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Abstract. For differential equations with state-dependent delays a
satisfactory theory is developed by the second author [6] on the solution
manifold to guarantee C1-smoothness for the solution operators. We
present examples showing that better than C1-smoothness cannot be ex-
pected in general for the solution manifold and for local stable manifolds
at stationary points on the solution manifold. Then we propose a new
approach to overcome the difficulties caused by the lack of smoothness.
The mollification technique is used to approximate the nonsmooth eval-
uation map with smooth maps. Several examples show that the mollified
systems can have nicer smoothness properties than the original equa-
tion. Examples are also given where better smoothness than C1 can be
obtained on the solution manifold.
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1. Introduction

Let h > 0, a subset U ⊂ (Rn)[−h,0] and a map f : U → Rn be given. Under
additional conditions on U and f , we consider solutions of the initial value
problem (IVP)

x′(t) = f(xt) for t > 0, x0 = φ ∈ U (1)

which are C1-maps x : [−h, te) → Rn, 0 < te ≤ ∞, with all segments xt :
[−h, 0] 3 s 7→ x(t + s) ∈ Rn, 0 ≤ t < te, in U so that x′(t) = f(xt) holds for
all t ∈ (0, te), and x0 = φ.

For k ∈ N0, let Xk = Ck([−h, 0],Rn) denote the Banach spaces of the
k-times continuously differentiable functions φ : [−h, 0] → Rn equipped with

the norm |φ|k =
∑k
j=0 |φ(j)|0 where |φ|0 = max−h≤s≤0 |φ(s)| with a fixed norm

| · | in Rn. We use X = X0.
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If U ⊂ X is open and if f : U → Rn is Cp-smooth for some integer p ≥ 1
then each φ ∈ U uniquely determines a maximal solution xφ : [−h, tφ) →
Rn of the IVP (1). Then (t, φ) 7→ xφt , φ ∈ U and 0 ≤ t < tφ, defines a

continuous semiflow on U . The solution operators φ 7→ xφt , 0 ≤ t, on non-
empty domains are C1-smooth, see [3, 2]. It is stated without proof on page 51
in [3] that Cp-smoothness holds as well. The construction of the semiflow
and C1-smoothness of solution operators are also given in [2, Chapter VII]. A
proof that the solution operators are in fact Cp-smooth requires appropriate
modifications of the arguments in [2, Chapter VII]. The necessary modifications
are similar to those which are sketched in Section 5 for Cp-smoothness in a
different framework used for equations with state-dependent delays. In the
sequel, we refer to the case where f : U → Rn is Cp-smooth on an open
U ⊂ X as the classical situation where the solution operators are Cp-smooth.
This framework is satisfactory for differential equations with constant delays,
but not for equations with state-dependent delays.

A large class of differential equations with state-dependent delays can ef-
fectively be handled within the following framework developed by the second
author [6]. Let U be an open subset of X1, and consider a C1-smooth map
f : U → Rn with the following extension property:

(e) each Df(φ) : X1 → Rn has a linear extension Def(φ) ∈ Lc(X,Rn) so
that the map

U ×X 3 (φ, χ) 7→ Def(φ)χ ∈ Rn

is continuous.
Suppose φ′(0) = f(φ) for some φ ∈ U . Then the set

X1
f = {φ ∈ U : φ′(0) = f(φ)} 6= ∅

is a C1-submanifold of X1 with codimension n, each φ ∈ X1
f uniquely deter-

mines a maximal solution xφ : [−h, tφ)→ Rn of the IVP (1) so that any other
solution of the same initial value problem is a restriction of xφ. The relations

S(t, φ) = xφt , 0 ≤ t < tφ, φ ∈ X1
f ,

define a continuous semiflow S on X1
f such that all solution operators

S(t, ·) : {φ ∈ X1
f : t < tφ} → X1

f , t ≥ 0,

on non-empty domains are C1-smooth.
Let a stationary point φ0 ∈ X1

f of S be given. The continuous solutions
[−h,∞)→ Rn of the IVP

v′(t) = Def(φ0)vt for t > 0, v0 = χ ∈ X (2)
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tell us about the nature of the dynamics near φ0 : If all of these (whose re-
strictions v|[0,∞) are differentiable and satisfy the differential equation in (2))
tend to 0 as t → ∞ then φ0 is a stable and attractive stationary point of S,
and any local stable manifold is a neighbourhood of φ0 in X1

f . If t 7→ 0 is the
only bounded solution R → Rn of the differential equation in (2) then φ0 is
hyperbolic, and we have the decomposition

Tφ0
X1
f = Ls(φ0)⊕ Lu(φ0)

into the closed stable and unstable spaces Ls(φ0) and Lu(φ0), respectively.
Ls(φ0) consists of all segments of all continuously differentiable solutions

[−h,∞)→ Rn of the IVP

v′(t) = Df(φ0)vt for t > 0, v0 = χ ∈ Tφ0
X1
f (3)

which tend to 0 as t → ∞. For any local stable manifold W s(φ0) ⊂ X1
f of S

at φ0,
Tφ0

W s(φ0) = Ls(φ0).

