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Positive and nodal single-layered
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Abstract. We study the problem

−∆v + λv = |v|p−2
v in Ω, v = 0 on ∂Ω,

for λ ∈ R and supercritical exponents p, in domains of the form

Ω := {(y, z) ∈ RN−m−1 × Rm+1 : (y, |z|) ∈ Θ},

where m ≥ 1, N − m ≥ 3, and Θ is a bounded domain in RN−m
whose closure is contained in RN−m−1 × (0,∞). Under some symme-
try assumptions on Θ, we show that this problem has infinitely many
solutions for every λ in an interval which contains [0,∞) and p > 2
up to some number which is larger than the (m+ 1)st critical exponent

2∗N,m := 2(N−m)
N−m−2 . We also exhibit domains with a shrinking hole, in

which there are a positive and a nodal solution which concentrate on
a sphere, developing a single layer that blows up at an m-dimensional
sphere contained in the boundary of Ω, as the hole shrinks and p→ 2∗N,m
from above. The limit profile of the positive solution, in the transversal
direction to the sphere of concentration, is a rescaling of the standard
bubble, whereas that of the nodal solution is a rescaling of a nonradial
sign-changing solution to the problem

−∆u = |u|2
∗
n−2

u, u ∈ D1,2(Rn),

where 2∗n := 2n
n−2 is the critical exponent in dimension n.

Keywords: Supercritical elliptic problem, positive solutions, nodal solutions, blow up,
higher critical exponents.
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1. Introduction

We study the existence and concentration behavior of solutions to the problem{
−∆v + λv = |v|p−2

v in Ω,

v = 0 on ∂Ω,
(℘p)

where Ω is a bounded domain in RN , λ ∈ R, and p is supercritical, i.e., it
is larger than the critical Sobolev exponent 2∗N := 2N

N−2 for N ≥ 3. We shall
consider domains of the form

Ω := {(y, z) ∈ RN−m−1 × Rm+1 : (y, |z|) ∈ Θ}, (1)

where m ≥ 1, N −m ≥ 3, and Θ is a bounded domain in RN−m whose closure
is contained in RN−m−1 × (0,∞).

In domains of this type, the true critical exponent is 2∗N,m := 2(N−m)
N−m−2 , which

is the critical Sobolev exponent in the dimension of Θ and is larger than 2∗N .
Indeed, one can easily verify that the solutions to the problem (℘p) which are
radial in the variable z, correspond to the solutions of the problem{

−div(f(x)u) + λf(x)u = f(x) |u|p−2
u in Θ,

u = 0 on ∂Θ,
(2)

where f(x1, ..., xN−m) = xmN−m. Standard variational methods show that this
last problem has infinitely many solutions for p ∈ (2, 2∗N−m), hence, also does
the problem (℘p). On the other hand, Passaseo showed in [18, 19] that, if λ = 0
and Θ is a ball centered on the half-line {0} × (0,∞), then the problem (℘p)
does not have a nontrivial solution for p ≥ 2∗N−m = 2∗N,m. The number 2∗N,m
has been called the (m+ 1)st critical exponent in dimension N.

The concentration behavior of solutions to the problem (℘p) for λ = 0 and
p ∈ (2, 2∗N,m), as p→ 2∗N,m from below, has been investigated in several papers.
In [10], del Pino, Musso and Pacard exhibited positive solutions which concen-
trate and blow up at a nondegenerate closed geodesic in ∂Ω, as p approaches
the second critical exponent 2∗N,1 from below. For any m ≥ 1, positive and sign-
changing solutions in domains of the form (1) were constructed in [1, 13]. These
solutions concentrate and blow up at one or several m-dimensional spheres, as
p→ 2∗N,m from below. In all of these cases the limit profile of the solutions, in
the transversal direction to each sphere of concentration, is a sum of rescalings
of ±U , where

U(x) := [n(n− 2)](n−2)/4

(
1

1 + |x|2

)(n−2)/2
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is the standard bubble in dimension n := N − m, which is the only positive
solution to the limit problem

−∆u = |u|2
∗
n−2

u, u ∈ D1,2(Rn), (3)

up to translation and dilation.
It was recently shown in [4] that there exist nonradial sign-changing solu-

tions to the problem (3), that do not resemble a sum of rescaled positive and
negative standard bubbles, which occur as limit profiles for concentration of
sign-changing solutions to the problem (℘p) that blow up at a single point, as
p→ 2∗N from below. For the higher critical exponents 2∗N,m with m ≥ 1, it was
shown in [5] that for every λ in some interval which contains [0,∞) there are
sign-changing solutions to the problem (℘p), in domains of the form (1), which
concentrate and blow up at an m-dimensional sphere, as p→ 2∗N,m from below,
whose limit profile in the transversal direction to the sphere of concentration
is a nonradial sign-changing solution to (3), like those found in [4].

The study of concentration phenomena for p approaching 2∗N from above, is
a much more delicate issue, beginning with the fact that solutions to (℘p) for
p > 2∗N do not always exist. For λ = 0, standard bubbles were used as basic
cells in [8, 9, 16, 20] to construct positive solutions to the slightly supercritical
problem (℘p) with p = 2∗N + ε, for small enough ε > 0, in domains with a
hole, using the Lyapunov-Schmidt reduction method. These solutions blow
up, as ε → 0, and their limit profile at each blow-up point is a rescaling of
the standard bubble. Solutions in some contractible domains were constructed
in [14, 15].

