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Abstract. In 1973, E. J. McShane introduced an alternative defi-
nition of the Lebesgue integral based on Riemann sums, where gauges
are used to decide what tagged partitions are allowed. Such an ap-
proach does not require any preliminary knowledge of Measure Theory.
We investigate in this paper a definition of measurable functions also
based on gauges. Its relation to the gauge-integrable functions that sat-
isfy McShane’s definition is obtained using elementary tools from Real
Analysis. We show in particular a dominated integration property of
gauge-measurable functions.
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1. Introduction

In its classical original setting, the Lebesgue integral of a function f is defined
in terms of the outer Lebesgue measure of the measurable sublevel sets of
f [2,12,16]. Compared to the definition of the integral by Cauchy or Riemann
as a limit of Riemann sums [4,26], the definition of the Lebesgue integral seems
somehow indirect: it is a limit of a sum of measures, where these measures are
themselves computed as the infima or suprema of volumes.

This issue has led to the definition of gauge integrals as a way of recovering
the original approach based on Riemann sums, without the defects associated
to the Riemann integral of Riemann-integrable functions [21]. Around 1960,
Kurzweil and Henstock independently defined a gauge integral which allows
one to integrate more functions than the Lebesgue-integrable ones [11, 15]. A
few years later, in 1973, McShane presented the Lebesgue integral itself as a
gauge integral [23,24]. We can rephrase McShane’s definition as follows:

Definition 1.1 (Gauge integrability). A function f : Rd → Rp is gauge-
integrable whenever there exists I ∈ Rp verifying the following property: for
every ε > 0, there exists a gauge γ on Rd and a compact set K ⊂ Rd such that,
for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd that covers K and
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every finite set of points (ci)i∈{1,...,k} in Rd satisfying

Ri ⊂ γ(ci) for every i ∈ {1, . . . , k},

one has ∣∣∣ k∑
i=1

f(ci) vol (Ri)− I
∣∣∣ ≤ ε.

In this definition, a gauge γ on Rd is a function mapping each point of x ∈ Rd
to an open set γ(x) ⊂ Rd such that x ∈ γ(x); for example γ(x) might be taken
to be a non-empty open ball centered at x. A rectangle R ⊂ Rd is a set that
can be written as R = [a1, b1)×· · ·× [ad, bd), where a1 < b1, . . . , ad < bd are all
real numbers; its volume is the positive number vol (R) = (b1−a1) · · · (bd−ad).
Rectangles are disjoint whenever their intersection is empty, and the family
(Ri)i∈{1,...,k} covers K if

k⋃
i=1

Ri ⊃ K.

The compact set K corresponds in McShane’s original definition to the com-
plement of his gauge at infinity; the equivalent formulation above avoids com-
pactifying the Euclidean space Rd and considering unbounded rectangles.

By Cousin’s lemma, which is a variant of the Heine–Borel theorem, for any
gauge γ on Rd and any compact set K ⊂ Rd, there always exists some finite
set of disjoint rectangles (Ri)i∈{1,...,k} that covers K and points (ci)i∈{1,...,k}
such that Ri ⊂ γ(ci) for every i [24, Theorem IV-3-1]. This fact ensures the
uniqueness of the integral I of f , which entitles one to adopt the usual notation∫

Rd

f := I.

A non-intuitive feature of the definition of the gauge integral above is
that each tag ci need not belong to the rectangle Ri. Adding this restric-
tion gives the broader definition of integral of Kurzweil and Henstock, which
is a gauge definition of the Denjoy–Perron integral for which all derivatives of
one-dimensional functions are integrable on bounded intervals [9, 18, 25]. This
Kurzweil–Henstock integral has been taught by Jean Mawhin at the Université
catholique de Louvain (UCL) for thirty years [19, 20], continuing the Louvain
tradition of cutting-edge lectures on integration theory initiated by Ch.-J. de
la Vallée Poussin with the Lebesgue integral at the beginning of the 20th cen-
tury [5–7,22]. The further restriction that the gauge γ(x) contain some uniform
ball Bδ(x) for some radius δ > 0 independent of x ∈ Rd yields the classical
Riemann integral.

Measurability of functions is not a prerequisite of McShane’s definition of
gauge integrability. This is an important aspect one should not neglect about
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the gauge integral that makes the Lebesgue integral readily available, without
the need of any preliminary development of tools from Measure Theory. This
is an approach we have been pursuing at UCL since 2009.

When measurability is needed to state some integrability condition, measur-
able functions have been defined as pointwise limits of integrable functions [24,
Definition III-10-1] or almost everywhere limits of locally integrable step func-
tions (see [1, §19] and [17, Definition 3.5.3]), or in terms of measurable sets
whose characteristic functions are locally integrable (see [19, §6.B] and [20,
§13.7]). It thus seems that the straightforwardness of McShane’s definition of
the integral is lost in an ad hoc indirect definition of measurability based on
the integral itself.

In order to remedy to this issue, we introduce here a direct definition of
measurability of functions in terms of gauges inspired by Lusin’s property for
Lebesgue-measurable functions.

Definition 1.2 (Gauge measurability). A function f : Rd → Rp is gauge-
measurable whenever, for every ε > 0 and every η > 0, there exists a gauge γ
on Rd such that, for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd
and every finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd satisfying

|f(ci)− f(c′i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c′i) for every i ∈ {1, . . . , k},

one has
k∑
i=1

vol(Ri) ≤ ε.

The goal of this paper is to provide various properties of gauge-measurable
functions that can be deduced using elementary ideas of Real Analysis. These
are well-known properties of Lebesgue-measurable functions, and both notions
of measurability are equivalent, but the main message we want to emphasize is
that one can obtain these properties in a self-contained approach based on gauge
integrability and gauge measurability. As an example, we show in Section 5
below that these two concepts are related through the following dominated-
integrability characterization of gauge-integrable functions:

Theorem 1.3. A function f : Rd → Rp is gauge-integrable if and only if f is
gauge-measurable and there exists a gauge-integrable function h : Rd → R such
that |f | ≤ h in Rd.