For example, the above framework works for the equation

x′(t) = g(x(t− r(xt))), (4)

with a given map g : Rn → Rn and a given delay functional r : U → [0, h],
U ⊂ (Rn)[−h,0]. Equation (4) has the form (1) with

f = g ◦ ev ◦ (id× (−r))

where the evaluation map ev : (Rn)[−h,0] × [−h, 0]→ Rn is given by

ev(φ, s) = φ(s).

Let evk denote the restriction of ev to Xk×[−h, 0], k ∈ N0. The smoothness
properties of the evaluation map and its restrictions play a crucial role in the
theory. The map ev0 is continuous (but not locally Lipschitz continuous).
Therefore a map f involving the evaluation map — like in equation (4) above
— in general is not locally Lipschitz continuous on open subsets of X, and
uniqueness of solutions with respect to only continuous initial data may fail,
which is indeed the case for certain examples, see [4].

The restrictions evk, k ∈ N, of ev have nice smoothness properties. In
particular the map ev1 is C1-smooth on X1 × [−h, 0], with

Dev1(φ, t)(χ, s) = χ(t) + sφ′(t).

Lemma 4.2 below states that for each integer k ≥ 2, the map evk is Ck-
smooth. Ck-smoothness of these maps, which are not defined on open subsets
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of Xk ×R, means that they have extensions to open subsets of Xk ×R which
are Ck-smooth in the usual sense.

It is an open problem whether, for equations with state-dependent delays,
better than C1-smoothness (Cp-smoothness with p > 1) can be obtained for
the solution operators, either on the solution manifold X1

f ⊂ X1 or on other
phase spaces. The first step towards an affirmative answer would be to prove
that the solution manifold X1

f ⊂ X1 is Cp-smooth for some p ≥ 2. In Section 2
we give an example showing that in general, for a Cp-map f : U → Rn on an
open subset U of X1 with the extension property (e), the solution manifold
X1
f ⊂ X1 is only C1-smooth, not twice continuously differentiable, no matter

how large p is. The example has the form

x′(t) = −αx(t− d(x(t))), (5)

and it is crucial that ev1 is not C2-smooth.
In spite of the lack of results on better than C1-smoothness for the solution

operators generated by equations with state-dependent delays, the paper [5],
for each k ∈ N, gave conditions for the Ck-smoothness of local unstable mani-
folds Wu(φ0) at stationary points. For example, the required conditions hold
for equations (4) and (5) with at least Ck-smooth g, r, d. Therefore, within
the C1-smooth solution manifold X1

f it is possible to find certain invariant
manifolds with better smoothness properties. This is known for the local un-
stable manifolds [5], and it is expected for the local center and center-unstable
manifolds at stationary points. Does an analogous result exist for local stable
manifolds W s(φ0)? In the example of Section 2 the stationary point is attract-
ing, and the local stable manifold W s(φ0) is an open neighbourhood in X1

f

of the stationary point which is not a C2-smooth submanifold of X1. Thus,
the answer is in general negative for local stable manifolds at stationary points.
Section 3 contains another example in this direction where the stationary point
is unstable.

In Section 4 we propose a new approach to overcome the difficulties caused
by the lack of smoothness. We use the convolution and mollification to ap-
proximate the non-smooth map ev with smooth maps. Let η : R → R be a
C∞-smooth function so that supp η ⊂ [−1, 1], and

∫
R
η(s) ds = 1. For ε > 0

set ηε(t) = (1/ε)η(t/ε), t ∈ R. The idea is the following for equation (4)
provided that g : Rn → Rn is Ck-smooth, r : X → R is Ck-smooth, and
r(X) ⊂ (δ, h − δ) for some δ > 0. We choose ε ∈ (0, δ) and in equation (4)
replace the term x(t− r(xt)) by∫ 0

−h
ηε(−r(xt)− s)x(t+ s) ds = −

∫ −r(xt)+ε
−r(xt)−ε

x(t+ u)ηε(u) du.

That is, the map
X 3 φ 7→ g (ev(φ,−r(φ))) ∈ Rn (6)
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on the right hand side of (4) is changed to the map

X 3 φ 7→ g

(∫ 0

−h
ηε(−r(φ)− s)φ(s) ds

)
∈ Rn. (7)

Thus the discrete state-dependent delay is changed to a distributed delay term
expressed by the convolution of the solution and a smooth function with com-
pact support. We show that for the modified equation

x′(t) = g

(∫ 0

−h
ηε(−r(xt)− s)x(t+ s) ds

)
(8)

the solutions of the corresponding IVP define Ck-smooth solution operators
on the phase space X. It turns out that (7) defines a Ck-map on X, and the
classical theory developed for constant delays works.

