. This is the so-called
Landsman-Lazer type condition; which has been widely considered in the liter-
ature (see e.g. [6]). Again, a simple example to keep in mind here is the (contin-
uous) function g (independent of x) given by g(u) := 3

√
u sin2(u) + η± tanh(u)

for |u| ≥ R > 0 where η± are positive numbers with η− < η
+

. Notice that
lim inf
u→∞

g(u) = η+ and lim supu→−∞ g(u) = −η−. The following result is an

extension of the main result in [12] to more general linear operators and more
general nonlinearities (at least as far as periodic solutions are concerned).

Theorem 3.4. Assume that (C1)–(C3) hold and that∫ 2π

0

g−(x)φ∗1 dx <
∫ 2π

0

h(x)φ∗1 dx <
∫ 2π

0

g+(x)φ∗1 dx, (14)
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where g
+

(x) := lim inf
u→∞

g(x, u) and g−(x) := lim sup
u→−∞

g(x, u).

Then there is a constant λ− < 0 such that, for every ε ∈ (0, |λ−|), Eq.(9)
has at least two solutions, denoted (λ+ε , uε) and (λ−ε , vε), with −ε < λ±ε < 0
and

lim
ε→0+

min
{
|uε|C0([0,2π])

, |vε|C0([0,2π])

}
=∞;

that is, they bifurcate from infinity since λ±ε → 0 as ε→ 0+.
Moreover, for 0 ≤ λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Again, bifurcation from infinity occurs
only (strictly) to the left of the eigenvalue λ1.

Now, we take up the case when the nonlinearity g may have (asymptoti-
cally) infinitely many (discrete-countable) zeros (i.e. a sign-like condition with
‘oscillation’). In this instance, we strengthen a little bit the condition on the
coefficient function b. Therefore, for the sake of clarity, we first state the result
for the case when A = B = 0; which again implies that the condition (C4)

is equivalent to saying that
∫ 2π

0
hφ∗1 dx = 0. The function to keep in mind

here is for instance g(x, u) = η±u
−1 sin2(u) for |u| ≥ R > 0 where η± are

positive numbers, or an unbounded counterpart g(x, u) = η±
3
√
u sin2(u) for

|u| ≥ R > 0. Therefore, we consider functions which satisfy a sign condition,
vanish asymptotically at discrete-countably many points going to infinity, and
have a strict sign in-between them.

Theorem 3.5. Let the coefficient b be such that b ∈ ACP ([0, 2π])=W 1,1
P (0, 2π).

Assume that conditions (C1) and (C2) are met. Suppose there are sequences
of real numbers 0 >> rk > rk+1 → −∞ and 0 << Rk < Rk+1 →∞ as k →∞
such that for all k ∈ N,

g(x, rk) = 0 and g(x,Rk) = 0 for a.e. x ∈ (0, 2π) and

g(x, u) > 0 for a.e. x ∈ (0, 2π) and all u ∈ R with Rk < u < Rk+1,

g(x, u) < 0 for a.e. x ∈ (0, 2π) and all u ∈ R with rk+1 < u < rk.

Then, provided h is L1(0, 2π) with

∫ 2π

0

hφ∗1 dx = 0, there is a constant

λ− < 0 such that, for every ε ∈ (0, |λ−|), Eq.(9) has at least two solutions,
denoted (λ+ε , uε) and (λ−ε , vε), with −ε < λ±ε < 0 and

lim
ε→0+

min
{
|uε|C0([0,2π])

, |vε|C0([0,2π])

}
=∞;

that is, they bifurcate from infinity since λ±ε → 0 as ε→ 0+.
Moreover, for 0 < λ ≤ λ0, all solutions (which exist by Theorem 3.1) are

uniformly bounded, independently of λ. Therefore, bifurcation continua from
infinity occur to the left of the eigenvalue λ1.
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A visual rendition sketch for the case when g is as in the above example is
given below. (For example, g(x, u) = η±u

−1 sin2(u) when |u| ≥ R with c = 0
and h = 0.)

