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On the existence of nontrivial solutions
of differential equations
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Abstract. The purpose of this paper is to consider boundary value
problems for second order ordinary differential equations where the so-
lutions sought are subject to a host of linear constraints (such as multi-
point constraints) and to present a unifying framework for studying
such. We show how Leray-Schauder continuation techniques may be
used to obtain existence results for nontrivial solutions of a variety of
nonlinear second order differential equations. A typical example may be
found in studies of the four-point boundary value problem for the differ-
ential equation y′′(t)+a(t)f(y(t)) = 0 on [0, 1], where the values of y at
0 and 1 are each some multiple of y(t) at two interior points of (0, 1).
The techniques most often used in such studies have their origins in
fixed point theory. By embedding such problems into parameter depen-
dent ones, we show that detailed information may be obtained via global
bifurcation theory. Of course, such techniques, as they are consequences
of properties of the topological degree, are similar in nature.
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1. Introduction

This paper is motivated by the paper [15] and several related ones (e.g. [7,
8, 16, 21, 42, 43, 45]), where the authors were interested in the existence of
positive solutions of second-order nonlinear differential equations

y′′(t) + a(t)f(y(t)) = 0, 0 < t < 1 (1)

subject to the four-point boundary conditions

y(0) = αy(ξ), y(1) = βy(η) (2)
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where 0 < ξ ≤ η < 1, a(t) is a nonzero continuous, and nonnegative function
on (0, 1) and

f : R→ R, f : [0,∞)→ [0,∞)

is continuous, or other similar multi-point boundary value problems. In case
ξ = η and α + β 6= 2, boundary conditions (2) were already considered Loud
in [22], where Green’s functions and their properties of such multi-point bound-
ary value problems and their adjoints were discussed in great detail.

Under the assumption that the limits

f0 = lim
u→0

f(u)

u
, f∞ = lim

u→∞

f(u)

u
. (3)

exist and satisfy certain inequalities, it was proved [15] that (1), (2) has a
positive solution. The proof was based on a use of the Krasnosel’skii com-
pression and expansion theorems for positive completely continuous operators
on a Banach space [14]. Results for the existence of solutions of nonlinear
boundary value problems where the nonlinear terms behave as in (3) have a
long history and such results (usually for boundary value problems subject to
homogeneous end point boundary conditions, but also valid for nonlinear el-
liptic partial differential equations) may be found in [1, 2, 6, 9, 26, 27, 28, 44].
While the boundary conditions (2) are very much much different from those
usually employed, such as Dirichlet, Neumann, Robin, or periodic ones, it is
still straight forward to transform the problems into equivalent integral equa-
tions (cf. [7, 8, 13, 15, 16, 21, 23, 24, 39, 40, 45]) and thus employ fixed point
theory for completely continuous operators on a Banach space of continuous
functions. Further studies are also available for problems defined on time scales,
see e.g. [3, 12, 46], among others.

Since the approach used here is variational and uses global bifurcation the-
ory, the results and approach discussed here for the semilinear case should be
extendable to problems of a nonlinear nature for both ordinary and elliptic
partial differential equations, such as problems involving the p-Laplacian, and
obtain results as in [17, 18, 25, 33].

In this paper we shall discuss a class of nonlinear boundary value problems
and show, using global bifurcation techniques ([4, 30, 31, 32]), how solutions
may be obtained as part of a continuum of solutions of a problem which de-
pends upon a parameter into which the given problem has been imbedded. We
shall adhere here to a prototypical example motivated by (1), (2) but want to
point out that similar arguments may be used to obtain results of this type
for semilinear and nonlinear elliptic problems in higher dimensions using, see
e.g. [17]. We shall not attempt to consider these more general situations here,
but remark that some of the work cited here will provide the tools for studying
such problems.
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2. Notation, assumptions, and preliminaries

We let V be a closed subspace of H1(0, 1) which has the property that 0 is the
only constant function that belongs to V and in addition that there exists an
open set

Ω ⊂ (0, 1), such that Ω̄ = [0, 1], m(Ω) = 1, C∞
0 (Ω) ⊂ V,

(here m(·) denotes Lebesgue measure).
For example, if L : H1(0, 1)→ R2 is defined by the boundary conditions (2)

as
Ly := (y(0)− αy(ξ), y(1)− βy(η)), 0 < ξ ≤ η < 1, α 6= 1

then
V := {u ∈ H1(0, 1) : Lu = 0}

is such a subspace with

Ω := (0, ξ) ∪ (ξ, η) ∪ (η, 1).