Quite recently, sign-changing solutions to the slightly supercritical problem
(℘p) with p = 2∗N + ε, ε > 0, were exhibited by Musso and Wei [17] in domains
with a small fixed hole, and by Clapp and Pacella [6] in domains with a shrink-
ing hole. The solutions obtained in [17] concentrate at two different points in
the domain, as ε → 0, and their limit profile at each of them is a rescaling of
one of the sign-changing solutions to the limit problem (3) in RN constructed
by del Pino, Musso, Pacard and Pistoia in [11], which resemble a large number
of negative bubbles, placed evenly along a circle, surrounding a positive bubble,
placed at its center. On the other hand, the sign-changing solutions exhibited
in [6] concentrate at a single point in the interior of the shrinking hole, as the
hole shrinks and ε → 0, and their limit profile is a rescaling of a nonradial
sign-changing solution to (3) like those found in [4].

For m ≥ 1, the existence of solutions for p = 2∗N,m + ε and their concen-
tration behavior seems to be, so far, an open question; see Problem 4 in [7]. In
this paper we will show that, under some symmetry assumptions, the problem
(℘p) has infinitely many solutions in domains of the form (1) for p > 2∗N,m,
up to some value which depends on the symmetries; see Theorem 2.3. We will
also exhibit domains with a shrinking hole, in which there are positive and
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sign-changing solutions which concentrate and blow up at an m-dimensional
sphere contained in the boundary of Ω, as the hole shrinks and p→ 2∗N,m from
above. The limit profile of the positive solutions, in the direction transversal to
the sphere of concentration, will be a rescaling of the standard bubble, whereas
that of the sign-changing ones will resemble one of the solutions to (3) that
were found in [4].

We give, next, some examples of our results. For n := N −m, let B be an
n-dimensional ball of radius δ0, centered on the half-line {0} × (0,∞), whose
closure is contained in the half-space Rn−1 × (0,∞). We write the points in
Rn−1 × (0,∞) as (y, t) with y ∈ Rn−1, t ∈ (0,∞) and we set

Bδ := {(y, t) ∈ B : |y| > δ} if δ ∈ (0, δ0), B0 := B,

Ωδ := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Bδ}, Ω := Ω0.

We denote by O(k) the group of all linear isometries of Rk and, for v ∈
D1,2(RN ), we write

‖v‖ :=

(∫
RN
|∇v|2

)1/2

.

The following results establish the existence of positive and sign-changing so-
lutions to the problem (℘p) in Ωδ and describe their limit profile as δ → 0 and
p → 2∗N,m from above. They are special cases of Theorems 2.3 and 4.4, which
apply to more general domains, and are stated and proved in Sections 2 and 4,
respectively.

Theorem 1.1. There exists λ∗ ≤ 0 such that, for each λ ∈ (λ∗,∞) ∪ {0},
δ ∈ (0, δ0) and p ∈ (2,∞), the problem (℘p) has a positive solution vδ,p in Ωδ
which satisfies

vδ,p(γy, %z) = vδ,p(y, z) ∀γ ∈ O(n− 1), % ∈ O(m+ 1), (y, z) ∈ Ωδ,

and has minimal energy among all nontrivial solutions to (℘p) in Ωδ with these
symmetries.

Moreover, there exist sequences (δk) in (0, δ0), (pk) in (2∗N,m,∞), (εk) in
(0,∞) and (ζk) in B ∩ [{0} × (0,∞)] such that

(i) δk → 0, pk → 2∗N,m, ε−1
k dist(ζk, ∂Θ)→∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(B,Rn−1 × {0}),

(ii) limk→∞

∥∥∥vδk,pk − Ũεk,ζk∥∥∥ = 0, where

Ũεk,ζk(y, z) := ε
(2−n)/2
k U

(
(y, |z|)− ζk

εk

)
and U is the standard bubble in dimension n.
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The number λ∗ is negative if m ≥ 2.

The solutions given by the previous theorem concentrate on an m-dimen-
sional sphere, developing a positive layer which blows up at an m-dimensional
sphere contained in the boundary of Ω and located at minimal distance to
the plane of rotation Rn−1 × {0}. The asymptotic profile of each layer in the
transversal direction to its sphere of concentration is a rescaling of the standard
bubble.

The next theorem gives sign-changing solutions to the problem (℘p) with a
different type of asymptotic profile. For n ≥ 5, we write Rn−1 ≡ C2 × Rn−5,
and the points in Rn−1 as y = (η, ξ), with η = (η1, η2) ∈ C2, ξ ∈ Rn−5.

Theorem 1.2. Assume that n = 5 or n ≥ 7. Then, there exists λ∗ ≤ 0 such
that, for each λ ∈ (λ∗,∞) ∪ {0}, δ ∈ (0, δ0) and p ∈ (2, 2∗N,m+1), the problem
(℘p) has a nontrivial sign-changing solution wδ,p in Ωδ which satisfies

wδ,p(η, ξ, z) = wδ,p(e
iϑη, αξ, %z), wδ,p(η1, η2, ξ, z) = −wδ,p(−η̄2, η̄1, ξ, z),

for every ϑ ∈ [0, π), α ∈ O(n − 5), % ∈ O(m + 1) and (y, z) ∈ Ωδ, and which
has minimal energy among all nontrivial solutions to (℘p) in Ωδ with these
symmetry properties.

