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Abstract. For every f ∈ LN (Ω) defined in an open bounded subset
Ω of RN , we prove that a solution u ∈ W 1,1

0 (Ω) of the 1-Laplacian
equation −div

( ∇u
|∇u|

)
= f in Ω satisfies ∇u = 0 on a set of positive

Lebesgue measure. The same property holds if f 6∈ LN (Ω) has small
norm in the Marcinkiewicz space of weak-LN functions or if u is a
BV minimizer of the associated energy functional. The proofs rely on
Stampacchia’s truncation method.
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1. Introduction

Let Ω ⊂ RN be a smooth bounded open subset. Given a convex function
Φ : RN → R and f ∈ L1(Ω), consider the energy functional

EΦ(u) =

∫
Ω

Φ(∇u)−
∫
Ω

fu,

defined on some class of functions u : Ω → R for which the integrands are
summable. Although Φ need not be smooth, one can express the Euler–
Lagrange equation of EΦ using the subdifferential of Φ. Indeed, by convexity
of Φ, at each point x ∈ RN there exists a subgradient ξ ∈ RN such that

Φ(y) ≥ Φ(x) + ξ · (y − x),

for every y ∈ RN ; see [18, Chapter 2]. Denoting the collection of all subgradi-
ents ξ at x by ∂Φ(x), one can then write the Euler–Lagrange equation of EΦ

at some function u as (see [12, Chapter IV] and [22])

−divZ = f in the sense of distributions in Ω, (1)
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where Z is a summable function with values in RN such that

Z ∈ ∂Φ(∇u) almost everywhere in Ω. (2)

For example, if Φp(x) = |x|p/p for some exponent p > 1, then Φp is differ-
entiable pointwise. Thus, ∂Φp(x) = {|x|p−2x}, and one recovers an equation
involving the p-Laplace operator:

−∆pu = − div (|∇u|p−2∇u) = f.

When p = 1, the function Φ1 is not differentiable at 0, and one should be careful
about the meaning of the quotient∇u/|∇u| that appears in the formal notation
of the 1-Laplacian. The correct interpretation is based on the formalism of
subdifferentials above. Indeed, for Φ1(x) = |x|, one has

∂Φ1(x) =

{
B1(0) if x = 0,

{x/|x|} if x 6= 0,
(3)

where B1(0) denotes the unit open ball in RN .
The vector field Z in the Euler–Lagrange equation now satisfies the condi-

tions:
|Z| ≤ 1 and Z|∇u| = ∇u

almost everywhere in Ω. Observe that, in dimension 1, equation (3) provides
one with the maximal monotone graph associated to the sign function.

Assuming that f ∈ LN (Ω), the functional EΦ1 associated to Φ1 is well-
defined in W 1,1

0 (Ω), and the Euler–Lagrange equation (1)–(2) is indeed satisfied
by a minimizer. The goal of this paper is to show that one cannot abandon the
vector field Z and replace it by the quotient ∇u/|∇u| since the gradient ∇u
must vanish on a set of positive Lebesgue measure.

Every function u ∈ W 1,1(Ω) such that ∇u 6= 0 a.e. in Ω has a legitimate
1-Laplacian ∆1u defined in the sense of distributions as

〈∆1u, ϕ〉 := −
∫
Ω

∇u
|∇u|

· ∇ϕ,

for every test function ϕ ∈ C∞c (Ω) with compact support in Ω, but even
for smooth functions u something strange happens near an interior extremum
point:

Example 1.1. For every N ≥ 1, let u : B1(0)→ R be the function defined by
u(x) = 1− |x|2. In the sense of distributions we have, for N = 1,

−∆1u = 2δ0,

while for N ≥ 2,

−∆1u =
N − 1

|x|
.
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In the previous example, the topological singularity of the vector field
−x/|x| is detected by its divergence, and the 1-Laplacian does not belong to
LN (Ω). We show that this is a general fact that holds for Sobolev functions,
not necessarily smooth:

Theorem 1.2. There exists no function u ∈ W 1,1
0 (Ω) such that ∇u 6= 0

a.e. in Ω and
∆1u ∈ LN (Ω).

In Example 1.1 above for N ≥ 2, one sees that the right-hand side belongs
to the Marcinkiewicz spaceMN (Ω) of weak-LN functions f in Ω equipped with
the seminorm

‖f‖MN (Ω) = sup
A⊂Ω

1

|A|
N−1
N

∫
A

|f |,

where |A| denotes the Lebesgue measure of A and the supremum is computed
with respect to every Borel subset of Ω. In the case of the example, the function
f = (N − 1)/|x| satisfies

‖f‖MN (B(0;1)) = Nω
1/N
N , (4)

where ωN denotes the volume of the unit ball in RN .
A variant of the proof of Theorem 1.2 based on Peetre–Alvino’s imbedding

of W 1,1(RN ) in the Lorentz space L
N

N−1 ,1(RN ) shows that this quantity (4) is
critical for the existence of flat levels of solutions involving the 1-Laplacian:

Theorem 1.3. Let N ≥ 2. There exists no function u ∈ W 1,1
0 (Ω) such that

∇u 6= 0 a.e. in Ω,

∆1u ∈MN (Ω) and ‖∆1u‖MN (Ω) < Nω
1/N
N .