The paper is organized as follows. In Sections 2 and 3, we prove properties
of gauge-measurable functions that can be straightforwardly obtained from the
definition. Some of them will be superseded in later sections using two impor-
tant properties of the gauge integral: the Absolute Cauchy criterion and the
Dominated convergence theorem. In Section 4, we prove Lusin’s theorem for
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gauge-measurable functions using an alternative formulation of the gauge mea-
surability based on the inner measure of open sets in Rd. We then prove Theo-
rem 1.3 in Section 5. In Section 6, we prove the stability of gauge measurability
under pointwise convergence. In Sections 7 and 8, we define gauge-measurable
sets in the same spirit as for functions, and then we prove that every gauge-
measurable function is the pointwise limit of gauge-measurable step functions.
We thus recover the approach which leads to the Lebesgue integral.

2. Elementary properties

The goal of this section is to present some properties of gauge measurability
that readily follow from its definition. We begin by noting that every continuous
function is gauge-measurable.

Proposition 2.1 (Gauge measurability of continuous functions). If the func-
tion f : Rd → Rp is continuous, then f is gauge-measurable.

Proof. Given a pair of points ci, c
′
i ∈ Rd, by the triangle inequality for every

z ∈ Rd we have

|f(ci)− f(c′i)| ≤ |f(z)− f(ci)|+ |f(z)− f(c′i)|. (1)

Using the continuity of f , we choose a gauge γ in such a way that the right-
hand side is always less than η > 0 provided that γ(ci) ∩ γ(c′i) 6= ∅. Indeed,
given η > 0, for every x ∈ Rd we define

γ(x) =
{
z ∈ Rd

∣∣ |f(z)− f(x)| < η

2

}
.

In particular, x ∈ γ(x); since the function f is continuous, the set γ(x) is open.
If there exists z ∈ γ(ci)∩ γ(c′i), then by the choice of γ we have simultaneously

|f(z)− f(ci)| <
η

2
and |f(z)− f(c′i)| <

η

2
.

In view of (1), we then have

|f(ci)− f(c′i)| < η.

Therefore, no matter what ε > 0 we take, there is no finite family of rectan-
gles (Ri)i∈{1,...,k} that needs to be checked in Definition 1.2, so the latter is
automatically satisfied by the continuous function f .

Proposition 2.2 (Composition with uniformly continuous functions). If the
function f : Rd → Rp is gauge-measurable and the function Φ : Rp → R` is uni-
formly continuous, then the composition Φ ◦ f : Rd → R` is gauge-measurable.
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This property is reminiscent of the integrability of compositions with Lips-
chitz functions for the gauge integral [24, Theorem II-3-1]; the class of admis-
sible functions is larger here because gauge measurability is more qualitative
than gauge integrability. As for the gauge integrability, Proposition 2.2 is not
the end of the story: we prove in Section 6 using more elaborate tools that
the proposition remains true when the function Φ is merely continuous; see
Proposition 6.5 below.

Proof of Proposition 2.2. Given η > 0, by definition of uniform continuity there
exists δ > 0 such that, for every y, z ∈ Rd satisfying |y − z| < δ, one has
|Φ(y)− Φ(z)| < η. This is equivalent to saying that if |Φ(y)− Φ(z)| ≥ η, then
|y − z| ≥ δ. Hence, for every pair of points ci, c

′
i ∈ Rd such that

|(Φ ◦ f)(ci)− (Φ ◦ f)(c′i)| ≥ η, (2)

we have

|f(ci)− f(c′i)| ≥ δ. (3)

Given ε > 0, by Definition 1.2 of gauge measurability of f with parameter
η = δ there exists a gauge γ on Rd such that, for every finite set of disjoint
rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k}
in Rd satisfying (2) and Ri ⊂ γ(ci) ∩ γ(c′i) for every i, we have that (3) also
holds for every i, and then by the choice of the gauge γ,

k∑
i=1

vol (Ri) ≤ ε.

The function Φ ◦ f is thus gauge-measurable.

An interesting consequence of Proposition 2.2 is that the family of gauge-
measurable functions forms a vector space, and the product of two bounded
gauge-measurable functions is also gauge-measurable. We provide an indepen-
dent proof of these facts in the next section for the sake of clarity. The latter
property concerning the product will be superseded later on by using the fact
that measurability is stable under pointwise convergence, which allows one to
remove the boundedness assumption of the functions; see Corollary 6.4. For the
moment, we restrict ourselves to the case of uniform limits of gauge-measurable
functions:

Proposition 2.3 (Uniform limit). Let (fn)n∈N be a sequence of gauge-measur-
able functions from Rd to Rp. If the sequence (fn)n∈N converges uniformly to
the function f : Rd → Rp, then f is gauge-measurable.
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Proof. For every pair of points ci, c
′
i ∈ Rd and every n ∈ N, by the triangle

inequality we have

|fn(ci)− fn(c′i)| ≥ |f(ci)− f(c′i)| − |fn(ci)− f(ci)| − |fn(c′i)− f(c′i)|.

Given η > 0, by the definition of uniform convergence there exists n ∈ N such
that, for every x ∈ Rd, |fn(x)− f(x)| ≤ η/4. Hence, assuming that

|f(ci)− f(c′i)| ≥ η, (4)

we have
|fn(ci)− fn(c′i)| ≥

η

2
. (5)

Given ε > 0, let γ be a gauge on Rd given by the definition of gauge mea-
surability of fn with parameter η/2. For every finite set of disjoint rectangles
(Ri)i∈{1,...,k} and every sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} satisfy-
ing (4) and Ri ⊂ γ(ci) ∩ γ(c′i) for every i, we then have that (5) is satisfied by
fn for every i, and then, by the choice of γ,

k∑
i=1

vol (Ri) ≤ ε.

The function f is thus gauge-measurable.

3. Algebraic stability

We show that the class of gauge-measurable functions forms a vector space:

Proposition 3.1 (Linearity). If the functions f : Rd → Rp and g : Rd → Rp
are gauge-measurable and λ ∈ R, then f + g and λf are gauge-measurable.