λλ− λ0

|u|C0
P
([0,2π])

|uε|C0
P
([0,2π])

|vε|C0
P
([0,2π])

Figure 1: Bifurcation diagram in the case of a ‘bounce-off’ oscillatory nonlin-
earity.

Remark 3.6. (Existence of a third solution) Let us mention that by using a
consequence of the Leray-Schauder Homotopy Continuation Theorem or the
so-called Wyburn Lemma (see e.g. [8, 12, 13, 10]), one can show that there
is λ

∗

− < 0 with λ− < λ
∗

− such that for every ε ∈ (0, |λ∗−|), one has a third
solution wε in Theorems 3.2 and 3.4. (The (uniform) bound of these third
solutions could for instance be twice the uniform a-priori bound obtained for
all solutions in the homotopy.)

Remark 3.7. Let us finally point out that one can reverse the inequalities in
the conditions (C3)-(C4) appropriately to get results similar to all the ones
above. In which case, multiplicity and bifurcation from infinity occur (for λ in
a nontrivial interval) to the right of λ1 only, whereas solutions are uniformly
bounded on bounded λ-intervals to the left of λ1. The reader can easily carry
out the details.
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4. Abstract Setting and a priori Bounds

In this section we formulate the problem (9) in an abstract setting. We then
proceed to establish a priori bounds in W 2,1(0, 2π) for all possible solutions.
For that purpose we define the linear operator

L : W 2,1
P (0, 2π) b C0([0, 2π]) ⊂ L1(0, 2π)→ L1(0, 2π) by

Lu := u′′ + b(x)u′ + c(x)u+ λ1u,

where W 2,1
P (0, 2π) b C0([0, 2π]) denotes the compact imbedding of W 2,1

P (0, 2π)
in C0([0, 2π]) (see e.g. [1]). Next, we define the nonlinear (Nemytsǩıi) super-
position operator

N : C0([0, 2π])→ L1(0, 2π) by Nu = g(·, u(·)).

Eq.(9) is then equivalent to

Lu+ λu+Nu = h, u ∈ Dom(L) := W 2,1
P (0, 2π). (15)

Now, we shall establish an a priori bound for all possible solutions of Eq.(9)
or equivalently Eq.(15).

Proposition 4.1. Assume that the assumptions (C1)–(C4) hold true. Let λ0 ∈
R with λ0 > 0 be a fixed constant given in Proposition 2.6. Then, there is
a constant R0 := R0(λ0) > 0 such that all possible solutions of Eq.(9) (or
equivalently Eq.(15)) with 0 < λ ≤ λ0 satisfy

|u|
W2,1(0,2π)

≤ R0.

That is, all possible solutions of Eq.(15) are (uniformly) bounded in W 2,1(0, 2π)
independently of λ, provided 0 < λ ≤ λ0.

Proof. Suppose that all (possible) solutions in W 2,1
P (0, 2π) are not uniformly

bounded in W 2,1(0, 2π). Then, there are sequences {λn} ⊂ (0, λ0] and {un} ⊂
W 2,1
P (0, 2π) with |un|W2,1(0,2π)

≥ n for all n ∈ N such that

u′′n + b(x)u′n + c(x)un + λ1un + λnun + g(x, un) = h(x) a.e. in (0, 2π). (16)

Letting vn := un/|un|W2,1(0,2π)
, one has that |vn|W2,1(0,2π)

= 1 , and vn ∈
W 2,1
P (0, 2π) satisfies

v′′n + b(x)v′n + c(x)vn + λ1vn + λnvn +
g(x, un)

|un|W2,1(0,2π)

=
h(x)

|un|W2,1(0,2π)

a.e. in (0, 2π). (17)
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Notice that, by the fact that the function g is L1(0, 2π)-Carathéodory and the
sublinear growth condition (12) with ε = 1 e.g., one has that the sequence{
g(·, un(·))/|un|W2,1(0,2π)