For other examples of operators L defined by multipoint boundary conditions,
we refer the interested reader to [7, 8, 15, 16], and the references in these papers
and those in the other references given above. Of course, homogeneous Dirichlet
and anti periodic boundary conditions (y(0) = −y(1)) yield such examples, as
do the boundary conditions

u(0) = 0,

or
u(0) = 0, u(η) = αu(1), η ∈ (0, 1),

or
αu(η) + βu(µ) = u(1), 0 < η < µ < 1, α, β ≥ 0, α+ β < 1,

whereas classical Neumann and periodic boundary conditions do not (note that
these boundary conditions are natural ones imposed by minimization problems
in H1(0, 1), respectively in {u ∈ H1(0, 1) : u(0) = u(1)}).

The norm of H1(0, 1) is given by

‖u‖2H1 =

∫ 1

0

(u′)2dt+

∫ 1

0

u2dt

and it is the case that

‖u‖2 :=

∫ 1

0

(u′)2dt

defines an equivalent norm on such subspaces V , i.e., there exists a positive
constant c such that

‖u‖L2(0,1) ≤ c‖u′‖L2(0,1),∀u ∈ V.
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To see this, one may use an often employed argument of Nečas [20], and assume
there exists a sequence {un} ⊂ V such that

‖un‖L2(0,1) ≥ n‖u′n‖L2(0,1), n = 1, 2, · · · . (4)

Then we may assume that ‖un‖L2(0,1) = 1, n = 1, 2, · · · . So {un} is bounded
in H1(0, 1), hence may assumed to converge weakly to say u. Hence it will
converge strongly to u in L2(0, 1). So, by (4) u′n → 0 in L2(0, 1), which implies
that u′ = 0, i.e. u must be piecewise constant, but since u is continuous, it
must be a constant throughout. On the other hand, V is closed and hence,
since u ∈ V, u must equal 0, a contradiction.

Definition 2.1. For given V, as above, we let V ′ denote its topological dual
and for h ∈ V ′, we call u ∈ V a weak solution of the boundary value problem

−u′′ = h, u ∈ V, (5)

provided that ∫ 1

0

u′v′dt = (h, v), ∀v ∈ V, (6)

where

(·, ·) : V ′ × V → R

is the pairing between V ′ and V.

The above considerations have the following immediate consequence, whose
proof follows from the Lax-Milgram theorem (see [38]) and the fact that V is
a Hilbert space with respect to the inner product

(u, v)V :=

∫ 1

0

u′v′dt.

Lemma 2.2. Let V be as above, and let V ′ be its topological dual, then for
every h ∈ V ′ there exists a unique u ∈ V which is a unique weak solution
of (5). Further

‖u‖ ≤ ‖h‖V ′ .

Remark 2.3. If h ∈ L2(0, 1), we may deduce that the weak solution u, given
above, since C∞

0 (Ω) ⊂ V, must satisfy

u′′ = h, on Ω

in the sense of distributions and thus u is a solution of the differential equation
on Ω, further, since m(Ω) = 1, it follows that u is a solution on (0, 1), as well.
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Let a : [0, 1] → [0,∞) be a continuous nontrivial function, then, via this
lemma, we may define the mapping

T : L2(0, 1)→ V ⊂ H1(0, 1) ↪→ L2(0, 1),

by
Th := u,

where u is the unique weak solution of

−u′′ = ah, u ∈ V, (7)

and hence u solves the differential equation (7) on Ω in a classical sense (viz.
C∞

0 (Ω) ⊂ V ). We note that the last inclusion is compact. Thus,

T : L2(0, 1)→ L2(0, 1),

is compact linear mapping. Thus, we have that

T : C[0, 1]→ H2(0, 1) ↪→ C1[0, 1] ↪→ C[0, 1],

i.e., we may even view T as a compact linear mapping

T : C[0, 1]→ C[0, 1],

and we may apply the Riesz theory for compact linear operators to obtain the
spectral properties of this operator. For general multi-point boundary value
problems, the study of the spectrum of the associated integral operator, has
a long history, with notable contributions in [22], and recently in [5]. In fact,
since the problems, in general are not self-adjoint, complex eigenvalues may
exist. In the case at hand, we shall not be concerned with such complications
but rather concentrate on boundary conditions (subspaces V ) which have one
distinguished positive eigenvalue (see below), namely a smallest positive one,
called λ1.