Moreover, there exist sequences (δk) in (0, δ0), (pk) in (2∗N,m, 2
∗
N,m+1), (εk)

in (0,∞) and (ζk) in B∩[{0} × (0,∞)] , and a nontrivial sign-changing solution
W to the limit problem (3), such that

(i) δk → 0, pk → 2∗N,m, ε−1
k dist(ζk, ∂Θ)→∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(B,Rn−1 × {0}),

(ii) W (η, ξ, t) = W (eiϑη, αξ, t) and W (η1, η2, ξ, t) = −W (−η̄2, η̄1, ξ, t) for
every ϑ ∈ [0, π), α ∈ O(n − 5) and (y, t) ∈ Rn−1 × R ≡ Rn, and W has
minimal energy among all nontrivial solutions to (3) with these symmetry
properties,

(iii) limk→∞

∥∥∥wδk,pk − W̃εk,ζk

∥∥∥ = 0, where

W̃εk,ζk(y, z) := ε
(2−n)/2
k W

(
(y, |z|)− ζk

εk

)
.

The number λ∗ is negative if m ≥ 2.

The solutions given by the previous theorem concentrate on an m-dimen-
sional sphere, developing a sign-changing layer which blows up at an m-dimen-
sional sphere contained in the boundary of Ω and located at minimal distance
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to the plane of rotation Rn−1×{0}. The asymptotic profile of each layer in the
transversal direction to its sphere of concentration is a rescaling of a nonradial
sign-changing solution to the limit problem (3), like those found in [4].

As we mentioned before, the solutions to the anisotropic problem (2) give
rise to solutions of the problem (℘p) in domains of the form (1). In Section 2
we will study a general anisotropic problem in an n-dimensional domain Θ. We
will assume that Θ has some symmetries and we will establish the existence of
infinitely many positive and sign-changing solutions to the anisotropic problem
for supercritical exponents p > 2∗n, up to some value which depends on the
symmetries. These results extend those obtained in [6] for the problem with
constant coefficients. In Section 3 we will describe the behavior of the min-
imizing sequences for the variational functional associated to the anisotropic
problem for p = 2∗n. These sequences, either converge to a solution, or they
blow up. We will provide information on the location of the blow-up points
and on the symmetries of the solutions to the limit problem (3) which occur
as limit profiles. This will be used in Section 4 to obtain information on the
concentration behavior and the limit profile of positive and sign-changing solu-
tions to the problem (℘p) in domains with a shrinking hole, as the hole shrinks
and p→ 2∗N,m from above.

2. Symmetries and existence for supercritical problems

Let Γ be a closed subgroup of O(n) and φ : Γ → Z2 be a continuous ho-
momorphism of groups. A function u : Rn → R is said to be φ-equivariant
if

u(γx) = φ(γ)u(x) ∀γ ∈ Γ, x ∈ Rn. (4)

If φ is the trivial homomorphism, then (4) simply says that u is a Γ-invariant
function, whereas, if φ is surjective and u is not trivial, then (4) implies that u
is sign-changing, nonradial and G-invariant, where G := kerφ.

Let Θ be a bounded Γ-invariant domain in Rn, n ≥ 3, and a ∈ C1(Θ),
b, c ∈ C0(Θ) be Γ-invariant functions satisfying a, c > 0 on Θ. We assume that

there exists x0 ∈ Θ such that {γ ∈ Γ : γx0 = x0} ⊂ ker φ. (5)

This assumption guarantees that the space

D1,2
0 (Θ)φ := {u ∈ D1,2

0 (Θ) : u is φ-equivariant}

is infinite dimensional; see [3]. As usual, D1,2
0 (Θ) denotes the closure of C∞c (Θ)

in the Hilbert space

D1,2(Rn) := {u ∈ L2∗n(Rn) : ∇u ∈ L2(Rn,Rn)}
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equiped with the norm

‖u‖ :=

(∫
Θ

|∇u|2
)1/2

.

We shall also assume that the operator −div(a∇) + b is coercive in D1,2
0 (Θ)φ,

i.e., that

inf
u∈D1,2

0 (Θ)φ

u6=0

∫
Θ

(a(x) |∇u|2 + b(x)u2)dx∫
Θ
|∇u|2

> 0. (6)

We set

‖u‖2a,b :=

∫
Θ

(a(x) |∇u|2 + b(x)u2)dx, |u|pc;p :=

∫
Θ

c(x) |u|p dx.

Assumption (6) implies that ‖·‖a,b is a norm in D1,2
0 (Θ)φ which is equivalent

to ‖·‖ . Note that, as c > 0, |·|c;p is equivalent to the standard norm in Lp(Θ),
which we denote by |·|p .

Our aim is to establish the existence of solutions to the problem
−div(a(x)∇u) + b(x)u = c(x)|u|p−2u in Θ,

u = 0 on ∂Θ.

u(γx) = φ(γ)u(x), ∀γ ∈ Γ, x ∈ Θ,

(7)

for every 2 < p < 2∗n−d, where

d := min{dim(Γx) : x ∈ Θ},

Γx := {γx : γ ∈ Γ} is the Γ-orbit of x, 2∗k := 2k
k−2 if k ≥ 3 and 2∗k := ∞ if

k = 1, 2. Note that 2∗n−d > 2∗n if d > 0.

A (weak) solution to the problem (7) is a function u ∈ D1,2
0 (Θ)φ ∩ Lp(Θ)

such that∫
Θ

(a(x)∇u · ∇ψ+ b(x)uψ)dx−
∫

Θ

c(x)|u|p−2uψ dx = 0 ∀ψ ∈ C∞c (Θ). (8)

Proposition 2.1 of [6] asserts that D1,2
0 (Θ)φ is continuously embedded in Lp(Θ)

for any real number p ∈ [1, 2∗n−d], and that the embedding is compact for
p ∈ [1, 2∗n−d). The proof relies on a result by Hebey and Vaugon [12] which
establishes these facts for Γ-invariant functions. Therefore, the functional

Jp(u) :=
1

2
‖u‖2a,b −

1

p
|u|pc;p

is well defined in the space D1,2
0 (Θ)φ if p ∈ (2, 2∗n−d].
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Lemma 2.1. For any real number p ∈ (2, 2∗n−d] the critical points of the func-

tional Jp in the space D1,2
0 (Θ)φ are the solutions to the problem (7).