}
is bounded in L1(0, 2π) since there is a function

γ1 ∈ L1(0, 2π) such that |g(x, u)| ≤ |u| + γ1(x) for a.e. x ∈ (0, 2π) and all
u ∈ R. Therefore, since W 2,1

P (0, 2π) is continuously imbedded into C1
P ([0, 2π]),

there is a constant C1 > 0 (independent of n) such that

|g(x, un(x))|/|un|W2,1(0,2π)
≤ |vn(x)|+|γ1(x)|/|un|W2,1(0,2π)

≤ C1+|γ1(x)|, (18)

|b(x)v′n(x)| ≤ C1|b(x)|, and |c(x)vn(x)| ≤ C1|c(x)| for a.e. x ∈ (0, 2π) and all
n ∈ N. Moreover, since λn ∈ (0, λ0] and W 2,1

P (0, 2π) is compactly imbedded

into W 1,1
P (0, 2π), one has (by going to subsequences relabeled ({λn} and {vn},

if need be) that there exist a number µ0 ∈ [0, λ0] and a function v ∈W 1,1
P (0, 2π)

such that λn → µ0 and vn → v in W 1,1
P (0, 2π) as n → ∞; which implies (for

a subsequence similarly relabeled if need be) that vn(x) → v(x) and v′n(x) →
v′(x) for a.e. x ∈ (0, 2π) (see e.g. [1, Theorem 4.9]). By using the first inequality
in (18), we deduce that g(x, un(x))/|un|W2,1(0,2π)

→ 0 as n → ∞ for a.e. x ∈
(0, 2π) where v(x) = 0. Observe that un(x)→∞ if v(x) > 0 and un(x)→ −∞
if v(x) < 0. Therefore, for a.e. x ∈ (0, 2π) such that v(x) 6= 0, (considering n
sufficiently large if need be) we write the quotient g(x, un(x))/|un|W2,1(0,2π)

in

the form

g(x, un(x))

|un|W2,1(0,2π)

=

(
g(x, un(x))

un(x)

)
vn(x)→ 0 · v(x) = 0 as n→∞,

by the sublinear condition (C2). Thus, in either case one has that the sequence
g(x, un(x))/|un|W2,1(0,2π)

→ 0 as n → ∞ for a.e. x ∈ (0, 2π). By the Lebesgue

Dominated Convergence Theorem, it follows that b(·)v′n → b(·)v, c(·)vn → c(·)v
and g(·, un(·))/|un|W2,1(0,2π)

→ 0 in L1(0, 2π) as n→∞.

Now, by using Eq.(17), we deduce that v′′n → −b(x)v − c(x)v − λ1v −
µ0v in L1(0, 2π) with vn → v in W 1,1

P (0, 2π) as n → ∞ and µ0 ∈ [0, λ0].

The (strong) closedness of the differentiation-operator from W 1,1
P (0, 2π) into

L1(0, 2π) implies that v ∈ W 2,1
P (0, 2π) and that vn → v in W 2,1

P (0, 2π) as
n→∞ with v′′ = −b(x)v′ − c(x)v − λ1v − µ0v for a.e. x ∈ (0, 2π); that is,

Lv + µ0v = 0. (19)

It follows from Proposition 2.6 that either v(x) > 0 on [0, 2π] or v(x) < 0 on
[0, 2π] since |v|

W2,1(0,2π)
= 1. Using the duality pairing (see e.g. [1]), we get

that

0 = 〈Lv + µ0v, φ
∗
1〉 = 〈v, L∗(φ∗1)〉+ µ0

∫ 2π

0

vφ∗1 dx = µ0

∫ 2π

0

vφ∗1 dx,
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since φ∗1 is an eigenfunction of the adjoint L∗ associated with the eigenvalue
zero. This implies that µ0 = 0 since φ∗1 is a nonnegative eigenfunction and
|v(x)| > 0 on [0, 2π]. Therefore, Lv = 0; i.e., v = tφ1 for some real constant
t 6= 0 since λ1 is simple.