Remark 2.4. Since there exists u ∈ V \ {0}, such that

Tu =
1

λ1
u,

we have that ∫ 1

0

u′v′dt = λ1

∫ 1

0

auv dt, ∀v ∈ V

we obtain that (by normalizing)

0 < λ1 = inf
V

{∫ 1

0

(v′)2dt :

∫ 1

0

av2dt = 1

}
.

In the given generality not much else may be asserted concerning the spectrum
of T. In fact, the first example below shows that the principal eigenvalue may
be of multiplicity 2.
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Example 2.5. a. Let the space V be defined by

V :=

{
u ∈ H1(0, 1) : u(0) = u(1),

∫ 1

0

u dt = 0

}
.

Then V is a closed subspace with 0 the only constant function. In the case
that a ≡ 1, the eigenfunctions of the operator T satisfy∫ 1

0

u′v′dt = λ1

∫ 1

0

uv dt, ∀v ∈ V,

and, since H1
0 (0, 1) ⊂ V we have that

−u′′ = λ1u,

in the sense of distributions. Integrating the last equality we obtain that (since
u ∈ H2(0, 1))

u′(0) = u′(1),

and so u is an eigenfunction of

−u′′ = λ1u, u(0) = u(1), u′(0) = u′(1),

i.e. λ1 = 4π2, with an associated 2-dimensional eigenspace.
b. Let the space V be defined by

V :=

{
u ∈ H1(0, 1) :

∫ 1

0

u dt = 0

}
.

Then, again, V is a closed subspace with 0 the only constant function. With
a ≡ 1, the eigenfunctions of the operator T satisfy∫ 1

0

u′v′dt = λ1

∫ 1

0

uv dt, ∀v ∈ V,

and, since H1
0 (0, 1) ⊂ V we have that

−u′′ = λ1u, (8)

in the sense of distributions. Multiplying the equality (8) by v ∈ V and inte-
grating, we obtain that

−u′(1)v(1) + u′(0)v(0) +

∫ 1

0

u′v′dt = λ1

∫ 1

0

uv dt,

and hence, choosing v such that v(0) = v(1) 6= 0 we obtain

u′(0) = u′(1).
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Further, choosing v(0) = 0, v(1) 6= 0, we must have u′(0) = 0. Hence u is an
eigenfunction of the Neumann problem

−u′′ = λ1u, u
′(0) = u′(1) = 0

i.e. λ1 = π2, the second eigenvalue of the Neumann problem with an associated
1-dimensional eigenspace, spanned by u(t) = cosπt.

Both of the above examples, of course, are examples of classical Sturm-
Liouville boundary value problems, where, because of the constraints built
into the space V, the eigenvalue λ1 is actually the second eigenvalue of the
problem (8) with respect to either periodic or Neumann boundary conditions
in the space H1(0, 1).

Next let us consider the example, related to (1)

−u′′(t) = λa(t)u, 0 < t < 1 (9)

subject to the four-point boundary conditions

u(0) = αu(ξ), u(1) = βu(η), 0 < ξ < η < 1, (10)

where, as above, a : [0, 1] → [0,∞) is a continuous function assuming positive
values.

Proposition 2.6. Assuming that

0 < α, β < 1,

then the principal (weak) eigenvalue of (9), (10) is positive, simple, and has
an associated eigenfunction which is positive in [0,1]. All other eigenvalues are
simple, as well, and eigenfunctions corresponding to different eigenvalues are
orthogonal with respect to the L2 inner product with weight function a.

Proof. In this case we define

V = {u ∈ H1(0, 1) : u(0) = αu(ξ), u(1) = βu(η)}.

Then V is a closed subspace of H1(0, 1) with C∞
0 ((0, ξ) ∪ (ξ, η) ∪ (η, 1)) dense

in V. The principal (weak) eigenvalue is characterized by

0 < λ1 = inf
v∈V

{∫ 1

0

(v′)2dt :

∫ 1

0

av2dt = 1

}
,

furthermore this infimum is assumed, by, say u ∈ V, and u satisfies∫ 1

0

u′v′dt = λ1

∫ 1

0

auv dt, ∀v ∈ V.
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Since, for v ∈ V, we have that |v| ∈ V and since

0 < λ1 = inf
v∈V

{∫ 1

0

|v|′2dt :

∫ 1

0

a|v|2dt = 1

}
,

we may assume that the eigenfunction u is one signed, say u ≥ 0, which implies,
because of the boundary conditions that u > 0 in [0, 1]. Hence, again because
of the boundary conditions, and, since