Proof. We focus on the proof that f + g is gauge measurable; the case of λf is
left as an exercise (see also Proposition 2.2). For every pair of points ci, c

′
i ∈ Rd,

by the triangle inequality we have

|(f + g)(ci)− (f + g)(c′i)| ≤ |f(ci)− f(c′i)|+ |g(ci)− g(c′i)|.

Given η > 0, and assuming that

|(f + g)(ci)− (f + g)(c′i)| ≥ η, (6)

then we necessarily have

|f(ci)− f(c′i)| ≥
η

2
or |g(ci)− g(c′i)| ≥

η

2
. (7)
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Given ε > 0, let γ1 and γ2 be two gauges on Rd arising from the definitions
of gauge measurability of f and g, respectively, with parameters ε/2 and η/2.
Consider the gauge γ defined for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x). For a
finite collection of disjoint rectangles (Ri)i∈{1,...,k} and finite sets of points

(ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd verifying (6) and Ri ⊂ γ(ci) ∩ γ(c′i) for
every i ∈ {1, . . . , k}, let us denote by I1 the set of indices i for which the first
inequality in (7) holds for f and by I2 the set of indices i for which the second
inequality in (7) holds for g. We can thus assert that

{1, . . . , k} = I1 ∪ I2. (8)

We have in particular Ri ⊂ γ1(ci)∩ γ1(c′i) for every i ∈ I1, and thus by the
choice of γ1, ∑

i∈I1

vol (Ri) ≤
ε

2
.

We also have Ri ⊂ γ2(ci)∩γ2(c′i) for every i ∈ I2, and thus by the choice of γ2,∑
i∈I2

vol (Ri) ≤
ε

2
.

Since the sets I1 and I2 cover {1, . . . , k}, we deduce that

k∑
i=1

vol (Ri) ≤
ε

2
+
ε

2
= ε.

Therefore, the function f + g is gauge-measurable.

Using a similar idea, one shows that the product of bounded gauge-mea-
surable functions is also gauge-measurable. The conclusion is still true without
assuming the functions are bounded, but the proof is more subtle; see Section 6.

Proposition 3.2 (Product of bounded functions). If the functions f : Rd →
Rp and g : Rd → R are gauge-measurable and bounded, then fg is also gauge-
measurable.

Proof. Take M > 0 and N > 0 such that |f | ≤ M and |g| ≤ N in Rd.
Given finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd, by the triangle

inequality for every x ∈ Rd we have

|(fg)(ci)− (fg)(c′i)| ≤ |f(ci)− f(c′i)| |g(ci)|+ |f(c′i)| |g(ci)− g(c′i)|
≤ N |f(ci)− f(c′i)|+M |g(ci)− g(c′i)|.

Given η > 0, if for every i ∈ {1, . . . , k} we have

|(fg)(ci)− (fg)(c′i)| ≥ η,



120 A.C. PONCE AND J. VAN SCHAFTINGEN

then necessarily

|f(ci)− f(c′i)| ≥
η

2N
or |g(ci)− g(c′i)| ≥

η

2M
.

As in the previous proof, one defines the subsets of indices I1 and I2 accordingly,
so that the counterpart of (8) also holds in this case. One can now proceed
along the lines of the proof of Proposition 3.1 to deduce that fg is gauge-
measurable.

4. Lusin’s theorem

We now relate the notion of gauge measurability with Lusin’s theorem, which
trivially extends Proposition 2.1 that is valid for continuous functions:

Proposition 4.1 (Lusin’s theorem). A function f : Rd → Rp is gauge-mea-
surable if and only if, for every ε > 0, there exists a closed set C ⊂ Rd such
that the restriction f |C is continuous and the inner measure of the open set
Rd \ C satisfies µ(Rd \ C) ≤ ε.

We recall the notion of inner measure of an open set U ⊂ Rd:

µ(U) := sup
{ k∑
i=1

vol (Ri)
∣∣ (Ri)i∈{1,...,k} is a family of disjoint rectangles

contained in U
}
.

Observe that µ is nondecreasing and countably subadditive. The quantity µ(U)
is unchanged if the supremum is computed over the smaller class of disjoint
rectangles (Si)i∈{1,...,k} such that S̄i ⊂ U for every i ∈ {1, . . . , k}. The reason
is that for any number 0 < θ < 1 one can construct a rectangle Si such that
S̄i ⊂ Ri and vol (Si) ≥ θ vol (Ri), which gives

θ

k∑
i=1

vol (Ri) ≤
k∑
i=1

vol (Si) ≤
k∑
i=1

vol (Ri).

Lusin’s theorem above gives the equivalence between gauge measurability
and the measurability in the sense of Bourbaki, defined in terms of Lusin’s
property [3, Definition IV-§5-1]. To prove Proposition 4.1 above, we rely on the
following lemma which reformulates Definition 1.2 without relying on tagged
partitions:

Lemma 4.2 (Gauge-intersection characterization). The function f : Rd → Rp
is gauge-measurable if and only if, for every ε > 0 and every η > 0, there exists
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a gauge γ on Rd such that the open set

Uγ,η :=
⋃

x,z∈Rd

|f(x)−f(z)|≥η

(
γ(x) ∩ γ(z)

)

satisfies µ(Uγ,η) ≤ ε.

A byproduct of Lemma 4.2 is the invariance of gauge measurability under
bi-Lipschitz homeomorphisms of Rd, which include isometries.

Proof of Lemma 4.2. “⇐=”. Given η > 0 and a gauge γ on Rd, take a finite
disjoint family of rectangles (Ri)i∈{1,...,k} and finite sets of points (ci)i∈{1,...,k}
and (c′i)i∈{1,...,k} in Rd such that

|f(ci)− f(c′i)| ≥ η and Ri ⊂ γ(ci) ∩ γ(c′i) for every i.

In particular, Ri ⊂ γ(ci)∩γ(c′i) ⊂ Uγ,η, hence by definition of the inner measure
µ(Uγ,η) we have

k∑
i=1

vol (Ri) ≤ µ(Uγ,η).

To conclude it suffices to choose the gauge γ so that, for any given ε > 0, we
have µ(Uγ,η) ≤ ε.