In what follows, we assume without loss of generality that v(x) > 0 on
[0, 2π]; i.e., t > 0 (the case v(x) < 0 can be treated in a similar way). This
implies that there is a constant ε0 > 0 such that v(x) = tφ1(x) ≥ ε0 for all
x ∈ [0, 2π] since the eigenfunction φ1 of L is (strictly) positive on [0, 2π].

Since vn → v uniformly on [0, 2π], one has that un(·) = vn(·)|un|W2,1(0,2π)
→

∞ uniformly on [0, 2π]. Therefore, there exists n0 ∈ N such that for all n ≥ n0
one has that

un(x) ≥ R for all x ∈ [0, 2π], (20)

where R > 0 is the constant given in the assumption (C3). Now, using again
the duality pairing in Eq.(16), we deduce that 〈Lun + λnun + Nun, φ∗1〉 =∫ 2π

0
hφ∗1 dx; i.e., 〈un, L∗(φ∗1)〉+λn

∫ 2π

0
unφ

∗
1 dx+

∫ 2π

0
g(x, un)φ∗1 dx=

∫ 2π

0
hφ∗1 dx.

Since 0 < λn ≤ λ0, it follows from Eq.(16), the inequality (20) and the
assumption (C3) that for each n ≥ n0,

0 > −λn
∫ 2π

0

unφ
∗
1 dx =

∫ 2π

0

g(x, un)φ∗1 dx−
∫ 2π

0

h(x)φ∗1 dx

≥
∫ 2π

0

A(x)φ∗1 dx−
∫ 2π

0

h(x)φ∗1 dx;

that is, ∫ 2π

0

h(x)φ∗1 dx >
∫ 2π

0

A(x)φ∗1 dx;

which is a contradiction with the second inequality in the assumption (C4).
Therefore, all possible solutions of Eq.(9) (or equivalently Eq.(15)) are (uni-
formly) bounded in W 2,1(0, 2π) ⊂ C0([0, 2π]) independently of λ, provided that
0 < λ ≤ λ0. The proof is complete.

Let us mention that a similar result holds for all λ negative (and bounded
away from zero). More precisely, we have the following uniform a priori bound.

Proposition 4.2. Let α0, α1 ∈ R be (fixed negative) constants such that −∞ <
α0 < α1 < 0. Suppose that the assumptions (C1)–(C2) hold. Then, there exists
a constant R0 := R0(α0, α1) > 0 such that all possible solutions of Eq.(9), with
α0 ≤ λ ≤ α1, satisfy

|u|W 2,1(0,2π) ≤ R0.

That is, all possible solutions of Eq.(9) (or equivalently Eq.(15)) are (uniformly)
bounded in W 2,1(0, 2π) independently of λ, provided that α0 ≤ λ ≤ α1 < 0.
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The proof is similar to the one above up to Eq.(19) where now µ0 ∈ [α0, α1].
However, since α1 < 0, it follows that µ0 ≤ α1 < 0 is in the resolvent of L
(see e.g. the second part of Remark 2.7), and hence v ≡ 0 on [0, 2π]. This is a
contradiction with the fact that |v|

W2,1(0,2π)
= 1. Therefore, all possible solu-

tions of Eq.(15) (or equivalently Eq.(9)) are (uniformly) bounded in W 2,1(0, 2π)
independently of λ, provided that α0 ≤ λ ≤ α1. The proof is complete.

5. Proofs of main results

In this section we prove the main results by using the topological degree theory,
continuation methods and bifurcation from infinity techniques. We first prove
the existence part of the results, and then proceed to show multiplicity and
bifurcation.