Theorems 1.2 and 1.3 are related to the degenerate limit behavior of solu-
tions of the p-Laplacian equation as p tends to 1 that has been studied by several
authors; see e.g. [9, 20, 21], starting with the pioneering work of Kawohl [15],
and also clarify the need for relying on the vector field Z in replacement of
∇u/|∇u|.

Example 1.4. For any 0 < r < 1, let u : B1(0) → R be the function defined
by

u(x) =

{
1− |x|2 if |x| ≥ r,
1− r2 if |x| < r.

Then, u ∈ W 1,1
0 (B1(0)). If Z : B1(0) → B1(0) is any smooth extension of the

function
x ∈ B1(0) \Br(0) 7−→ − x

|x|
∈ RN ,
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then u and Z satisfy the Euler–Lagrange equation (1)–(2) for some function
f ∈ L∞(B1(0)).

Observe that the Sobolev space W 1,1
0 (Ω) is not the natural setting for look-

ing for minimizers of EΦ1
, due to the lack of reflexivity of L1(Ω;RN ). This is

in contrast to minimization problems in W 1,p(Ω) for 1 < p < +∞ which can
be investigated using techniques based on the uniform convexity of the space;
see [11].

Let us assume that EΦ1 is bounded from below for some given f ∈ LN (Ω).
This is the case for example if the norm ‖f‖LN (Ω) is small, depending on
the Sobolev constant; see e.g. [16]. One can now take a minimizing sequence
(un)n∈N in W 1,1

0 (Ω) such that

lim
n→∞

EΦ1
(un) = inf

W 1,1
0 (Ω)

EΦ1
.

Each function un, extended by zero to RN , is an element ofW 1,1(RN ). Since the
sequence (∇un)n∈N is bounded in L1(RN ;RN ), we can extract a subsequence
(∇unk

)k∈N converging weakly to some finite vector-valued measure in RN sup-
ported in Ω. Applying the Rellich–Kondrashov compactness theorem, we de-
duce that there exists u ∈ BV (RN ) such that u = 0 in RN \ Ω, and

lim
k→∞

EΦ1
(unk

) ≥
∫
RN

|Du| −
∫

Ω

fu.

The limit function u is a minimizer of the extended functional

EΦ1
(v) :=

∫
RN

|Dv| −
∫

Ω

fv, (5)

over the class of functions v ∈ BV (RN ) such that v = 0 in RN \ Ω. Such a
functional provides a relaxed formulation of the minimization problem for which
a solution exists; see [14]. In the spirit of Theorems 1.2 and 1.3, minimizers
of (5) must have flat level sets:

Theorem 1.5. Let f ∈ LN (Ω) and let u ∈ BV (RN ) with u = 0 in RN \Ω be a
minimizer of the extended functional EΦ1

. Then, u ∈ L∞(RN ) and the set of
extremal points {

x ∈ RN : |u(x)| = ‖u‖L∞(RN )

}
has positive Lebesgue measure.

We deduce in this case that the absolute continuous part Dau of the measure
Du vanishes a.e. on a set of positive measure since Dau = 0 a.e. on level sets
{u = α} for every α ∈ R [4, Proposition 3.73]. The counterpart of Theorem 1.5

involving the condition ‖f‖MN (Ω) < Nω
1/N
N is true but uninteresting since EΦ1
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is nonnegative and 0 is the unique minimizer. This follows from a standard
application of Alvino’s version of the Sobolev inequality in Lorentz spaces.

Renormalized solutions to equations involving the 1-Laplacian have been
introduced in the spirit of the relaxed minimization problem above, but in
general such solutions merely have bounded variation or do not satisfy the
homogeneous Dirichlet boundary condition [1, 5, 6, 8, 10,19].

Example 1.6 (Remark 3.10 in [19]). For every N < r ≤ R, the function
u = (1−N/r)χBr(0) is a renormalized solution of the Dirichlet problem{

−∆1v = h− v in BR(0),

v = 0 on ∂BR(0),

with bounded datum h = χBr(0). Note that if r < R then ur is a BV function
with compact support in BR(0), while if r = R then ur is a W 1,1 function
which does not vanish on the boundary.