“=⇒”. Assume that the function f is gauge-measurable, and let γ be a
gauge on Rd given by Definition 1.2 for some ε > 0 and η > 0. Let (Ri)i∈{1,...,k}
be a finite family of disjoint rectangles contained in Uγ,η. By the remark
following the definition of the inner measure µ, we may restrict our attention
to the case where R̄i ⊂ Uγ,η for every i. Then, by compactness of R̄i, the
rectangle Ri can be covered by a finite collection of sets of the form γ(x)∩γ(z)
such that x, z ∈ Rd and |f(x) − f(z)| ≥ η. By a suitable subdivision of the
rectangles (Ri)i∈{1,...,k} into smaller rectangles, which does not change their
total volume, we can thus assume without loss of generality that, for every
i ∈ {1, . . . , k}, there exist points x, z ∈ Rd such that

Ri ⊂ γ(x) ∩ γ(z) and |f(x)− f(z)| ≥ η.

[Such a subdivision is allowed since the points x and z are not required to
belong to Ri.] We then choose ci = x and c′i = z. The finite sets of points
(ci)i∈{1,...,k} and (c′i)i∈{1,...,k} satisfy the conditions of Definition 1.2, and we
deduce that

k∑
i=1

vol (Ri) ≤ ε.

Since the family of rectangles (Ri)i∈{1,...,k} is chosen arbitrarily, we thus have
that µ(Uγ,η) ≤ ε.
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Proof of Proposition 4.1. We first observe that given η > 0, a gauge γ on Rd,
and z ∈ Rd, then for every x ∈ γ(z) \ Uγ,η we have

|f(x)− f(z)| < η. (9)

Indeed, since x ∈ γ(x)∩ γ(z) and x 6∈ Uγ,η, the set γ(x)∩ γ(z) is not contained
in Uγ,η, hence x and z are not admissible indices in the union that defines the
set Uγ,η. We deduce that (9) holds.

Proceeding with the proof of the proposition, we now assume that the func-
tion f is gauge-measurable and let ε > 0. For each n ∈ N, by Lemma 4.2 there
exists a gauge γn on Rd such that

µ
(
Uγn,1/2n

)
≤ ε

2n+1
.

We set C = Rd \
⋃
n∈N

Uγn,1/2n . By countable subadditivity of µ, we have

µ(Rd \ C) ≤
∑
n∈N

µ
(
Uγn,1/2n

)
≤
∑
n∈N

ε

2n+1
= ε.

It remains to prove that the restricted function f |C is continuous at any point
z ∈ C. For every x ∈ γn(z)∩C ⊂ γn(z)\Uγn,1/2n , we deduce from estimate (9)
above that

|f(x)− f(z)| < 1

2n
.

Since this estimate holds on the relatively open subset γn(z)∩C of C and n ∈ N
is arbitrary, we deduce that the function f |C is continuous at z.

Conversely, we take a closed set C such that the restriction f |C is continu-
ous. For every η > 0, the set

γ(x) = Rd \
{
w ∈ C

∣∣ |f(x)− f(w)| ≥ η

2

}
contains x and is open in Rd, since the function f |C is continuous and the set
C is closed. Hence, γ is a gauge on Rd. We now observe that if x, z ∈ Rd and
|f(x)− f(z)| ≥ η, then

γ(x) ∩ γ(z) ∩ C = ∅.
Indeed, if this were not true, there would exist a point w ∈ γ(x) ∩ γ(z) ∩ C.
Since w ∈ C, we would have, by definition of γ, |f(x) − f(w)| < η/2 and
|f(z) − f(w)| < η/2 and thus by the triangle inequality |f(x) − f(z)| < η,
which would be a contradiction.

We thus have Uγ,η ⊂ Rd \ C, and then by monotonicity of the inner mea-
sure µ,

µ(Uγ,η) ≤ µ(Rd \ C).

Given ε > 0, by the Lusin property satisfied by the function f , we may choose
the closed set C so as to have µ(Rd \ C) ≤ ε. We conclude from Lemma 4.2
that the function f is gauge-measurable.
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5. Gauge measurability and integrability

The goal of this section is to establish Theorem 1.3. The relationship between
gauge measurability and gauge integrability relies on the following Absolute
Cauchy criterion for gauge-integrable functions [24, Theorem II-2-4] (see also
[14, Lemma 5.13]).

Proposition 5.1 (Absolute Cauchy criterion). The function f : Rd → Rp is
gauge-integrable if and only if, for every ε > 0, there exist a gauge γ on Rd and
a compact subset K ⊂ Rd such that the following properties hold:

(i) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd and every
finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} satisfying Ri ⊂ γ(ci) ∩
γ(c′i) for every i, one has

k∑
i=1

|f(ci)− f(c′i)| vol (Ri) ≤ ε.

(ii) for every finite set of disjoint rectangles (Ri)i∈{1,...,k} in Rd\K and every
finite set of points (ci)i∈{1,...,k} such that Ri ⊂ γ(ci) for every i, one has

k∑
i=1

|f(ci)| vol (Ri) ≤ ε.

This condition is a Cauchy criterion because it does not require nor gives the
value of the integral of f . It is an absolute Cauchy condition because the norm is
taken inside the Riemann sum. An important consequence of Proposition 5.1
is the fact that if f : Rd → Rp is gauge-integrable and if Φ is a Lipschitz-
continuous function such that Φ(0) = 0, then the composite function Φ ◦ f is
also gauge-integrable [24, Theorem II-3-1]. In particular, |f | is gauge-integrable
whenever f is gauge-integrable.

We first consider the question of gauge measurability of gauge-integrable
functions.

Proposition 5.2 (Gauge measurability). If f : Rd → Rp is gauge-integrable,
then f is gauge-measurable.

Proof. Let η > 0 and take a finite set of disjoint rectangles (Ri)i∈{1,...,k} and

finite sets of points (ci)i∈{1,...,k} and (c′i)i∈{1,...,k} in Rd such that

|f(ci)− f(c′i)| ≥ η for every i.