Proof of Theorem 3.1. First we consider the case when λ ≥ 0 is fixed. Picking
δ ∈ R such that 0 < δ < λ0, and following the notation of the previous section,
we consider the homotopy

Lu+ δu+ θ[(λ− δ)u+Nu] = θh, u ∈ Dom(L), (21)

where θ ∈ [0, 1); which, when θ = 0, reduces to the homogeneous linear problem
Lu + δu = 0 that has only the trivial solution; for otherwise, Proposition 2.6
and an argument similar to that used after Eq.(19) would imply that δ = 0.
Since the linear operator L + δI defined by L + δI : W 2,1

P (0, 2π) → L1(0, 2π)
is bounded, one-to-one and onto (see e.g. the arguments used in the proof of
Lemma 2.3), it follows that (21) is equivalent to the fixed point homotopy

u = θ(L+ δI)−1 ((δ − λ)Iu−Nu+ h) , u ∈ Dom(L). (22)

Therefore, by the compactness of the imbedding W 2,1
P (0, 2π) into L1(0, 2π) and

the topological degree theory (see e.g. [10]), it suffices to show that all possible
solutions of the homotopy (22) are bounded in W 2,1(0, 2π), independently of
θ ∈ [0, 1), in order to conclude that Eq.(22) has at least one solution for θ = 1
as well.

Indeed, observing that 0 < (1 − θ)δ + θλ ≤ max{λ, δ} ≤ λ0 for 0 ≤ θ <
1, it follows from Proposition 4.1 that all possible solutions of Eq.(21) (or
equivalently Eq.(22)) are (uniformly) bounded in W 2,1(0, 2π) independently
of θ ∈ [0, 1). This proves the first part of Theorem 3.1. The second part of
Theorem 3.1 follows readily from Proposition 4.1.

To prove the existence of at least one solution for λ < 0 (fixed), we consider
the homotopy (21) where δ < 0 and now θ ∈ [0, 1]. (Notice that θ = 1 is
included here.) Observing that α0 := min{λ, δ} ≤ (1−θ)δ+θλ ≤ max{λ, δ} :=
α1 < 0 for 0 ≤ θ ≤ 1, it follows from Proposition 4.2 that all possible solutions
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of Eq.(21) (or equivalently Eq.(22)) are (uniformly) bounded in W 2,1(0, 2π)
independently of θ ∈ [0, 1]. The existence of at least one solution for each
θ ∈ [0, 1] follows from topological degree arguments as above. (It should be
noted that Assumptions (C3)–(C4) do not matter when λ < 0, at least as far as
the existence of at least one solution is concerned.) The proof is complete.

Now, we take up the issue of multiplicity and bifurcation (from infinity) of
solutions for λ “near” zero; actually λ to the left of zero as it will be seen.

Proof of Theorem 3.2. We first show that all possible solutions of Eq.(15) are
(uniformly) bounded in W 2,1

P (0, 2π) when λ = 0 as well; that is, the conclusion
of Theorem 3.1 actually holds true for all λ ∈ [0, λ0]. Indeed the proof is
similar to that of Theorem 3.1 except that we consider the homotopy-parameter
θ ∈ [0, 1]. Therefore, it suffices to show that all possible solutions of the
homotopy (22) are bounded in W 2,1(0, 2π) for θ = 1 and λ = 0 as well. For
that purpose, we follow the arguments in the proof of Proposition 4.1 with
λ = 0 up to the inequality (20). Now, using the duality pairing with the
eigenfunction φ∗1 in Eq.(16) (recall that θ = 1 and λ = 0), and the fact that φ∗1
is an eigenfunction of L∗, it follows from Eq.(16), the inequality (20) and the
(stronger) assumption on the functions g and A in Theorem 3.2 that for each
n ≥ n0,

0 =

∫ 2π

0

g(x, un)φ∗1 dx−
∫ 2π

0

hφ∗1 dx >
∫ 2π

0

A(x)φ∗1 dx−
∫ 2π

0

h(x)φ∗1 dx;

that is, ∫ 2π

0

h(x)φ∗1 dx >
∫ 2π

0

A(x)φ∗1 dx.