In the next section, we prove Theorems 1.2, 1.3 and 1.5. This paper is a
revised and extended version of a note written by the authors in 2012 that was
only available at the arxiv.org website.

2. Proofs of the main results

Proof of Theorem 1.2. Assume by contradiction that there exists a function
u ∈W 1,1

0 (Ω) such that ∇u 6= 0 almost everywhere in Ω and f := ∆1u ∈ LN (Ω).
Then, ∫

Ω

∇u
|∇u|

· ∇ϕ =

∫
Ω

fϕ,

for every ϕ ∈ C∞c (Ω). Note that ∇u/|∇u| ∈ L∞(Ω) and u ∈ L
N

N−1 (Ω) by the
Gagliardo-Nirenberg-Sobolev imbedding. By density of C∞c (Ω) in W 1,1

0 (Ω) we
deduce that ∫

Ω

∇u
|∇u|

· ∇v =

∫
Ω

fv, (6)

for every v ∈W 1,1
0 (Ω).

We proceed using Stampacchia’s truncation method. For this purpose, for
every κ > 0 let Gκ : R→ R be the function defined by

Gκ(t) =


t+ κ if t < −κ,

0 if −κ ≤ t ≤ κ,

t− κ if t > κ.

(7)
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Since u ∈W 1,1
0 (Ω), we have Gκ(u) ∈W 1,1

0 (Ω). Hence,

∇u
|∇u|

· ∇Gκ(u) = G′κ(u)|∇u| = |∇Gκ(u)|.

Applying identity (6) with test function Gκ(u), we get∫
Ω

|∇Gκ(u)| =
∫
Ω

fGκ(u).

Since Gκ vanishes on the interval [−κ, κ], by the Hölder inequality we have∫
Ω

fGκ(u) =

∫
{|u|>κ}

fGκ(u) ≤ ‖f‖LN ({|u|>κ})‖Gκ(u)‖
L

N
N−1 (Ω)

.

Thus, ∫
Ω

|∇Gκ(u)| ≤ ‖f‖LN ({|u|>κ})‖Gκ(u)‖
L

N
N−1 (Ω)

.

By the Gagliardo-Nirenberg-Sobolev inequality,

‖Gκ(u)‖
L

N
N−1 (Ω)

≤ C
∫
Ω

|∇Gκ(u)|,

for some constant C > 0 depending only on the dimension N . Hence,(
1− C‖f‖LN ({|u|>κ})

)
‖Gκ(u)‖

L
N

N−1 (Ω)
≤ 0. (8)

Let T := ‖u‖L∞(Ω) if u is essentially bounded, or T := +∞ otherwise. We
have

lim
κ↗T

‖f‖LN ({|u|>κ}) = ‖f‖LN ({|u|=T}).

We observe that the set {|u| = T} has zero Lebesgue measure. This is indeed
the case when T = +∞ since u is finite a.e. When T < +∞, we observe that
∇u = 0 a.e. on the level set {|u| = T}; since by assumption ∇u 6= 0 a.e. in Ω,
the set {u = T} must have zero Lebesgue measure. This implies that

lim
κ↗T

‖f‖LN ({|u|>κ}) = ‖f‖LN ({|u|=T}) = 0.

In particular, there exists 0 < κ < T such that C‖f‖LN ({|u|>κ}) < 1. We
deduce from (8) that

‖Gκ(u)‖
L

N
N−1 (Ω)

≤ 0.

Therefore, |u| ≤ κ a.e. in Ω. Hence, T = ‖u‖L∞(Ω) ≤ κ, and this contradicts
the choice of κ. The proof of the theorem is complete.
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To prove Theorem 1.3, we rely on Peetre’s imbedding of Sobolev functions
in Lorentz spaces, with the best constant computed by Alvino. We recall that
the Lorentz space Lp,1(RN ) for 1 ≤ p < ∞ can be defined as the vector space
of measurable functions g in RN such that

‖g‖Lp,1(RN ) :=

∫ ∞
0

|{|g| > t}|1/p dt < +∞.

Using an equivalent definition to this one, Lorentz [17] established the duality

between Lp,1(RN ) and M
p

p−1 (RN ) for p > 1 by proving an estimate which
amounts to ∫

Rd

|fg| ≤ ‖f‖
M

p
p−1 (RN )

‖g‖Lp,1(RN ),

for every g ∈ Lp,1(RN ) and f ∈M
p

p−1 (RN ), where

‖f‖
M

p
p−1 (RN )

:= sup
A⊂Ω

1

|A|
1
p

∫
A

|f | ;

see [17, Theorem 5] and the computation of the Lorentz norm in [7, Section 2].

Here one should not rely on the quasi-norm supt>0

{
t |{|f | > t}|

p−1
p
}

, which
gives a quantity that is only equivalent to ‖f‖

M
p

p−1 (RN )
.