Proof. Let u ∈ D1,2
0 (Θ)φ be a critical point of Jp in D1,2

0 (Θ)φ. Then,

J ′p(u)ϑ =

∫
Θ

(a(x)∇u · ∇ϑ+ b(x)uϑ− c(x)|u|p−2uϑ) dx = 0 ∀ϑ ∈ D1,2
0 (Θ)φ.

As D1,2
0 (Θ)φ ⊂ Lp(Θ) for 1 ≤ p ≤ 2∗n−d we need only to prove that u satisfies

(8). Let ψ ∈ C∞c (Θ), and define

ψ̃(x) :=
1

µ(Γ)

∫
Γ

φ(γ)ψ(γx)dµ,

where µ is the Haar measure on Γ. Note that ψ̃ ∈ D1,2
0 (Θ)φ. Observe also that,

as u is φ-equivariant, we have that

φ(γ)∇u(x) = ∇ (u ◦ γ) (x) = γ−1∇u(γx) ∀γ ∈ Γ, x ∈ Θ.

Since J ′p(u)ψ̃ = 0, and a, b, c are Γ-invariant, using Fubini’s theorem and per-
forming a change of variable, we get

0 =

∫
Θ

(a(x)∇u(x) · ∇ψ̃(x) + b(x)u(x)ψ̃(x)− c(x)|u(x)|p−2u(x)ψ̃(x))dx

=
1

µ(Γ)

∫
Θ

∫
Γ

[
a(x)φ(γ)∇u(x) · γ−1∇ψ(γx) + b(x)φ(γ)u(x)ψ(γx)

−c(x)|φ(γ)u(x)|p−2φ(γ)u(x)ψ(γx)
]

dµdx

=
1

µ(Γ)

∫
Γ

∫
Θ

[
a(x)γ−1∇u(γx) · γ−1∇ψ(γx) + b(x)u(γx)ψ(γx)

−c(x)|u(γx)|p−2u(γx)ψ(γx)
]

dxdµ

=
1

µ(Γ)

∫
Γ

∫
Θ

[a(γx)∇u(γx) · ∇ψ(γx) + b(γx)u(γx)ψ(γx)

−c(γx)|u(γx)|p−2u(γx)ψ(γx)
]

dx dµ

=
1

µ(Γ)

∫
Γ

dµ

∫
Θ

[a(ξ)∇u(ξ) · ∇ψ(ξ) + b(ξ)u(ξ)ψ(ξ)

−c(ξ)|u(x)|p−2u(ξ)ψ(ξ)
]

dξ

=

∫
Θ

[
a(ξ)∇u(ξ) · ∇ψ(ξ) + b(ξ)u(ξ)ψ(ξ)− c(ξ)|u(x)|p−2u(ξ)ψ(ξ)

]
dξ.

Therefore u is a solution to the problem (7).
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The nontrivial critical points of the functional Jp : D1,2
0 (Θ)φ → R lie on the

Nehari manifold

N φ
p :=

{
u ∈ D1,2

0 (Θ)φ : ‖u‖2a,b = |u|pc;p , u 6= 0
}
,

which is a C2-Hilbert manifold, radially diffeomorphic to the unit sphere in
D1,2

0 (Θ)φ, and a natural constraint for this functional. Set

`φp := inf{Jp(u) : u ∈ N φ
p }.

Then, `φp > 0. A least energy solution to the problem (7) is a minimizer for Jp
on N φ

p . The following result extends Theorem 2.3 in [6].

Theorem 2.2. If p ∈ (2, 2∗n−d) then the problem (7) has a least energy solution,
and an unbounded sequence of solutions.

Proof. By Lemma 2.1, the critical points of the functional Jp in the space

D1,2
0 (Θ)φ are the solutions to the problem (7). Proposition 2.1 of [6] asserts

that D1,2
0 (Θ)φ is compactly embedded in Lp(Θ) for p ∈ (2, 2∗n−d), hence, a

standard argument shows that the functional Jp : D1,2
0 (Θ)φ → R satisfies the

Palais-Smale condition. Therefore, Jp attains its minimum on N φ
p . Moreover,

as the functional is even and has the mountain pass geometry, the symmetric
mountain pass theorem [2] yields the existence of an unbounded sequence of
critical values for Jp in D1,2

0 (Θ)φ.

We now derive a multiplicity result for the supercritical problem (℘p). As-
sume that the closure of Θ is contained in Rn−1 × (0,∞) and, for m ≥ 1,
let

λφ1 := inf
u∈D1,2

0 (Θ)φ

u6=0

∫
Θ
xmn |∇u|

2∫
Θ
xmn u

2
. (9)

As the n-th coordinate xn of x is positive for every x ∈ Θ, from the Poincaré
inequality we obtain that λφ1 > 0.

Theorem 2.3. If λ ∈ (−λφ1 ,∞) and p ∈ (2, 2∗n−d), then the problem (℘p) has
a least energy solution and an unbounded sequence of solutions in

Ω := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Θ},

which satisfy

v(γy, %z) = φ(γ)v(y, z) ∀γ ∈ Γ, % ∈ O(m+ 1), (y, z) ∈ Ω. (10)
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Proof. A straightforward computation shows that v is a solution to the problem
(℘p) in Ω which satisfies (10) if and only if the function u given by v(y, z) =
u(y, |z|) is a solution to the problem (7) with a(x) := xmn =: c(x) and b(x) :=
λxmn . Moreover, v has minimal energy if and only if u does. Note that (6) is

satisfied if λ ∈ (−λφ1 ,∞). So this result follows from Theorem 2.2.