This is a contradiction with the second inequality in the assumption (C4).
Hence, all possible solutions of Eq.(15) are (uniformly) bounded in W 2,1

P (0, 2π)
for λ = 0 as well. Thus, in this case, one gets the boundedness of all possible
solutions in W 2,1

P (0, 2π) as in Proposition 4.1.
Now, we proceed to look into the situation regarding multiplicity and bifur-

cation from infinity. As in the proof of Theorem 3.1, we let δ ∈ R be sufficiently
small such that 0 < δ < λ0, and observe that Eq.(15) is equivalent to the fixed
point equation

u = (δ − λ)(L+ δI)−1u− (L+ δI)−1 (Nu− h) .

Setting

µ := δ − λ, Hu := (L+ δI)−1u and Ku := −(L+ δI)−1 (Nu− h) ,

it follows that the above fixed point equation is equivalent to the equation

u = µHu+K(u), u ∈ C0
P ([0, 2π]). (23)
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Notice that Eq.(23) has now an abstract form considered e.g. in [17] for bifur-
cation from infinity purposes. From this setup, it follows that, when λ = 0, the
constant µ−1 = δ−1 is the principal eigenvalue of H and that, by the compact
imbedding of W 2,1

P (0, 2π) into C0
P ([0, 2π]), the solution-map

H := (L+ δI)−1 : C0
P ([0, 2π])→W 2,1

P (0, 2π)
c
↪→ C0

P ([0, 2π])

is a compact linear operator when considered as an operator from C0
P ([0, 2π])

into C0
P ([0, 2π]). Since by the Carathédory condition (C1) the superposition op-

erator N : C0
P ([0, 2π])→ L1(0, 2π) (defined by N (u) := g(·, u(·))) is continuous

(by e.g. using Lebesgue Dominated Convergence Theorem) and h ∈ L1(0, 2π),
one has that N (·) + h maps C0

P ([0, 2π]) continuously into L1(0, 2π). Therefore

K : C0
P ([0, 2π])→W 2,1

P (0, 2π)
c
↪→ C0

P ([0, 2π])

is a completely continuous mapping when viewed as a nonlinear operator from
C0
P ([0, 2π]) into C0

P ([0, 2π]).
Now, we wish to show that K(u) = o(|u|C0

P ([0,2π])) as |u|C0
P ([0,2π]) → ∞.

Let us set w = K(u) for u ∈ C0
P ([0, 2π]); that is, w ∈ W 2,1

P (0, 2π) satisfies
the operator equation (L + δI)w = −N (u) + h for u ∈ C0

P ([0, 2π]). By the
arguments similar to those used in the proof of Lemma 2.2, there is a constant
C1 > 0 (independent of u) such that

|w|
W

2,1
P

(0,2π)
≤ C1

(
|g(·, u(·))|L1(0,2π) + |h|L1(0,2π)

)
. (24)

Using the sublinear growth condition (C2), we first proceed to show that the
real-valued function |g(·, u(·))|L1(0,2π) is a o(|u|C0

P ([0,2π])) as |u|C0
P ([0,2π]) →∞.

Indeed, let ε > 0 be given, it follows from the Carathéodory condition (C1)
and the sublinearity assumption (C2) that there exist a constant rε > 0 and a
function aε ∈ L1(0, 2π) \ {0} such that for every u ∈ C0

P ([0, 2π]) one has

|g(x, u(x))| ≤ ε

2
|u(x)| ≤ ε

2
|u|C0

P ([0,2π]) a.e. where |u(x)| ≥ rε,

and
|g(x, u(x))| ≤ |aε(x)| a.e. where |u(x)| ≤ rε.