In several models involving state-dependent delays the delay functional is
not given explicitly, and its smoothness properties are not obvious. We consider
an example of the form (4) in which the delay functional r is given by a threshold
condition.

In Section 5 we explain how to get Ck-smoothness with k > 1 for solution
operators on solution manifolds in X1, in certain particular cases.

2. An example with an attracting stationary point

Take h = 2, n = 1, U = X1, and f(φ) = −αφ(−d(φ(0))) with 0 < α < π
2 and

d : R→ (0, 2) at least C2-smooth with

d(ξ) = 1 + ξ for |ξ| < 1

2
.

Then f is C1-smooth with

Df(φ)χ = −α[χ(−d(φ(0)))− φ′(−d(φ(0)))d′(φ(0))χ(0)],

see for example Chapter 3 in [4]. The extension property (e) holds. We have

X1
f = {φ ∈ X1 : φ′(0) = −αφ(−d(φ(0)))},

0 ∈ X1
f is a stationary point of the semiflow on X1

f , and

Def(0)χ = −αχ(−1)

so that the linear differential delay equation of the IVP (2) becomes

v′(t) = −α v(t− 1),
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for which all maximal solutions tend to 0 as t→∞ because of α < π
2 [8, 3, 2].

So any local stable manifold W s of the stationary point 0 ∈ X1
f is given by

W s = X1
f ∩N with some open neighbourhood N of 0 in X1.

We shall show that X1
f ∩N is not a C2-submanifold of X1. We begin with

a graph representation of X1
f . Notice that the tangent space Y = T0X

1
f is the

closed hyperplane
{η ∈ X1 : η′(0) = −αη(−1)}.

Choose a C2-function ψ ∈ X1 \ Y with

ψ(0) = 0 = ψ′(0), ψ(−1) = 1, and ψ(t) 6= 0 for all t ∈ [−2, 0),

for example, ψ(t) = t2. Then

X1 = Rψ ⊕ Y.

Proposition 2.1.
X1
f = {a(η)ψ + η : η ∈ Y }

with the map a : Y → R given by

a(η) =
1

ψ(−d(η(0)))
[η(−1)− η(−d(η(0)))]

=
1

ψ(−d(η(0)))

[
η(−1) +

1

α
f(η)

]
.

Proof. For A ∈ R and η ∈ Y the relation Aψ + η ∈ X1
f is equivalent to

(Aψ + η)′(0) = −α[(Aψ + η)(−d((Aψ + η)(0)))],

or

(−αη(−1) =) η′(0) = −α[Aψ(−d(Aψ(0) + η(0))) + η(−d(Aψ(0) + η(0)))]

= −α[Aψ(−d(η(0))) + η(−d(η(0)))],

or

A =
1

ψ(−d(η(0)))
[η(−1)− η(−d(η(0)))].

The map a is C1-smooth. The linear continuous projection P : X1 → X1

along Rψ onto Y maps X1
f one-to-one onto the hyperplane Y , and the inverse

of P |X1
f

is the map

Y 3 η 7→ a(η)ψ + η ∈ X1
f ⊂ X1.
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Suppose now that X1
f ∩ N is a C2-submanifold of X1. Then P defines a

C2-diffeomorphism from X1
f ∩N onto the open neighbourhood P (X1

f ∩N) of

0 in Y . For some open neighbourhood V of 0 in X1, P (X1
f ∩N) = Y ∩ V . It

follows that the inverse

Y ∩ V 3 η 7→ a(η)ψ + η ∈ X1
f ∩N ⊂ X1

is C2-smooth. Using the projection id − P and the topological isomorphism
Rψ 3 sψ 7→ s ∈ R we obtain that also the restriction of a to Y ∩ V is C2-
smooth.

It follows that the map

Y ∩ V 3 η 7→ ψ(−d(η(0)))a(η)− η(−1) ∈ R

is C2-smooth. It equals 1
αf , and we obtain that the map

g : Y ∩ V 3 η 7→ η(−d(η(0))) ∈ R

is C2-smooth. A look at the formula for the derivative of f in case α = 1 and
an application of the chain rule to the composition of f with the embedding
Y → X1 shows that for every η ∈ Y ∩ V and for each η̂ ∈ Y we have

Dg(η)η̂ = η̂(−d(η(0)))− d′(η(0))η′(−d(η(0)))η̂(0).