For p ∈ (2, 2∗n−d) let up be a least energy solution to the problem (7). Fix

q ∈ (2, 2∗n−d) and let tq,p ∈ (0,∞) be such that ũp := tq,pup ∈ N φ
q , i.e.,

tq,p =

(
‖up‖2a,b
|up|qc;q

) 1
q−2

=

(
|up|pc;p
|up|qc;q

) 1
q−2

. (11)

We will show that limp→q Jq (ũp) = `φq . The proof is similar to that of Propo-
sition 2.5 in [6]. We give the details for the reader’s convenience, starting with
the following lemma.

Lemma 2.4. If pk, q ∈ (2, 2∗n−d), pk → q, and (uk) is a bounded sequence in

D1,2
0 (Θ)φ, then

lim
k→∞

∫
Θ

(c(x) |uk|pk − c(x) |uk|q) dx = 0.

Proof. By the mean value theorem, for each x ∈ Θ, there exists qk(x) between
pk and q such that

||uk(x)|pk − |uk(x)|q| = |ln |uk(x)|| |uk(x)|qk(x) |pk − q| .

Fix r > 0 such that [q − r, q + r] ⊂ (2, 2∗n−d). Then, for some positive constant
C and k large enough,

|ln |uk|| |uk|qk ≤

{
ln |uk| |uk|q+r ≤ C |uk|2

∗
n−d if |uk| ≥ 1,(

ln 1
|uk|

)
|uk|q−r ≤ C |uk|2 if |uk| ≤ 1.

As D1,2
0 (Θ)φ is continuously embedded in Lp(Θ) for p ∈ [2, 2∗n−d], we obtain∣∣∣∣∫

Θ

c (|uk|pk − |uk|q)
∣∣∣∣ ≤ |c|∞

(∫
|uk|≤1

||uk|pk−|uk|q|+
∫
|uk|>1

||uk|pk−|uk|q|

)

≤ |c|∞ C |pk − q|
∫

Θ

(
|uk|2 + |uk|2

∗
n−d
)

≤ C̄ |pk − q| ‖uk‖2
∗
n−d

for some positive constant C̄, where |c|∞:= supx∈Θ |c(x)| . Since (uk) is bounded

in D1,2
0 (Θ), our claim follows.
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Proposition 2.5. For q ∈ (2, 2∗n−d) we have that

lim
p→q

`φp = `φq , lim
p→q

tq,p = 1, lim
p→q

Jq (ũp) = `φq .

Proof. Set

Sφp := inf
u∈D1,2

0 (Ω)φ\{0}

‖u‖2a,b
|u|2c;p

.

It is easy to see that `φp = p−2
2p

(
Sφp
) p
p−2 . So, to prove the first identity, it

suffices to show that limp→q S
φ
p = Sφq . From Hölder’s inequality we get that

|u|c;q ≤ |c|
(p−q)/pq
1 |u|c;p if p > q. Hence, Sφq ≥ |c|

2(q−p)/pq
1 Sφp if p > q. So, as p

approaches q from the right, we have that

lim sup
p→q+

Sφp ≤ Sφq .

Assume that lim infp→q+ Sφp < Sφq . Then, there exist ε > 0 and sequences (pk)

in (q, 2∗n−d) and (uk) in D1,2
0 (Ω)φ with |uk|c;pk = 1 such that ‖uk‖2a,b < Sφq − ε.

Lemma 2.4 implies that
‖uk‖2a,b
|uk|2c;q

< Sφq for k large enough, contradicting the

definition of Sφq . This proves that

lim
p→q+

Sφp = Sφq .

The corresponding statement when p approaches q from the left is proved in a
similar way. Since Jp(up) = p−2

2p ‖up‖
2
a,b = `φp we have that (up) is bounded in

D1,2
0 (Ω)φ for p close to q. Lemma 2.4 applied to (11) yields limp→q tq,p = 1. It

follows that limp→q Jq(ũp) = limp→q
q−2
2q ‖tq,pup‖

2
a,b = `φq , as claimed.

3. Minimizing sequences for the critical problem

In this section we analize the behavior of the minimizing sequences for the
problem (7) when p is the critical exponent 2∗n = 2n

n−2 . The solutions to the
limit problem (3) will play a crucial role in this analysis. We denote the energy
functional associated to (3) by

J∞(u) :=
1

2
‖u‖2 − 1

2∗
|u|2

∗

2∗

and, for any closed subgroup K of Γ, we set

D1,2(Rn)φ|K := {u ∈ D1,2(Rn) : u(γz) = φ(γ)u(z) ∀γ ∈ K, z ∈ Rn},

N φ|K
∞ := {u ∈ D1,2(Rn)φ|K : u 6= 0, ‖u‖2 = |u|2

∗

2∗},
`φ|K∞ := inf

u∈Nφ|K∞
J∞(u).
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If K = Γ we write N φ
∞ and `φ∞ instead of N φ|K

∞ and `
φ|K
∞ .

Recall that the Γ-orbit of a point x ∈ Rn is the set Γx := {γx : γ ∈ Γ}, and
its isotropy group is Γx := {γ ∈ Γ : γx = x}. Then, Γx is Γ-homeomorphic to
the homogeneous space Γ/Γx. In particular, the cardinality of Γx is the index
of Γx in Γ, which is usually denoted by |Γ/Γx| . If Γx = {x} then x is said to
be a fixed point of Γ. We denote

ΘΓ := {x ∈ Θ : x is a fixed point of Γ}.