Picking Rε := R(ε) ≥ 2|aε|L1(0,2π)/ε, it follows that for |u|C0
P ([0,2π]) ≥ Rε one

has
|g(·, u(·))|

L1(0,2π)
/|u|C0([0,2π]) ≤ ε. (25)

This shows that for every ε > 0 there is a constant Rε > 0 such that the
inequality (25) holds provided |u|C0

P ([0,2π]) ≥ Rε; that is, |g(·, u(·))|L1(0,2π) =

o(|u|C0
P ([0,2π])) as |u|C0

P ([0,2π]) →∞; which by using the inequality (24) implies

that |w|W 2,1(0,2π) = o(|u|C0
P ([0,2π])) as |u|C0

P ([0,2π]) → ∞. Since W 2,1
P (0, 2π)
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is continuously imbedded into C0
P ([0, 2π]) and w = K(u), it follows that

|K(u)|C0
P ([0,2π]) = o(|u|C0

P ([0,2π])) for |u|C0
P ([0,2π]) →∞; as needed.

Therefore, λ = 0 is a bifurcation point from infinity since all assumptions of
the bifurcation from infinity result are fulfilled (see e.g. [17, p. 465, Theorem
1.6 and Corollary 1.8], also see [20, 2]); that is, there exist two connected
sets of solutions C+, C− ⊂ R × C0

P ([0, 2π]) with C+ ∩ C− = ∅ which are such
that for every (sufficiently) small ε > 0, C+ ∩ Uε 6= ∅, C− ∩ Uε 6= ∅ where

Uε :=
{

(λ, u) ∈ R× C0
P ([0, 2π]) : |λ| < ε, |u|C0

P ([0,2π]) > 1/ε
}

. (Observe that,

by the regularity of solutions, u ∈W 2,1
P (0, 2π) since it is a solution of the fixed

point equation (23).)
Now, since all 2π-periodic solutions are uniformly bounded in W 2,1(0, 2π)

for all λ ∈ [0, λ0] (see Proposition 4.1 and the above bound in the case λ = 0)
and for all λ ∈ [α0, α1] with α1 < 0 (see Proposition 4.2), there then exists a
deleted left-neighborhood of 0 in R; i.e., there is λ− < 0, such that for every ε >
0 with ε < |λ−|, there are two distinct solutions (λ+ε , uε) ∈ C+ and (λ−ε , vε) ∈
C− with −ε < λ±ε < 0, uε 6= vε and min

{
|uε|C0([0,2π]), |vε|C0([0,2π])

}
> 1/ε.

Letting ε→ 0+, it follows that λ±ε → 0 and min
{
|uε|C0([0,2π]), |vε|C0([0,2π])

}
→

∞. The proof is complete.

Proof of Theorem 3.4. As in the proof of Theorem 3.2, we first show that all
possible solutions of Eq.(15) are (uniformly) bounded in W 2,1(0, 2π) when λ =
0 as well; that is, the conclusion of Theorem 3.1 actually holds true for all
λ ∈ [0, λ0]. As before, the proof is similar to that of Theorem 3.1 except that
we consider the homotopy-parameter θ ∈ [0, 1]. Therefore, it suffices to show
that all possible solutions of the homotopy (22) are bounded in W 2,1(0, 2π)
for θ = 1 and λ = 0 as well. For that purpose, we follow the arguments
in the proof of Proposition 4.1 with λ = 0 up to the inequality (20). Now,
using the duality pairing with the eigenfunction φ∗1 in Eq.(16) and the fact
that φ∗1 is an eigenfunction of L∗, it follows from Eq.(16) that for each n ≥ n0,

0 =

∫ 2π

0

g(x, un)φ∗1 dx−
∫ 2π

0

hφ∗1 dx. The inequality (20), the assumption (C3),

and Fatou’s lemma imply that

0 = lim inf
n→∞

∫ 2π

0

g(x, un)φ∗1 dx−
∫ 2π

0

hφ∗1 dx

≥
∫ 2π

0

lim inf
n→∞

g(x, un)φ∗1 dx−
∫ 2π

0

hφ∗1 dx =

∫ 2π

0

g+(x)φ∗1 dx−
∫ 2π

0

hφ∗1 dx;

that is,

∫ 2π

0

hφ∗1 dx ≥
∫ 2π

0

g+(x)φ∗1 dx. This is a contradiction with the second

inequality in the assumption (14) of Theorem 3.4. Therefore, all possible solu-
tions of Eq.(15) are (uniformly) bounded in W 2,1(0, 2π) for λ = 0 as well. One
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can now can proceed as in the proof of Theorem 3.2 to establish multiplicity
and bifurcation from infinity. The proof is complete.