Fix some η̂ ∈ Y with η̂(0) = 1. The evaluation map

Ev : Lc(Y,R) 3 λ 7→ λ(η̂) ∈ R

is linear and continuous. An application of the chain rule yields that

Ev ◦Dg : Y ∩ V 3 η 7→ Dg(η)η̂ ∈ R

is C1-smooth. Notice that for every η ∈ Y ∩ V ,

(Ev ◦Dg)(η) = η̂(−d(η(0)))− d′(η(0))η′(−d(η(0))) · 1.

The maps
Y ∩ V 3 η 7→ η̂(−d(η(0))) ∈ R

and
Y ∩ V 3 η 7→ d′(η(0)) ∈ R

are C1-smooth.

Now choose η0 ∈ Y ∩ V with

0 < η0(0) <
1

2
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which has no second derivative at −1−η0(0). Notice that d′(η0(0)) = 1. There
is an open neighbourhood U of η0 in X1, U ⊂ V , with

d′(η(0)) > 0 for all η ∈ U.

This implies that the map

H : Y ∩ U 3 η 7→ 1

−d′(η(0))
[(Ev ◦Dg)(η)− η̂(−d(η(0)))] ∈ R

is C1-smooth. Notice that

H(η) = η′(−d(η(0))) for all η ∈ Y ∩ U.

Choose η ∈ Y with η(0) = 1. There exists ε ∈ (0, 12 ) such that for all s ∈ (−ε, ε)
we have

0 < η0(0) + s <
1

2
and η0 + sη ∈ U.

As the curve R 3 s 7→ η0 + sη ∈ Y is affine linear and continuous the chain
rule applies and yields that the map

j : (−ε, ε) 3 s 7→ H(η0 + sη) ∈ R

is C1-smooth. For 0 < |s| < ε we have

1

s
[j(s)−j(0)] =

1

s
[H(η0 + sη)−H(η0)]

=
1

s
[(η0 + sη)′(−d((η0 + sη)(0)))− η′0(−d(η0(0)))]

=
1

s
[η′0(−d(η0(0) + s)) + sη′(−d(η0(0) + s))− η′0(−d(η0(0)))]

=
1

s
[η′0(−1− η0(0)− s) + sη′(−1− η0(0)− s)− η′0(−1− η0(0))]

=
1

s
[η′0(−1− η0(0)− s)− η′0(−1− η0(0))] + η′(−1− η0(0)− s).

This shows that for 0 6= s→ 0 the quotient

1

s
[η′0(−1− η0(0)− s)− η′0(−1− η0(0))]

converges to j′(0)−η′(−1−η0(0)), in contradiction to the choice of η0 without
a second derivative at −1− η0(0).
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3. An example with an unstable stationary point

In this section X1 = C1([−h, 0],Rn) will appear with n = 1 and n = 2.
In order to avoid confusion we introduce X1

1 = C1([−h, 0],R) and X1
2 =

C1([−h, 0],R2).
Take h = 2 and α and d as in Section 2, but now n = 2, and consider

g : X1
2 → R2, g(φ, η) = (f(φ), η(0)),

with f from Section 2. The map g is C1-smooth with

Dg(φ, η)(φ̂, η̂) = (Df(φ)φ̂, η̂(0)).

The extension property (e) holds. The solution manifold

X1
g = {(φ, η) ∈ X1

2 : φ′(0) = −αφ(−(d(φ(0))), η′(0) = η(0)}

has codimension 2. The semiflow Sg on X1
g given by the C1-solutions of the

system

x′(t) = −αx(t− d(x(t))), (9)

y′(t) = y(t), (10)

satisfies Sg(t, (0, 0)) = (0, 0) for all t ≥ 0, and

T(0,0)X
1
g = {(ξ, η) ∈ X1

2 : ξ′(0) = −α ξ(−1), η′(0) = η(0)}

The linear system z′(t) = Deg(0, 0)zt, or

u′(t) = −αu(t− 1), (11)

v′(t) = v(t) (12)

has no nontrivial bounded solution R→ R2, so the stationary point (0, 0) ∈ X1
g

of Sg is hyperbolic. The solution R 3 t 7→ (0, et) ∈ R2 of both systems shows
that (0, 0) is unstable, and we have the decomposition

T(0,0)X
1
g = Ls ⊕ Lu

with the stable and unstable linear spaces Ls = Ls(0, 0) 6= T(0,0)X
1
g and Lu =

Lu(0, 0) 6= {0}. The facts that all solutions [−2,∞)→ R of equation (11) tend
to 0 as t→∞ and v(t) = 0 on [0,∞) for any solution [−2,∞)→ R of equation
(12) with v(0) = 0 combined imply

{(ξ, η) ∈ T(0,0)X1
g : η(0) = 0} ⊂ Ls. (13)

As R 3 t 7→ (0, et) ∈ R2 is a solution of the system (11)-(12) we also get

(0, ηu) /∈ Ls.
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for ηu = exp |[−2,0]. Notice that we have

T(0,0)X
1
g = {(ξ, η) ∈ T(0,0)X1

g : η(0) = 0} ⊕R(0, ηu). (14)

Corollary 3.1.
Ls = {(ξ, η) ∈ T(0,0)X1

g : η(0) = 0}

Proof. Due to instability the codimension of Ls in the tangent space is at
least 1. By (14) the codimension of {(ξ, η) ∈ T(0,0)X

1
g : η(0) = 0} in the

tangent space is 1. Use the inclusion (13).