Then, we have

k∑
i=1

vol (Ri) ≤
1

η

k∑
i=1

|f(ci)− f(c′i)| vol(Ri). (10)
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Applying Property (i) of the Absolute Cauchy criterion with parameter ηε,
there exists a gauge γ on Rd such that if Ri ⊂ γ(ci) ∩ γ(c′i), then the sum in
the right-hand side of (10) is smaller than ηε, and we get

k∑
i=1

vol (Ri) ≤
1

η
· ηε = ε.

We deduce that the function f is gauge-measurable in view of Definition 1.2.

We now handle the reverse implication of Theorem 1.3 under the additional
assumption that f is a bounded function.

Proposition 5.3 (Dominated integrability for bounded functions). If f : Rd →
Rp is gauge-measurable and bounded and if |f | ≤ h in Rd for some gauge-
integrable function h : Rd → R, then f is gauge-integrable.

Proof. Property (ii) of the Absolute Cauchy criterion is satisfied by h, hence
also by f . We now focus on Property (i). For this purpose, let (Ri)i∈{1,...,k} be
a finite collection of disjoint rectangles, and let (ci)i∈{1,...,k} and (c′i)i∈{1,...,k}
be finitely many points in Rd. Given η > 0 and a compact subset K ⊂ Rd, we
can relabel the rectangles and points simultaneously so as to have

(a) for every i ∈ {1, . . . ,m}, |f(ci)− f(c′i)| ≥ η,

(b) for every i ∈ {m+ 1, . . . , l}, |f(ci)− f(c′i)| < η and Ri ∩K 6= ∅,

(c) for every i ∈ {l + 1, . . . , k}, |f(ci)− f(c′i)| < η and Ri ∩K = ∅,
for some integers 0 ≤ m ≤ l ≤ k; some of these conditions might be empty,
and in this case one simply ignores them.

By the assumption of boundedness of f , there exists M > 0 such that, for
every x ∈ Rd, |f(x)| ≤M . By the triangle inequality, we then have

m∑
i=1

|f(ci)− f(c′i)| vol (Ri) ≤ 2M

m∑
i=1

vol (Ri),

and, by (b),

l∑
i=m+1

|f(ci)− f(c′i)| vol (Ri) ≤ η
l∑

i=m+1

vol (Ri).

Since |f | ≤ h in Rd, we also have

k∑
i=l+1

|f(ci)− f(c′i)| vol (Ri) ≤
k∑

i=l+1

(
|f(ci)|+ |f(c′i)|

)
vol (Ri)

≤
k∑

i=l+1

(
h(ci) + h(c′i)

)
vol (Ri).
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These are the three main estimates that we need in the sequel. We now proceed
to choose the gauge γ that yields the Absolute Cauchy criterion for f .

Given ε > 0, by Property (ii) of the Absolute Cauchy criterion satisfied by
h with parameter ε/6, we can take the compact set K ⊂ Rd and a gauge γ1 on
Rd such that if Ri ⊂ γ1(ci) ∩ γ1(c′i) for every i ∈ {l + 1, . . . , k}, then we have

k∑
i=l+1

|f(ci)− f(c′i)| vol (Ri) ≤
k∑

i=l+1

(
h(ci) + h(c′i)

)
vol (Ri) ≤

ε

6
+
ε

6
=
ε

3
.

Fix a bounded open set U ⊂ Rd that contains K, and take the gauge γ2 on
Rd defined by γ2(x) = U if x ∈ U and γ2(x) = Rd \K if x 6∈ U . Observe that
if Ri ⊂ γ2(ci) ∩ γ2(c′i) for every i ∈ {m + 1, . . . , l}, then since Ri ∩K 6= ∅, we
necessarily have γ2(ci) = γ2(c′i) = U , and thus Ri ⊂ U . By definition of the
inner measure µ, and choosing η > 0 so as to have ηµ(U) ≤ ε/3, we then get

l∑
i=m+1

|f(ci)− f(c′i)| vol (Ri) ≤ η
l∑

i=m+1

vol (Ri) ≤ η µ(U) ≤ ε

3
.

By definition of gauge measurability of f with ε/6M and η chosen as above,
there exists a gauge γ3 on Rd such that if Ri ⊂ γ3(ci) ∩ γ3(c′i) for every i ∈
{1, . . . ,m}, then we have

m∑
i=1

|f(ci)− f(c′i)| vol (Ri) ≤ 2M

m∑
i=1

vol (Ri) ≤ 2M · ε

6M
=
ε

3
.

Combining these three estimates, we get

k∑
i=1

|f(ci)− f(c′i)| vol (Ri) ≤
ε

3
+
ε

3
+
ε

3
= ε,

and thus f satisfies the Absolute Cauchy criterion with the gauge γ defined
for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x) ∩ γ3(x). Hence, f is gauge-integrable by
Proposition 5.1.

The boundedness assumption of f can be removed using the Dominated
convergence theorem for gauge-integrable functions [24, Theorem II-10-1]:

Proposition 5.4 (Dominated convergence). Let (fn)n∈N be a sequence of gauge-
integrable functions from Rd to Rp. If (fn)n∈N converges pointwise to the func-
tion f : Rd → Rp, and if there exists a gauge-integrable function h : Rd → R
such that |fn| ≤ h in Rd for every n ∈ N, then f is gauge-integrable and

lim
n→∞

∫
Rd

fn =

∫
Rd

f.
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Proof of Theorem 1.3. If f is gauge-integrable, then f is gauge-measurable by
Proposition 5.2, and it follows from the Absolute Cauchy criterion above that
the function h := |f | is gauge-integrable.

Conversely, if f is gauge-measurable, then by Proposition 2.2, for every n ∈
N the truncated function Tn ◦ f is also gauge-measurable, where Tn : Rp → Rp
is the truncation function defined for w ∈ Rp by

Tn(w) =

{
w if |w| ≤ n,

nw/|w| if |w| > n,

Since the function Tn ◦ f is bounded and satisfies |Tn ◦ f | ≤ |f | ≤ h in Rd, it
follows from Proposition 5.3 that Tn ◦ f is gauge-integrable, and we conclude
applying the Dominated convergence theorem for gauge integrals as n tends to
infinity.