−u′′ = λ1au,

u will assume its maximum in the interval [ξ, η]. If v is any other eigenfunction
corresponding to λ1, we may assume v(0) ≥ 0. If v(0) > 0, we may let w(t) =

µv(t), where µ = u(0)
v(0) . Then w is an eigenfunction with

w(0) = u(0)

and hence

z(t) := u(t)− w(t)

is an eigenfunction having zeros at 0 and ξ, which by the Sturm Separation
Theorem [11] implies that u must vanish in (0, ξ). Thus it must be the case
that w(t) ≡ u(t). If, on the other hand, v(0) = 0, then v(ξ) = 0, then we again
obtain a contradiction by use of the Sturm Separation Theorem.

Next, let ui and uj be eigenfunctions corresponding to the eigenvalues λi
and λj , i 6= j. Then∫ 1

0

u′lv
′dt = λl

∫ 1

0

aul v dt, ∀v ∈ V, l = i, j

and hence ∫ 1

0

u′iu
′
jdt = λi

∫ 1

0

auiujdt = λj

∫ 1

0

auiujdt,

thus

(λj − λi)
∫ 1

0

auiujdt = 0.

3. Bifurcating continua

We shall assume that

a : [0, 1]→ [0,∞), f : R→ R, f : (0,∞)→ (0,∞)
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are continuous functions such that a is nontrivial. V ⊂ H1(0, 1) is a subspace
with the property that the only constant function in V is the zero function and
that the smallest positive eigenvalue λ1 of

−u′′(t) = λa(t)u, 0 < t < 1, u ∈ V (11)

is simple and has an associated eigenfunction which is positive in (0, 1). This
assumption holds, for example (among others), in the cases of the boundary
conditions imposed in the various papers cited and related work (cf. for example
Proposition 2.6).

We now consider the nonlinear problem (1). This problem we shall embed
into the problem

−y′′(t) = µa(t)f(y(t)), 0 < t < 1, y ∈ V. (12)

We shall prove that, under assumptions on f, spelled out below, a continuum of
positive solutions (in the space R×C[0, 1]) exists which crosses the hyperplane
{1} × C[0, 1] and thus conclude that the problem

−y′′(t) = a(t)f(y(t)), 0 < t < 1, y ∈ V, (13)

has a nontrivial solution. To this end, let

f0 = lim
u→0

f(u)

u
, f∞ = lim

u→∞

f(u)

u
. (14)

We have the following theorem.

Theorem 3.1. Let V be as above and assume that the limits in (14) exist and
satisfy

0 < f0 < λ1 < f∞ (15)

or
0 < f∞ < λ1 < f0. (16)

Then the boundary value problem (13) has a solution y which is positive in
(0, 1).

Proof. We consider the problem (12) and apply the global bifurcation theorem
of Krasnosels’kii-Rabinowitz, see [30, 32], which guarantees the existence of an
unbounded continuum C := {(µ, y)} ⊂ R × C[0, 1] with the solution compo-
nent y such that y(t) > 0, t ∈ (0, 1), which bifurcates from the trivial solution
at the bifurcation point (µf0, 0) = (λ1, 0) (while the application of the global
bifurcation theorem also allows for the alternative that the continuum might
bifurcate from another eigenvalue, this alternative may be quickly ruled out
by refering to Proposition 2.6). One may further show (using arguments as
in [26, 27]) that the continuum C is bounded in the µ− direction and hence
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must become unbounded in some bounded µ−interval, i.e., it will bifurcate
from infinity in that interval. Using results about bifurcation from infinity as
in [31, 34, 35, 37], we deduce that bifurcation from infinity will take place at
µf∞ = λ1. Therefore the continuum C, projected onto the µ−axis = R will in-
clude the open interval determined by the values λ1

f0
and λ1

f∞
. This open interval

will contain the value µ = 1, if either (15) or (16) hold.

The above result and its proof may be extended to the following:

Theorem 3.2. Under the same assumptions on the subspace V , assume that

0 = f0 < λ1 < f∞ (17)

or
0 = f∞ < λ1 < f0. (18)

Then the boundary value problem (13) has a solution y which is positive in
(0, 1).