We proceed to a complement of Ls in X1
2 . Choose ψ ∈ C2([−2, 0],R)\T0X1

f

as in Section 2 (for example, ψ(t) = t2). Then ψ′(0) 6= −αψ(−1). The constant
function 1 : [−2, 0] 3 t 7→ 1 ∈ R does not satisfy η′(0) = η(0). Both facts
combined imply

X1
2 = T(0,0)X

1
g ⊕R(ψ, 0)⊕R(0,1).

Using (14) and Corollary 3.1 we arrive at X1
2 = Ls ⊕Q with

Q = R(0, ηu)⊕R(ψ, 0)⊕R(0,1).

A local stable manifold W s ⊂ X1
g of the semiflow Sg at the stationary point

(0, 0) is given by a map
ws : Ls ⊃ Os → Q

on an open neighbourhood Os of (0, 0) in Ls, and every solution of the system
(9)-(10) starting from a point (φ, η) ∈ W s ⊂ X1

g tends to (0, 0) as t → ∞.
Notice that for such a solution, necessarily η(0) = 0. We infer

W s ⊂ {(φ, η) ∈ X1
2 : φ′(0) = −αφ(−d(φ(0))), η′(0) = η(0), η(0) = 0}

= {(φ, η) ∈ X1
2 : φ ∈ X1

f ⊂ X1
1 , η ∈ X1

1 , η
′(0) = η(0), η(0) = 0}

= {(a(ξ)ψ + ξ, η + 0) ∈ X1
2 : ξ ∈ T0X1

f ⊂ X1
1 , η ∈ X1

1 ,

η′(0) = η(0), η(0) = 0} (with Proposition 2.1)

= {(a(ξ)ψ + ξ, η + 0) ∈ X1
2 : ξ ∈ X1

1 , ξ
′(0) = −α ξ(−1), η ∈ X1

1 ,

η′(0) = η(0), η(0) = 0}
= {(ξ + a(ξ)ψ, η + 0) ∈ X1

2 : (ξ, η) ∈ T(0,0)X1
g , η(0) = 0}

= {(ξ + a(ξ)ψ, η + 0) ∈ X1
2 : (ξ, η) ∈ Ls} (see Corollary 3.1).

The last set is given by a map γ : Ls → Q. It follows that

ws = γ|Os .

Now it becomes easy to show that W s is not a C2-submanifold of X1
2 . Indeed,

if it were a C2 submanifold then the projection along Q onto Ls would define
a C2-diffeomorphism from W s onto Os whose inverse

Os 3 (ξ, η) 7→ (ξ + a(ξ)ψ, η) ∈ X1
2
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would be C2-smooth, too. The restriction of a to the open neighbourhood

OY = {η ∈ Y : (η, 0) ∈ Os}

of 0 in Y can be written as a composition, beginning with the restricted con-
tinuous linear map

OY 3 ξ 7→ (ξ, 0) ∈ Os,
followed by the previous inverse, and upon that followed by further continuous
linear maps. This implies that a is C2-smooth, which leads to a contradiction,
see Section 2.

4. Smooth functionals involving state-dependent delay

Let χ : R→ Rn, η : R→ R be two continuous functions, η is assumed to have
compact support. The convolution χ ∗ η : R→ Rn is defined by

χ ∗ η(t) =

∫
R

χ(t− s)η(s) ds =

∫
R

χ(s)η(t− s) ds = η ∗ χ(t).

In particular, suppose η is C∞-smooth, supp η ⊂ [−1, 1], and
∫
R
η(s) ds = 1.

For ε > 0 set ηε(t) = (1/ε)η(t/ε), t ∈ R. Then
∫
R
ηε(s) ds = 1. Moreover,

χ ∗ ηε(t) → χ(t) uniformly on compact subsets of R as ε → 0. For φ ∈ X

let φ̂ : R → Rn be the extension of φ so that φ̂(t) = φ(−h) for t < −h,

and φ̂(t) = φ(0) for t > 0. The restriction of φ̂ ∗ ηε to [−h, 0] is called the
mollification mε(φ) of φ. The map mε : X → X is called a mollifier. The
function mε(φ) : [−h, 0]→ Rn is C∞-smooth, and, for every k ∈ N, t ∈ [−h, 0],

dk

dtk
mε(φ)(t) =

dk

dtk
(φ̂ ∗ ηε)(t) =

(
φ̂ ∗ d

k

dtk
ηε

)
(t).