Proof of Theorem 3.5. As in the above proofs, we analyse more carefully the
behavior of all possible solutions of Eq.(15) (or equivalently Eq.(9)) when λ = 0.
We first show that all possible non-constant solutions of Eq.(15) are (uniformly)
bounded in W 2,1(0, 2π) when λ = 0. For that purpose, we follow the arguments
in the proof of Proposition 4.1 with λ = 0 up to the inequality (20) with un 6=
cst for all n ≥ n0 and R = R1 is the first element of the sequence {Rk}k≥1
given in the statement of the theorem. Now, using the duality pairing with
the eigenfunction φ∗1 in Eq.(16) and the fact that φ∗1 is an eigenfunction of

L∗, it follows from Eq.(16) that for each n ≥ n0, 0 =

∫ 2π

0

g(x, un)φ∗1 dx. By

using the (strict) positivity of the eigenfunction φ∗1 (see Proposition 2.5), the
inequality (20) which implies the non-negativity of g(·, un(·)) by the assumption
in the theorem, we get that g(·, un(·)) ≡ 0 a.e. on [0, 2π]. This is a contradiction
with the positivity assumption on g in the theorem since un 6= constant for all
n ≥ n0 (i.e., un 6≡ Rk for some k). Thus, all possible non-constant solutions of
Eq.(15) where λ = 0 are (uniformly) bounded in W 2,1(0, 2π). However, in this
instance, large (in norm) constant solutions might occur in Eq.(15) when λ = 0.
The above argument shows that if they do occur, then they must necessarily be
elements of the sequences {Rk} or {rk} of real numbers given in the statement
of the theorem (for k large enough).

Since the sequences {Rk} and {rk} are discrete sets, and the continua C+
and C+ are connected, we deduce as in the proof of Theorem 3.2 that there
exists a deleted left-neighborhood of 0 in R; i.e., there is λ− < 0, such that for
every ε > 0 with ε < |λ−|, there are two distinct solutions (λ+ε , uε) ∈ C+ and
(λ−ε , vε) ∈ C− with −ε < λ±ε < 0, uε 6= vε, min

{
|uε|C0([0,2π]), |vε|C0([0,2π])

}
>

1/ε. It follows that λ±ε → 0 and min
{
|uε|C0([0,2π]), |vε|C0([0,2π])

}
→ ∞ as

ε→ 0+. (Notice that these continua could ‘connect’ to the discrete set of large
constant solutions, if any; i.e, oscillate on the left of λ = 0 and ‘bounce-off’
theses discrete constant solutions as ε→ 0!) The proof is complete.

Remark 5.1. As indicated above, with the coefficient b ∈ ACP ([0, 2π]) =
W 1,1
P (0, 2π), we may replace the condition A = B = 0 in Theorem 3.5 by a

(slightly) more general condition where B ≤ A are possibly nonzero constants.
In this case, in addition to assuming that the conditions (C1), (C2) and (C4)
are met, we suppose that there exist sequences of real numbers 0 >> rk >
rk+1 → −∞ and 0 << Rk < Rk+1 →∞ as k →∞ such that for all k ∈ N,

g(x, rk) = B and g(x,Rk) = A for a.e. x ∈ (0, 2π) and

g(x, u) > A for a.e. x ∈ (0, 2π) and all u ∈ R with Rk < u < Rk+1,

g(x, u) < B for a.e. x ∈ (0, 2π) and all u ∈ R with rk+1 < u < rk.
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That is, the (bounce-off) oscillations of the nonlinearity occur with respect to

the constants A and B. Observe that the condition

∫ 2π

0

hφ∗1 dx = 0 is now

replaced by the more general condition (C4). The proof is similar to that of
Theorem 3.5.
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