Peetre [23] proved by interpolation that W 1,1(RN ) ⊂ L
N

N−1 ,1(RN ) and
Alvino [2] later showed using rearrangements that the inequality

‖v‖
L

N
N−1

,1
(RN )

≤ γ1‖∇v‖L1(RN )

holds with the best constant given by γ1 := 1/(Nω
1/N
N ).

Proof of Theorem 1.3. Proceeding as in the previous proof, by the duality be-

tween L
N

N−1 ,1 and MN one gets∫
RN

|∇Gκ(u)| =
∫

Ω

fGκ(u) ≤ ‖f‖MN (RN )‖Gκ(u)‖
L

N
N−1

,1
(RN )

,

where the functions f and u have been extended by zero to RN ; this does not
change their seminorms. Using Alvino’s improvement of the Sobolev inequality
with v = Gκ(u), it follows that(

1− γ1‖f‖MN (RN )

)
‖Gκ(u)‖

L
N

N−1
,1

(RN )
≤ 0.

Under the assumption of the theorem we have ‖f‖MN (RN ) < 1/γ1, hence the
quantity in parenthesis is positive. We deduce that ‖Gκ(u)‖

L
N

N−1
,1

(RN )
= 0 for

every κ > 0, and then u = 0 a.e. in Ω, but this is not possible.
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The proof of Theorem 1.5 relies on a property of BV function related to the
chain rule. For this purpose, given κ > 0 denote by Tκ : R→ R the truncation
function at levels ±κ:

Tκ(t) =


−κ if t < −κ,

t if −κ ≤ t ≤ κ,

κ if t > κ.

Observe that, for every t ∈ R,

t = Tκ(t) +Gκ(t), (9)

where Gκ is the function defined by (7). Since Tκ and Gκ are Lipschitz con-
tinuous, it is straightforward to verify using an approximation argument that
Tκ(u) and Gκ(u) both belong to BV (RN ) for every u ∈ BV (RN ). In addition,
by the identity above we have

Du = D(Tκ(u)) +D(Gκ(u)).

One then verifies that∫
RN

|Du| =
∫
RN

|D(Tκ(u))|+
∫
RN

|D(Gκ(u))|, (10)

where, for a given vector-valued measure µ,∫
RN

|µ| = sup

{∫
RN

Φ · µ : Φ ∈ C∞c (RN ;RN ) and |Φ| ≤ 1 in RN
}
.

Indeed, the inequality ≤ in (10) follows from the triangle inequality in RN .
The reverse inequality ≥ can be deduced from Vol’pert’s chain rule for BV
functions [3]. A more elementary approach is based on an approximation of u
using the sequence of smooth functions (ρn∗u)n∈N, where (ρn)n∈N is a sequence
of mollifiers in C∞c (RN ). In this case, one observes that∫

RN

|D(ρn ∗ u)| →
∫
RN

|Du|

as n→∞; see [13, Theorem 5.3]. On the other hand, there exist a subsequence
(ρnj

∗ u)j∈N and finite positive measures σ1 and σ2 such that

|D(Tκ(ρnj ∗ u))| ∗⇀ σ1 in M(RN ;RN ),

|D(Gκ(ρnj
∗ u))| ∗⇀ σ2 in M(RN ;RN ),

as j → ∞, where σ1 ≥ |D(Tκ(u))| and σ2 ≥ |D(Gκ(u))|. This implies the
reverse inequality in (10).
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Proof of Theorem 1.5. Since u minimizes EΦ1
, and Tκ(u) is also an admissible

function in the minimization class, we have

EΦ1
(u) ≤ EΦ1

(Tκ(u)).

Thus, ∫
RN

[
|Du| − |D(Tκ(u))|

]
≤
∫
RN

f(u− Tκ(u)).

We deduce from (10) and (9) that∫
RN

|D(Gκ(u))| ≤
∫
RN

fGκ(u).

We can now pursue the strategy of the proof of Theorem 1.2 to get the conclu-
sion. Indeed, the Sobolev and Hölder inequalities imply that(

1− C‖f‖LN ({|u|>κ})
)
‖Gκ(u)‖

L
N

N−1 (Ω)
≤ 0.

For every 0 < κ < ‖u‖L∞(RN ), where we do not exclude the possibility that
‖u‖L∞(RN ) = +∞, we have ‖Gκ(u)‖

L
N

N−1 (Ω)
> 0. Thus,

‖f‖LN ({|u|>κ}) ≥
1

C
.

Since u is finite a.e., this inequality cannot hold for every κ > 0. Therefore,
we must have ‖u‖L∞(RN ) < ∞ and so u is essentially bounded. Letting κ →
‖u‖L∞(RN ), we deduce that {|u| > κ} has positive measure.
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