It follows that each linear map

mε,j : X 3 φ 7→ mε(φ) ∈ Xj , j ∈ N0,

is continuous.

Proposition 4.1. Let mε : X → X be a mollifier. Assume that f : X → Rn

is a map such that its restriction fk : Xk → Rn is Ck-smooth. Then the map

fε : X 3 φ 7→ f(mε(φ)) ∈ Rn

is Ck-smooth.

Proof. We have
fε(φ) = f(mε(φ)) = fk(mε,k(φ)),

and mε,k : X → Xk, fk : Xk → Rn are Ck-smooth.
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Recall the following result on the restrictions of the evaluation map ev.

Lemma 4.2. For each k ∈ N, the restricted evaluation map

evk : Xk × [−h, 0] 3 (φ, t) 7→ φ(t) ∈ Rn

is Ck-smooth with

Djevk(φ, t)(χ1, s1; . . . ;χj , sj) = φ(j)(t)

j∏
l=1

sl +

j∑
l=1

χ
(j−1)
l (t)

∏
m6=l

sm,

j ∈ {1, . . . , k}, χ1, . . . , χj ∈ Xk, s1, . . . , sj ∈ R. In addition, evk is not Ck+1-
smooth.

Proof. This follows from results in [5, Section 4]). It can also be shown by
induction following the technique of [2, Appendix IV]. The partial derivative
of Dkevk with respect to its second variable t requires Ck+1-smoothness of φ.
Therefore evk is not k + 1-times differentiable.

The above facts suggest that if the term

x(t− r(xt)) = ev(xt,−r(xt))

in equation (4) is replaced with

ev(mε(xt),−r(xt))

or with
ev(mε(xt),−r(mε(xt))),

then we may get better smoothness properties for the semiflow. However, it is
still a nontrivial problem to find the appropriate phase spaces where smoother
solution operators can be obtained. Below we consider several versions of this
mollification technique for equation (4).

Of course, the mollification mε(xt) of the term xt in equation (4) changes
the original equation. So, the smoothness is obtained for a modified equation,
not for the original one. It is an interesting question — which is not studied here
— how the modified equation can be used to get information on the original
one.

Example 4.3. Let n = 1, k ∈ N, and let g : R → R and r : X → R be Ck-
smooth functions, and assume that there exist δ > 0 so that r(X) ⊂ (δ, h− δ).
An example for r is

r(φ) =
a+ b(φ(0))2

c+ d(φ(0))2
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with positive reals a, b, c, d and δ < a
c <

b
d < h− δ. It is the composition of the

continuous linear functional φ 7→ φ(0) with an analytical real function which
strictly increases on [0,∞).

Consider the equation

x′(t) = g(x(t− r(xt))). (15)

For this equation a C1-smooth solution manifold X1
f exists with f(φ) = g ◦

ev1(φ,−r(φ)), and the solution operators are C1-smooth. For the mollified
equation we can get better smoothness.

Let ε ∈ (0, δ), define

Fε : X 3 φ 7→ g ◦ ev(mε(φ),−r(φ)) ∈ Rn,

and consider the equation

x′(t) = Fε(xt), (16)

or equivalently

x′(t) = g

(
−
∫ −r(xt)+ε
−r(xt)−ε

x(t+ u)ηε(−r(xt)− u) du

)
.

The assumptions on g, r, the continuity of mε,k : X → Xk, Lemma 4.2 and

Fε(φ) = g ◦ ev(mε(φ),−r(φ)) = g ◦ evk(mε,k(φ),−r(φ))

imply that Fε : X → R is Ck-smooth. It follows that equation (16), the molli-
fied version of (15), can be studied in the phase space X, and classical results
show that there is a continuous semiflow with Ck-smooth solution operators.

Example 4.4. Consider equation (15) with the same condition on g as in Exam-
ple 4.3. On the delay functional r we assume that its restriction rk : Xk → R is
Ck-smooth, and rk(Xk) ⊂ (δ, h−δ) for some δ > 0. For example, the threshold
delay in the next example has this property with k = 1.

Let ε ∈ (0, δ), define

fε : X 3 φ 7→ g ◦ evk ◦ (id,−rk)(mε,k(φ)) ∈ R,

and consider the equation

x′(t) = fε(xt) (17)

on the phase space X. Proposition 4.1 gives that fε : X → R is Ck-smooth, and
again the classical theory implies the Ck-smoothness of the solution operators.
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Example 4.5. Let n = 1, k ∈ N, and suppose that g : R→ R and a : R→ R
are Ck-smooth. In addition assume that a(R) ⊂ (a0, a1) with constants 0 <
a0 < a1. We consider Equation (15) so that the delay τ(xt) is defined by the
threshold condition ∫ 0

−τ(xt)
a(x(t+ s)) ds = 1. (18)

From a(R) ⊂ (a0, a1) it follows that τ(xt) ∈
(

1
a1
, 1
a0

)
provided it exists.