6. Pointwise limit

A crucial feature of Lebesgue-measurable functions is their stability under
pointwise convergence. Up to now, we only have proved that gauge measura-
bility is stable under uniform convergence, see Proposition 2.3. Thanks to the
relationship that we have established between gauge measurability and gauge
integrability, we now obtain a pointwise-convergence property in full generality.

Proposition 6.1 (Pointwise limit). Let (fn)n∈N be a sequence of gauge-mea-
surable functions from Rd to Rp. If (fn)n∈N converges pointwise to the function
f : Rd → Rp, then f is gauge-measurable.

We first prove two particular cases of this proposition, which as we shall see
yield the general case. We denote the characteristic function of a set A ⊂ Rd
by χA, that is χA : Rd → R is the function defined for each x ∈ Rd by

χA(x) =

{
1 if x ∈ A,
0 if x 6∈ A.

Lemma 6.2. Let (Al)l∈N be an increasing sequence of open subsets which cover
Rd with Al−1 ⊂ Al for every l ∈ N∗. If a function f : Rd → Rp is such that
fχAl

is gauge-measurable for every l ∈ N, then f is also gauge-measurable.

Proof. Given l,m ∈ N∗ with l ≤ m, we first observe that if

(Al \Al−2) ∩ (Am \Am−2) 6= ∅, (11)

then by monotonicity of the sequence (Al)l∈N we have m = l or m = l + 1.
Here, we use the convention that A−1 = ∅. Now let (γl)l∈N\{0,1} be a sequence
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of gauges on Rd to be chosen later on. We define a new gauge γ on Rd as
follows: for every x ∈ Rd, denote by l the smallest integer in N∗ such that
x ∈ Al and let

γ(x) = γl(x) ∩ γl+1(x) ∩ (Al \Al−2).

Since Al−2 ⊂ Al−1 by assumption, we have x 6∈ Al−2, and then the open set
Al \Al−2 contains x. Thus, γ is a well-defined gauge on Rd.

Given η > 0, we claim that

Uγ,η ⊂
⋃
l∈N∗

Vl+1, (12)

where
Vl+1 :=

⋃
x,z∈Rd

|fχAl+1
(x)−fχAl+1

(z)|≥η

(
γl+1(x) ∩ γl+1(z)

)
.

Indeed, assume that x, z ∈ Rd are such that |f(x) − f(z)| ≥ η. Let l and m
be the smallest integers in N∗ such that x ∈ Al and z ∈ Am; we may assume
without loss of generality that l ≤ m. If γ(x) ∩ γ(z) 6= ∅, then (11) holds, and
thus m = l or m = l + 1. Hence, we have

|fχAl+1
(x)− fχAl+1

(z)| = |f(x)− f(z)| ≥ η

and
γ(x) ∩ γ(z) ⊂ γl+1(x) ∩ γl+1(z) ⊂ Vl+1,

which implies (12).
Let ε > 0. Since the function fχAl+1

is gauge-measurable, by Lemma 4.2
we can choose the gauge γl+1 on Rd such that µ(Vl+1) ≤ ε/2l. Thus, by the
inclusion (12) and the countable subadditivity of the inner measure µ we get

µ(Uγ,η) ≤
∑
l∈N∗

µ(Vl+1) ≤
∑
l∈N∗

ε

2l
= ε.

By Lemma 4.2, we deduce that f is gauge-measurable.

Lemma 6.3. If the function f : Rd → Rp is such that the truncation Tj ◦ f is
gauge-measurable for every j ∈ N, then f is gauge-measurable.

Proof. Given a sequence of gauges (γj)j∈N∗ on Rd, consider the gauge γ defined
for x ∈ Rd by

γ(x) = γ0(x) ∩ · · · ∩ γj+1(x),

where j ∈ N is the smallest integer such that |f(x)| ≤ j. For every 0 < η ≤ 1,
we claim that

Uγ,η ⊂
⋃
j∈N

Wj+1, (13)
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where
Wj+1 :=

⋃
x,z∈Rd

|Tj+1◦f(x)−Tj+1◦f(z)|≥η

(
γj+1(x) ∩ γj+1(z)

)
.

For this purpose, for every x, z ∈ Rd such that |f(x) − f(z)| ≥ η, which we
may assume that |f(z)| ≥ |f(x)|, let j ∈ N be the smallest integer such that
|f(x)| ≤ j. Since η ≤ 1, we also have

|Tj+1 ◦ f(x)− Tj+1 ◦ f(z)| ≥ η.

From the choice of the gauge γ, we deduce that

γ(x) ∩ γ(z) ⊂ γj+1(x) ∩ γj+1(z) ⊂Wj+1,

and the inclusion (13) follows.
Let ε > 0. Since the function Tj+1◦f is gauge-measurable, by Lemma 4.2 we

can choose the gauge γj+1 on Rd such that µ(Wj+1) ≤ ε/2j+1. Proceeding as
in the previous lemma, we have µ(Uγ,η) ≤ ε, hence f is gauge-measurable.

Proof of Proposition 6.1. We first assume that there exists a gauge-integrable
function h : Rd → R such that |fn| ≤ h in Rd for every n ∈ N. By Theorem 1.3,
each function fn is gauge-integrable, and it then follows from the Dominated
convergence theorem that f is gauge-integrable, hence also gauge-measurable.

In the general case where the sequence (fn)n∈N need not be bounded by an
integrable function, for every n, l, j ∈ N we consider the function

gn,l,j = (Tj ◦ fn)χBl+1(0).

These functions are all gauge-measurable. Indeed, Tj ◦ fn is gauge-measurable
by composition with the uniformly continuous function Tj (Proposition 2.2),
and thus gn,l,j is gauge-measurable as the product of bounded gauge-measurable
functions (Proposition 3.2).

Since |gn,l,j | ≤ jχBl+1(0) in Rd and the characteristic function χBl+1(0) is
gauge-integrable, as n tends to infinity it follows from the first case we consid-
ered above that the functions (Tj ◦ f)χBl+1(0) are gauge-measurable for every
l, j ∈ N. By Lemma 6.2, as l tends to infinity we deduce that Tj ◦ f is gauge-
measurable for every j ∈ N. The conclusion then follows from Lemma 6.3 as j
tends to infinity.