For simplicity, we will write J∗, N φ
∗ and `φ∗ instead of J2∗n , N

φ
2∗n

and `φ2∗n .

Theorem 3.1. Let (uk) be a sequence in N φ
∗ such that J∗(uk) → `φ∗ . Then,

after passing to a subsequence, one of the following two possibilities occurs:

1. (uk) converges strongly in D1,2
0 (Θ) to a minimizer of J∗ on N φ

∗ .

2. There exist a closed subgroup K of finite index in Γ, a sequence (ζk) in Θ,
a sequence (εk) in (0,∞) and a nontrivial solution ω to the problem (3)
with the following properties:

(a) Γζk = K for all k ∈ N, and ζk → ζ,

(b) ε−1
k dist(ζk, ∂Θ)→∞ and ε−1

k |αζk − βζk| → ∞ for all α, β ∈ Γ with
α−1β 6∈ K,

(c) ω(γz) = φ(γ)ω(z) for all γ ∈ K, z ∈ Rn, and J∞(ω) = `
φ|K
∞ ,

(d) lim
k→∞

∥∥∥∥∥uk − ∑
[γ]∈Γ/K

φ(γ)
(
a(ζ)
c(ζ)

)n−2
4

ε
2−n

2

k (ω ◦ γ−1)( · −γζkεk
)

∥∥∥∥∥ = 0,

(e) `φ∗ = min
x∈Θ

a(x)n/2

c(x)(n−2)/2 |Γ/Γx| `
φ|Γx
∞ = a(ζ)n/2

c(ζ)(n−2)/2 |Γ/K| J∞(ω).

Proof. The proof is exactly the same as that of Theorem 2.5 in [5], omitting
the first two lines.

Let us state an interesting special case of Theorem 3.1.

Corollary 3.2. Assume that every Γ-orbit in Θ is either infinite or a fixed
point. Let (uk) be a sequence in N φ

∗ such that J∗(uk)→ `φ∗ . Then, after passing
to a subsequence, one of the following statements holds true:

1. (uk) converges strongly in D1,2
0 (Θ) to a minimizer of J∗ on N φ

∗ .
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2. There exist a sequence (ζk) in ΘΓ, a sequence (εk) in (0,∞) and a nontriv-
ial φ-equivariant solution ω to the limit problem (3) such that ζk → ζ ∈ Θ,
ε−1
k dist(ζk, ∂Θ)→∞, J∞(ω) = `φ∞,

lim
k→∞

∥∥∥∥∥uk −
(
a(ζ)

c(ζ)

)n−2
4

ε
2−n

2

k ω

(
· − ζk
εk

)∥∥∥∥∥ = 0,

and
a(ζ)n/2

c(ζ)(n−2)/2
= min
x∈ΘΓ

a(x)n/2

c(x)(n−2)/2
.

In particular, if every Γ-orbit in Θ has positive dimension, then (1) must
hold true.

Proof. Since the group K = Γζk , given by case 2 of Theorem 3.1, has finite
index in Γ and this index is the cardinality of the Γ-orbit of ζk, our assumption
implies that K = Γ and ζk is a fixed point. So case 2 of Theorem 3.1 reduces
to case 2 of this corollary.

Note that the functions a and c determine the location of the concentration
point ζ.

It was shown in [4, Theorem 2.3] that, if a = c = 1, b = 0 and ΘΓ 6= ∅,
then `φ∗ is not attained by J∗ on N φ

∗ . So, if every Γ-orbit in Θ \ΘΓ has positive
dimension, statement 2 of Corollary 3.2 must hold true.

In the following section we will state a nonexistence result which allows us
to obtain information on the limit profile of solutions to the problem (℘p).

4. Blow-up at the higher critical exponents

Throughout this section we will assume that Θ is a Γ-invariant bounded smooth
domain in Rn whose closure is contained in Rn−1× (0,∞). Then, the points in
{0}×(0,∞) must be fixed points of Γ, so Rn−1×{0} is Γ-invariant and we may
regard Γ as a subgroup of O(n−1). We will also assume that Θ\ΘΓ and ΘΓ are
nonempty, and that every Γ-orbit in Θ \ΘΓ has positive dimension. As before,
φ : Γ→ Z2 will be a continuous homomorphism which satisfies assumption (5).

We set

Θδ := {x ∈ Θ : dist(x,ΘΓ) > δ} if δ > 0, and Θ0 := Θ,

and we fix δ0 > 0 such that Θδ0 6= ∅. For m ≥ 1 and δ ∈ [0, δ0), we consider
the problem

(℘#
δ,p)


−div(xmn ∇u) + λxmn u = xmn |u|p−2u in Θδ,

u = 0 on ∂Θδ.

u(γx) = φ(γ)u(x), ∀γ ∈ Γ, x ∈ Θδ,
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where xmn denotes the function x = (x1, ..., xn) 7→ xmn , and λ ∈ (−λφ1 ,∞),

with λφ1 as defined in (9). Then, the operator −div(xmn ∇) + λxmn is coercive
in D1,2

0 (Θ)φ. So the data of this problem satisfy all assumptions stated at the
beginning of Section 2.

Theorem 2.2 asserts that the problem (℘#
δ,p) has a least energy solution uδ,p

if δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), where

d := min{dim(Γx) : x ∈ Θ \ΘΓ}.