Choose h > 0 and δ > 0 so that h > 1
a0

and δ < min
{

1
a1
, h− 1

a0

}
.

Let ε ∈ (0, δ). We want to define fε or Fε analogously to Examples 4.3–4.4.
For the smoothness properties of fε and Fε we need more information on the
threshold delay τ .

Define the substitution operator A : X → X by

(Aφ)(s) = a(φ(s)), φ ∈ X, s ∈ [−h, 0].

Let the integral operator I : X → X be given by

(Iφ)(s) =

∫ 0

s

φ(u) du, φ ∈ X, s ∈ [−h, 0].

Define
G : X × (0, h) 3 (φ, u) 7→ ev(I ◦A(φ),−u)− 1 ∈ R.

Then the threshold condition∫ 0

−τ(φ)
a(φ(u)) du = 1, φ ∈ X

is equivalent to the equation

G(φ, τ(φ)) = 0, φ ∈ X.

The following smoothness properties of A and I can be easily shown or
obtained from [2, Appendix IV]. The restrictions of A and I to Xj are denoted
by Aj and Ij , respectively, with A0 = A, I0 = I.

Lemma 4.6. Let j ∈ N0, p ∈ N.

1. If a is Cp+j-smooth then the restriction Aj of A to Xj is Cp-smooth.

2. The restriction Ij of I to Xj is a bounded linear map into Xj+1.

It is obvious that for each φ ∈ X there is a unique u∗ = u∗(φ) ∈ (0, h) such
that G(φ, u∗(φ)) = 0. Define τ : X → (0, h) by τ(φ) = u∗(φ).
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For k ∈ N, let Gk−1 denote the restriction of G to Xk−1 × (0, h). As Ik−1
maps into Xk we have

Gk−1(φ, u) = evk(Ik−1 ◦Ak−1(φ),−u)− 1, φ ∈ Xk−1, u ∈ (0, h).

By Lemma 4.6, Ik−1 ◦ Ak−1 : Xk−1 → Xk is Ck-smooth provided a is C2k−1-
smooth, and by Lemma 4.2 evk : Xk×(0, h)→ R is also Ck-smooth. Therefore,
Gk−1 : Xk−1 × (0, h)→ R is Ck-smooth. It is easy to see that

DGk−1(φ, u)(χ, t) =

∫ 0

−u
a′(φ(s))χ(s) ds− a(φ(−u))t, χ ∈ Xk−1, t ∈ R,

and
D2Gk−1(φ, u)1 = −a(φ(−u)) 6= 0.

The Implicit Function Theorem yields that the restriction τk−1 : Xk−1 → (0, h)
of the map τ : X → (0, h) is Ck-smooth. For later use in Section 5 we now
show that τ1 has the extension property (e) : Differentiation of the equation
Gk−1(φ, τk−1(φ)) = 0, φ ∈ Xk−1, yields

Dτk−1(φ)χ = (a(φ(−τk−1(φ))))
−1
∫ 0

−τk−1(φ)

a′(φ(s))χ(s) ds, χ ∈ Xk−1.

It follows that, in case k > 1, Dτk−1(φ) ∈ Lc(Xk−1,R) can be extended to a
bounded linear operator Deτk−1(φ) : X → R such that

Xk−1 ×X 3 (φ, χ) 7→ Deτk−1(φ)χ ∈ R

is continuous. In particular, τ1 has the extension property (e) of Section 1. If
k = 1 and if a is C1-smooth then we are in the situation of Example 4.3 with
k = 1, and for the mollified equation

x′(t) = Fε(xt)

in the phase space X, the solution operators are C1-smooth.
We can apply the mollification also in the threshold equation (18). This

means that, for a fixed ε ∈ (0, δ), the delay τε(φ) is defined from the equation∫ 0

−τε(φ)
a(mε(φ)(s)) ds = 1, φ ∈ X.

That is τε(φ), for a given φ ∈ X, is the zero of the map

G(φ, ·) : (0, h) 3 u 7→ evk(Ik−1 ◦Ak−1 ◦mε,k−1(φ),−u)− 1 ∈ R.

Clearly, the unique zero is τε(φ) = τk−1(mε,k−1(φ)), and the map X 3 φ 7→
τk−1(mε,k−1(φ)) ∈ (0, h) is Ck-smooth provided a is C2k−1-smooth. Observe
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that τk−1(mε,k−1(φ)) = τk−1 ◦ ik−1,k(mε,k(φ)), φ ∈ X, with the inclusion map
ik−1,k : Xk → Xk−1.