A consequence of Propositions 3.2 and 6.1 is that the product of gauge-
measurable functions is also gauge-measurable:

Proposition 6.4 (Product). If the functions f : Rd → Rp and g : Rd → R are
gauge-measurable, then their product fg is also gauge-measurable.
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More generally, we can weaken the assumptions of Proposition 2.2 on the
gauge measurability of composite functions:

Proposition 6.5 (Composition with continuous functions). If the function f :
Rd → Rp is gauge-measurable and the function Φ : Rp → R` is continuous,
then the composition Φ ◦ f : Rd → R` is gauge-measurable.

Proof. We consider a continuous function ϕ : Rp → R with compact sup-
port, and we define Φn : Rp → R` for each n ∈ N∗ and y ∈ Rp by Φn(y) =
ϕ(y/n)Φ(y). Since the function Φn is continuous and has compact support,
Φn is uniformly continuous, and thus, in view of Proposition 2.2, the function
Φn ◦ f is gauge-measurable. We conclude by observing that, for every x ∈ Rn,
the sequence (Φn(f(x)))n∈N∗ converges to Φ(f(x)) provided that ϕ(0) = 1, and
thus by Proposition 6.1 the function Φ ◦ f is gauge-measurable.

The proof of Proposition 6.5 shows that the class of functions Φ : Rp → R`
such that, for every gauge-measurable function f : Rd → Rp, the composition
Φ◦f is measurable is stable under pointwise convergence. This class thus forms
a Baire system and contains in particular all Baire (or analytic representable)
functions, which coincide by the Lebesgue–Hausdorff theorem with all Borel-
measurable functions, see [10, Theorem 43.IV] and [13, §31].

Another consequence of Proposition 6.1 combined with the gauge measura-
bility of gauge-integrable functions (Proposition 5.2) is that the pointwise limit
of a sequence of gauge-integrable functions is always gauge-measurable. This
implies in particular that measurable functions in the sense of McShane [24,
Definition III-10-1] are indeed gauge-measurable. Conversely, every gauge-
measurable function f : Rd → Rp in the sense of Definition 1.2 is the limit
of a sequence of gauge-integrable functions. This assertion follows from a diag-
onalization procedure using the functions gn,l,j which are used in the proof of
Proposition 6.1 above. For example, the sequence of gauge-integrable functions
(gn,n,n)n∈N converges pointwise to the gauge-measurable function f . Another
pointwise approximation of f in terms of gauge-measurable step functions is
pursued in Section 8.

7. Gauge-measurable sets

We define gauge measurability of a set in the spirit of its counterpart for func-
tions:

Definition 7.1. A set A ⊂ Rd is gauge-measurable whenever, for every ε > 0,
there exists a gauge γ on Rd such that, for every finite set of disjoint rectangles
(Ri)i∈{1,...,k}, every finite set of points (ci)i∈{1,...,k} contained in A, and every

finite set of points (c′i)i∈{1,...,k} contained in Rd\A that satisfy Ri ⊂ γ(ci)∩γ(c′i)
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for every i ∈ {1, . . . , k}, one has

k∑
i=1

vol (Ri) ≤ ε.

It follows from this definition that A is gauge-measurable if and only if its
complement Rd \ A is gauge-measurable. Also observe that for any 0 < η < 1
we have

|χA(x)− χA(z)| ≥ η

if and only if x ∈ A and z ∈ Rd \ A, or x ∈ Rd \ A and z ∈ A. In view of
Definitions 1.2 and 7.1, it thus follows that the set A ⊂ Rd is gauge-measurable
if and only if the characteristic function χA is gauge-measurable.

As in Lemma 4.2, the definition above can be reformulated by replacing the
tagged partitions with the inner measure of an open set:

Lemma 7.2 (Gauge-intersection characterization). The set A ⊂ Rd is gauge-
measurable if and only if, for every ε > 0, there exists a gauge γ on Rd such
that the open set

UA,γ :=
⋃
x∈A,
z∈Rd\A

(
γ(x) ∩ γ(z)

)
satisfies µ(UA,γ) ≤ ε.

This characterization can be established along the lines of the proof of
Lemma 4.2 and is left as an exercise. The family of gauge-measurable sets
forms an algebra:

Proposition 7.3. If the sets A1, A2 ⊂ Rd are gauge-measurable, then A1∪A2,
A1 ∩A2, and A1 \A2 are also gauge-measurable.

Proof. We prove that A1 ∪ A2 is gauge-measurable. For this purpose, observe
that every z ∈ Rd \ (A1 ∪A2) satisfies z ∈ Rd \A1 and z ∈ Rd \A2. Thus, for
any gauge γ on Rd we have

UA1∪A2,γ ⊂ UA1,γ ∪ UA2,γ .

Given ε > 0, let γ1 and γ2 be two gauges on Rd satisfying the conclusion of
Lemma 7.2 for A1 and A2, respectively, with parameter ε/2. Take the gauge γ
defined for x ∈ Rd by γ(x) = γ1(x) ∩ γ2(x). Thus,

UA1∪A2,γ ⊂ UA1,γ ∪ UA2,γ ⊂ UA1,γ1 ∪ UA2,γ2 ,

and by the monotonicity and subadditivity of µ we then get

µ(UA1∪A2,γ) ≤ µ(UA1,γ1) + µ(UA2,γ2) ≤ ε

2
+
ε

2
= ε.
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Hence, A1 ∪A2 is gauge-measurable by Lemma 7.2.
Since we have

Rd \ (A1 ∩A2) = (Rd \A1) ∪ (Rd \A2)

and both sets Rd \ A1 and Rd \ A2 are gauge-measurable, we deduce that
Rd \ (A1 ∩ A2) is gauge-measurable, and thus the intersection A1 ∩ A2 is also
gauge-measurable. Finally, since

A1 \A2 = A1 ∩ (Rd \A2)

is the intersection of two gauge-measurable sets, A1 \A2 is also gauge-measur-
able.