Note that, by assumption, d > 0. On the other hand, for δ = 0 and p = 2∗n, the
following nonexistence result was proved in [5].

Theorem 4.1. If dist(ΘΓ,Rn−1×{0}) = dist(Θ,Rn−1×{0}), then there exists

λ∗ ∈ (−λφ1 , 0] such that, if λ ∈ (λ∗,∞) ∪ {0}, the critical problem (℘#
0,2∗n

) does
not have a least energy solution.

Moreover, λ∗ < 0 if m ≥ 2.

Proof. See Theorem 3.2 in [5].

For δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), let Jδ,p : D1,2
0 (Θδ)

φ → R be the variational

funcional and N φ
δ,p be the Nehari manifold associated to the problem (℘#

δ,p),
and set

`φδ,p := inf{Jδ,p(u) : u ∈ N φ
δ,p}.

We write J∗, N φ
∗ and `φ∗ for the variational functional, the Nehari manifold and

the infimum associated to the critical problem (℘#
0,2∗n

) in the whole domain Θ.

Extending each function in N φ
δ,2∗n

by 0 outside of Θδ, we have that N φ
δ,2∗n
⊂ N φ

∗

and Jδ,2∗n(u) = J∗(u) for every u ∈ N φ
δ,2∗n

. Hence, `φ∗ ≤ `φδ,2∗n .

Lemma 4.2. `φδ,2∗n
→ `φ∗ as δ → 0.

Proof. Let X := (Rn)Γ and Y be its orthogonal complement in Rn. Since
Θ \ ΘΓ 6= ∅ and every Γ-orbit in Θ \ ΘΓ has positive dimension, we have that
dim(Y ) ≥ 2.

We claim that there are radial functions χk ∈ C∞c (Y ) such that χk(y) = 1
if |y| ≤ 1

k ,

lim
k→∞

∫
Y

|χk|2 = 0 and lim
k→∞

∫
Y

|∇χk|2 = 0. (12)

To show this, we choose a radial function g ∈ C∞c (Y ) such that g(y) = 1 if
|y| ≤ 1 and g(y) = 0 if |y| ≥ 2, and we set gk(y) := g(ky). Define

χk(y) :=
1

σk

k∑
j=1

gj(y)

j
, where σk :=

k∑
j=1

1

j
.
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Clearly, χk(y) = 1 if |y| ≤ 1
k and χk(y) = 0 if |y| ≥ 2. As dim(Y ) ≥ 2, we have

that
∫
Y
|∇gk|2 ≤

∫
Y
|∇g|2 . Hence, for some positive constant C,

∫
Y

|∇χk|2 ≤
C

σ2
k

k∑
j=1

1

j2
→ 0 as k →∞.

Finally, as all functions χk are supported in the closed ball of radius 2 in Y,
the Poincaré inequality yields∫

Y

|χk|2 ≤ C
∫
Y

|∇χk|2 → 0,

and our claim is proved.

Given ε > 0 we choose ψ ∈ N φ
∗ such that J∗(ψ) < `φ∗+ ε

2 . For (x, y) ∈ X×Y,
we define ψk(x, y) := (1 − χk(y))ψ(x, y). Note that, as χk is radial and ψ is
is φ-equivariant, ψk is also φ-equivariant. Moreover, the identities (12) easily
imply that ψk → ψ in D1,2

0 (Θ). So, for k large enough, there exists tk ∈ (0,∞)

such that ψ̃k := tkψk ∈ N φ
∗ and tk → 1. Hence, ψ̃k → ψ in D1,2

0 (Θ), and

we may choose k0 ∈ N such that J∗(ψ̃k0) < `φ∗ + ε. Observe that supp(ψ̃k) =

supp(ψk) ⊂ Θδ if δ < 1
k . So ψ̃k ∈ N φ

δ,2∗n
if δ < 1

k . It follows that

`φ∗ ≤ `
φ
δ,2∗n
≤ Jδ,2∗n(ψ̃k0) = J∗(ψ̃k0) < `φ∗ + ε ∀δ ∈

(
0,

1

k0

)
.

This finishes the proof.

Set N := n+m and

Ωδ := {(y, z) ∈ Rn−1 × Rm+1 : (y, |z|) ∈ Θδ}, δ ∈ [0, δ0).

Note that Ωδ is [Γ×O(m+ 1)]-invariant, i.e., (γy, %z) ∈ Ωδ for every (y, z) ∈
Ωδ, γ ∈ Γ, % ∈ O(m + 1). A straightforward computation shows that uδ,p is a

least energy solution to the problem (℘#
δ,p) if and only if vδ,p(y, z) := uδ,p(y, |z|)

is a least energy solution to the problem

(℘δ,p)


−∆v + λv = |v|p−2v in Ωδ,

v = 0 on ∂Ωδ,

v(γy, %z) = φ(γ)v(y, z), ∀γ ∈ Γ, % ∈ O(m+ 1), (y, z) ∈ Ωδ.

Therefore, for every λ ∈ (−λφ1 ,∞), δ ∈ (0, δ0) and p ∈ (2, 2∗n−d), the problem
(℘δ,p) has a least energy solution. The following results describe its limit profile.
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Theorem 4.3. For δ ∈ (0, δ0) let vδ,∗ be a least energy solution to the problem
(℘δ,2∗N,m). Assume that

dist(ΘΓ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}).