Therefore, the equation
x′(t) = fε(xt) (19)

with the Ck-smooth map

fε : X 3 φ 7→ g ◦ evk(id,−τk−1 ◦ ik−1,k) ◦mε,k(φ) ∈ R

can be handled in the phase space X by the classical theory to get Ck-smooth-
ness of the solution operators. Equation (19) is the mollified version of the
equation (15) with the threshold condition (18).

5. Ck-smoothness of solution manifolds and solution
operators

Suppose U ⊂ X1 is open and f : U → Rn is Ck-smooth, 1 ≤ k < ∞, f has
property (e), and X1

f 6= ∅. Then the solution manifold X1
f is a Ck-submanifold

of the space X1, and all solution operators S(t, ·), t ≥ 0, on non-empty domains
are Ck-smooth. This follows by means of appropriate modifications in the
proofs from [6]. First, the present hypothesis on f implies that the hypotheses
(P1) and (P2) from [6, Section 1] are satisfied, see for example [7, Corollary 1]
and [4, Section 3.2]. In order to obtain Ck-smoothness of X1

f proceed exactly
as in the proof of [6, Proposition 1] and use the Implicit Function Theorem for
zerosets of Ck-maps, for example, Theorem 2.3 in [1, Chapter 2, Section 2.2].

Ck-smoothness of solution operators follows as in [6, Section 2] provided the
map RTr in [6, Proposition 5] is Ck-smooth, and in the paragraph following
the proof of [6, Proposition 5] a uniform contraction principle is applied which
yields that fixed points are Ck-smooth with respect to the parameters. Such a
uniform contraction principle is Theorem 2.2 in [1, Chapter 2, Section 2.2], for
example.

In the proof of [6, Proposition 5] it is shown that the map RTr is a compo-
sition of continuous linear maps between Banach spaces and of restrictions of
such maps to open sets with the map

fT × id : C([0, T ], C1([−h, 0]))×Rn → C([0, T ])×Rn

given by (fT × id)(η, ξ) = (f ◦ η, ξ). Here, T > 0 is some constant, the set
C1([−h, 0]) equals X1 in our notation, and C([0, T ], C1([−h, 0])) is the Ba-
nach space of continuous maps [0, T ] → C1([−h, 0]) with the norm given by
|η| = max0≤t≤T |η(t)|1. C([0, T ]) denotes the Banach space of continuous maps
[0, T ]→ Rn with the norm given by |ξ| = max0≤t≤T |ξ(t)|.

We infer that RTr is Ck-smooth provided the substitution operator

fT : C([0, T ], C1([−h, 0])) 3 η 7→ f ◦ η ∈ C([0, T ])
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is Ck-smooth, which is true, see [2, Appendix IV,Lemma 1.5], for example.

Example 5.1. For a map f : X → Rn define the restriction f1 = f |X1 = f ◦i01,
with the inclusion map i01 : X1 → X. If f : X → Rn is Ck-smooth then f1 is
also Ck-smooth. For k ∈ N the initial value problem (1) with f = (fε)1 or with
f = (Fε)1, where fε is given in Proposition 4.1, Fε is given in Example 4.3,
defines a continuous semiflow on the Ck-smooth submanifold X1

f of the space

X1, with all solution operators on non-empty domains Ck-smooth.

Example 5.2. Let h > 0, δ ∈ (0, h/2), ε ∈ (0, δ). Assume that g : R → R
is C2-smooth. Let mε be a mollifier given by the C2-function η : R → R.
Consider the equation

x′(t) = g

(∫ 0

−h
ηε(−r(xt)− s)x(t+ s) ds

)
= g(mε(xt)(−τ(xt))) (20)

where τ(xt) is defined by the threshold condition (18). We suppose that a :
R→ R is C3-smooth with a(R) ⊂ (a0, a1) for positive reals a0 < a1 satisfying
1
a0
< h and δ < min

{
1
a1
, h− 1

a0

}
.

Example 4.5 in case k = 1 shows that, for each φ ∈ X1, the threshold
equation ∫ 0

−τ
a(φ(s)) ds = 1

has a unique solution τ1(φ), and τ1 : X1 → (0, h) is C2-smooth. In addition,
Dτ1 has the extension property (e).

On the space X1, the right hand side of equation (20) is given by the C2-
map

f : X1 3 φ 7→ g ◦ ev2(mε,2(φ),−τ1(φ)) ∈ R.

From the fact that Dτ1 has the extension property (e) it is easy to check that
Df also has property (e).

Therefore, the initial value problem of (20) together with the threshold
condition (18) defines a continuous semiflow on the C2-submanifold X1

f of the

space X1, with all solution operators on non-empty domains C2-smooth.
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