Using the equivalence between the gauge measurability of the set A and
the gauge-measurability of the characteristic function χA, we deduce that the
family of gauge-measurable sets forms a σ-algebra:

Proposition 7.4 (Countable union). If (An)n∈N is a sequence of gauge-mea-
surable sets in Rd, then the set

⋃
k∈N

Ak is also gauge-measurable.

Proof. The sequence of characteristic functions (fn)n∈N defined for each n ∈ N
by fn = χ⋃n

k=0 Ak
converges pointwise to the characteristic function χ⋃

k∈N Ak
in

Rd. By induction using Proposition 7.3, each set
n⋃
k=0

Ak is gauge-measurable

and thus each function fn is gauge-measurable. From the stability of gauge
measurability under pointwise convergence (Proposition 6.1), we deduce that
the function χ⋃

k∈N Ak
is also gauge-measurable, hence the set

⋃
k∈N

Ak is gauge-

measurable.

Let us now prove Lebesgue’s regularity property, which yields the equiva-
lence between gauge measurability and Lebesgue measurability; see [8, §17], [27,
Lemma 3.22], and also [28].

Proposition 7.5 (Regularity). The set A ⊂ Rd is gauge-measurable if and
only if, for every ε > 0, there exist an open set V ⊂ Rd and a closed set
C ⊂ Rd such that C ⊂ A ⊂ V and µ(V \ C) ≤ ε.

Proof. Given a gauge γ on Rd, set

V =
⋃
x∈A

γ(x) and C =
⋂

z∈Rd\A

(
Rd \ γ(z)

)
.

Observe that V is open, C is closed, and V \ C = UA,γ . Thus, given ε > 0, if
the set A is gauge-measurable and one takes a gauge γ such that µ(UA,γ) ≤ ε,
then the sets V and C above satisfy the requirements.
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Conversely, if the set A satisfies the regularity condition, then given ε > 0
we take the sets V and C as in the statement. The gauge γ defined on Rd by
setting γ(x) = V if x ∈ A and γ(x) = Rd\C if x ∈ Rd\A satisfies UA,γ = V \C,
and thus µ(UA,γ) ≤ ε. Hence, the set A is gauge-measurable by Lemma 7.2.

8. Pointwise approximation

We conclude with the pointwise approximation of a gauge-measurable function
by step functions. We recall that g : Rd → Rp is a step function if the image
g(Rd) is a finite set.

Proposition 8.1. If a function f : Rd → Rp is gauge-measurable, then there
exists a sequence of gauge-measurable step functions (fn)n∈N from Rd to Rp
which converges pointwise to f in Rd and satisfies |fn| ≤ |f | in Rd for every
n ∈ N.

This statement allows one to recover a widespread strategy to define the
Lebesgue integral via measurable step functions. In our case, if f is gauge-
integrable, and thus |f | is also gauge-integrable by the Absolute Cauchy cri-
terion, then from the Dominated convergence theorem (Proposition 5.4) we
indeed have that ∫

Rd

f = lim
n→∞

∫
Rd

fn.

The difference here is that this is a property of the gauge integral, rather than
a definition.

Before proving Proposition 8.1, we first study the inverse image of rectangles
by gauge-measurable functions:

Proposition 8.2. If a function f : Rd → Rp is gauge-measurable, then, for
every rectangle R ⊂ Rp, the set f−1(R) is gauge-measurable.

Proof. Observe that χR◦f = χf−1(R). To prove the proposition, it thus suffices
to prove that the function χR ◦ f is gauge-measurable. For this purpose, take
a sequence of uniformly continuous functions (Φn)n∈N from Rp to R which
converges pointwise to χR. Then, by Proposition 2.2 the function Φn ◦ f is
gauge-measurable for every n ∈ N, and the sequence (Φn ◦ f)n∈N converges
pointwise to χR◦f . By the stability property of sequences of gauge-measurable
functions (Proposition 6.1), we deduce that χR ◦ f is gauge-measurable, and
the conclusion follows.

The converse of Proposition 8.2 is also true: if f−1(R) is gauge-measurable
for every rectangle R ⊂ Rp, then f is gauge-measurable. This assertion can be
deduced from the proof of Proposition 8.1 below, since under such an assump-
tion the functions fn which are defined in (14) below are all gauge-measurable
and the function f is the pointwise limit of the sequence (fn)n∈N.
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Proof of Proposition 8.1. Take a sequence of positive numbers (εn)n∈N that
converges to 0. For each n ∈ N, let (Ri,n)i∈{1,...,kn} be a finite family of disjoint
rectangles whose diameters do not exceed εn that covers the ball Bn+1(0) in
Rp. For each i ∈ {1, . . . , kn}, let ai be a point with smallest norm in Ri,n, and
define

fn :=

kn∑
i=1

ai χf−1(Ri,n). (14)

For every x ∈ f−1(Bn+1(0)), we then have

|fn(x)− f(x)| ≤ εn,

hence the sequence (fn)n∈N converges pointwise to f in Rd. [The convergence
is uniform when f is a bounded function.] By the choice of the point ai, we
also have

|fn(x)| ≤ |f(x)|

if f(x) ∈
kn⋃
i=1

Ri,n, while the left-hand side vanishes otherwise. This estimate

thus holds for every x ∈ Rd.
Assuming that the set f−1(R) is gauge-measurable for every rectangle

R ⊂ Rp, which by Proposition 8.2 is the case when the function f is gauge-
measurable, it follows from the linear stability of gauge-measurable functions
(Proposition 3.1) that fn is a gauge-measurable step function, and this gives
the conclusion.
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[26] B. Riemann, Über die Darstellbarkeit einer Function durch eine
trigonometrische Reihe, Abhandlungen der Königlichen Gesellschaft der
Wissenschaften in Göttingen 13 (1868), 87–131.

[27] R. L. Wheeden and A. Zygmund, Measure and integral. An introduction to
Real Analysis, 2nd ed., Pure and Applied Mathematics, CRC Press, Boca Raton,



GAUGE-MEASURABLE FUNCTIONS 135

Fla., 2015.
[28] M. Willem, La mesure selon Borel et Lebesgue, paper in preparation.

Authors’ addresses:

Augusto C. Ponce
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