Then, there exists λ∗ ≤ 0 such that, if λ ∈ (λ∗,∞) ∪ {0}, there exist sequences
(δk) in (0, δ0), (εk) in (0,∞), (ζk) in ΘΓ, and a nontrivial solution ω to the
limit problem (3) such that

(i) δk → 0, ε−1
k dist(ζk, ∂Θ)→∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}),

(ii) ω is φ-equivariant and has minimal energy among all nontrivial φ-equiv-
ariant solutions to the problem (3),

(iii) vδk,∗ = ω̃εk,ζk + o(1) in D1,2(RN ), where

ω̃εk,ζk(y, z) := ε
(2−n)/2
k ω

(
(y, |z|)− ζk

εk

)
.

Moreover, λ∗ < 0 if m ≥ 2.

Proof. Let λ∗ be the number given by Theorem 4.1. Fix λ ∈ (λ∗,∞)∪{0}, and

let uδ,∗ be the least energy solution to the problem (℘#
δ,2∗n

) given by vδ,∗(y, z) =

uδ,∗(y, |z|). Choose a sequence δk → 0 and set uk := uδk,∗. Then, uk ∈ N φ
∗

and, by Lemma 4.2, J∗(uk) → `φ∗ . It follows from Corollary 3.2 and Theorem
4.1 that, after passing to a subsequence, there exist sequences (εk) in (0,∞)
and (ζk) in ΘΓ, and a nontrivial φ-equivariant solution ω to the limit problem
(3) such that ζk → ζ, ε−1

k dist(ζk, ∂Θ)→∞, J∞(ω) = `φ∞,

lim
k→∞

∥∥∥∥uk − ε 2−n
2

k ω

(
· − ζk
εk

)∥∥∥∥ = 0, (13)

and [
dist(ζ,Rn−1 × {0})

]
= min

x∈Θ

[
dist(x,Rn−1 × {0})

]
.

Equation (13) implies that vδk,∗ satisfies (3). This concludes the proof.

Theorem 4.4. For δ ∈ (0, δ0) and p ∈ (2∗N,m, 2
∗
N,m+d) let vδ,p be a least energy

solution to the problem (℘δ,p). Assume that

dist(ΘΓ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}).

Then, there exists λ∗ ≤ 0 such that, if λ ∈ (λ∗,∞) ∪ {0}, there exist sequences
(δk) in (0, δ0), (εk) in (0,∞), (pk) in (2∗N,m, 2

∗
N,m+d), and (ζk) in ΘΓ, and a

nontrivial solution ω to the limit problem (3) such that
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(i) δk → 0, pk → 2∗N,m, ε
−1
k dist(ζk, ∂Θ)→∞, and ζk → ζ with

dist(ζ,Rn−1 × {0}) = dist(Θ,Rn−1 × {0}),

(ii) ω is φ-equivariant and has minimal energy among all nontrivial φ-equiv-
ariant solutions to the problem (3),

(iii) vδk,pk = ω̃εk,ζk + o(1) in D1,2(RN ), where

ω̃εk,ζk(y, z) := ε
(2−n)/2
k ω

(
(y, |z|)− ζk

εk

)
.

Moreover, λ∗ < 0 if m ≥ 2.

Proof. Let λ∗ be the number given by Theorem 4.1. Fix λ ∈ (λ∗,∞) ∪ {0}.
Let uδ,p be the least energy solution to the problem (℘#

δ,p) given by vδ,p(y, z) =

uδ,p(y, |z|) and let tδ,p ∈ (0,∞) be such that ũδ,p := tδ,puδ,p ∈ N φ
δ,2∗n
⊂ N φ

∗ .

Proposition 2.5 and Lemma 4.2 allow us to choose δk ∈ (0, δ0) and pk ∈
(2∗n, 2

∗
n−d) such that δk → 0, pk → 2∗n, and J∗(ũk) → `φ∗ , where ũk := ũδk,pk .

The rest of the proof is the same as that of Theorem 4.3

Finally, we derive Theorems 1.1 and 1.2 from Theorems 2.3 and 4.4.

Proof of Theorem 1.1. Let Γ := O(n− 1) and φ be the trivial homomorphism
φ ≡ 1. Then, BΓ = B ∩ [{0} × (0,∞)] . A φ-equivariant function is simply a
Γ-invariant function and, as the standard bubble is radial, it is the least energy
Γ-invariant solution to the problem (3), which is unique up to translations and
dilations. Since dim(Γx) = n− 2 ≥ 1 for every x ∈ B \BΓ, applying Theorems
2.3 and 4.4 to Θ := B with this group action we obtain Theorem 1.1.

Proof of Theorem 1.2. For n ≥ 5, let Γ be the subgroup of O(n− 1) generated
by {eiϑ, α, τ : ϑ ∈ [0, 2π), α ∈ O(n − 5)} acting on a point y = (η, ξ) ∈
C2 × Rn−5 ≡ Rn−1, η = (η1, η2) ∈ C× C, as

eiϑy := (eiϑη, ξ), αy := (η, αξ), τy := (−η2, η1, ξ),

and let φ be the homomorphism given by φ(eiϑ) = 1 = φ(α) and φ(τ) = −1.
Then, BΓ = B ∩ [{0} × (0,∞)] . If n = 5 then dim (Γy) = 1 for every y ∈
Rn−1 \ {0}, whereas for n ≥ 6 we have that

dim (Γy) =

 n− 5 if η 6= 0 and ξ 6= 0,
1 if ξ = 0,
n− 6 if η = 0.

Therefore, if n = 5 or n ≥ 7, we have that dim(Γx) ≥ 1 for every x ∈ B \ BΓ.
Notice that any point x0 = (η, ξ) ∈ B with η 6= 0 satisfies condition (5). Hence,
Theorem 1.2 follows from Theorems 2.3 and 4.4.
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