Proof. In the case of (17) there will be no bifurcation from the trivial solution,
however, bifurcation from infinity will take place at µ = λ1

f∞
with the corre-

sponding continuum existing for all values of µ > λ1

f∞
, and hence (13) will have a

positive solution, whereas in the case (18), bifurcation from the trivial solution
occurs at µ = λ1

f0
, with the continuum existing for all values µ > λ1

f0
.

Global bifurcation theory may also be applied at simple eigenvalues λj > λ1,
and various results may be formulated using the ideas used above; here it
will be important again that bifurcating continua are global, which will follow
from nodal properties of solutions inherited by the nodal properties of the
eigenfunctions of the associated linearized problems.

4. Concluding Remarks

Remark 4.1. The methods developed in [26, 27, 28] may be employed to study
various multi-point and nonlocal boundary value problems involving nonlinear
terms f different from those considered above, as long as solution branches of
positive solutions may be found which exist globally and can be shown to cross
the appropriate parameter hyperplane. To this end we refer to [40, 41], where
fixed point techniques have been used.

Remark 4.2. If we replace, in (2), one of boundary conditions by, say, the
following

y(0) = αy(ξ) + b (19)

one obtains a problem from a class of problems studied in [43]. Here one may
view b as a parameter and then employ homotopy continuation techniques,
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as done in [10], to obtain parameter intervals for the parameter b, for which
solutions may be shown to exist.

Remark 4.3. The interested reader might wish to revisit the example (1), i.e.

y′′(t) + a(t)f(y(t)) = 0, 0 < t < 1

subject to the three-point boundary conditions

y(0) = αy

(
1

2

)
, y(1) = βy

(
1

2

)
in case a ≡ 1 and do the necessary computations to find that if |α+β| < 2, then
positive real eigenvalues exist having the properties required above, whereas if
α+ β = 2, the problem is in fact in resonance (c.f. also [22], where it has been
shown that only if α + β 6= 2, a Green’s function may be computed) and if
|α + β| > 2, no real eigenvalues exist. In the case that real eigenvalues exist,
the principal eigenvalue λ1 is given by

λ1 = 4µ2
1,

where µ1 is the smallest positive solution of

cosµ =
α+ β

2
.

Another interesting example is obtained for the same nonlinear differential
equation which is subject to boundary conditions such as

u(0) =

∫ 1
2

0

u(s)ds

(see also [41], where similar boundary conditions are considered).

Remark 4.4. For problems at resonance, such as the example in the previous
remark, when α+ β = 2, continuation arguments based on Mawhin’s continu-
ation theorem, as was done in [29], may be used to establish existence criteria
for such multi-point boundary value problems.

Remark 4.5. A useful tool to study boundary value problems for nonlinear
elliptic equations has been the method of sub-supersolutions. In this regard we
refer to [19], where such a theory has been developed for general variational
inequalities, and hence may be applied to multi-point and nonlocal boundary
value problems of the types discussed here. These methods not only apply for
semilinear but nonlinear problems, as well. Here also the variational eigenvalue
theory as presented in [17] may be useful.
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Remark 4.6. In the case of multi-point or nonlocal boundary value problems
for elliptic partial differential equations, these problems may be formulated as
variational inequalities (actually equalities, since V is a subspace). Problems
involving nonlinear terms f, as above, may then be analyzed using bifurcation
techniques as presented in [18].

Remark 4.7. If it is the case that either of the the limits (3) does not exist,
but the quotients lie asymptotically in certain non overlapping intervals, ideas,
as developed in [36], may be used to develop analogous existence results for
such nondifferentiable nonlinear problems.

References

[1] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered
Banach spaces, SIAM Review 18 (1976), 620–709.

[2] A. Ambrosetti and P. Hess, Nonzero solutions of asymptotically linear elliptic
eigenvalue problems, J. Math Anal. Appl. 73 (1980), 411–422.

[3] D.Anderson, Solutions to second order three-point problems on time scales, J.
Difference Equ. Appl. 8 (2002), 673–688.

[4] K. Deimling, Nonlinear functional analysis, Springer, Berlin, 1980.
[5] J. Gao, D. Sun and M. Zhang, Structure of eigenvalues of multi-point bound-

ary value problems, Adv. Difference Equ. 2010 (2010), No. 381932, 1–27.
[6] L. Gong, X. Li, B. Qin and X. Xu. Solution branches for nonlinear problems

with an asymptotic oscillation property, Electron. J. Differential Equations 2015
(2015), No. 269, 1–15.

[7] C. Gupta, Solvability of a three-point nonlinear boundary value problem for a
second order ordinary differential equation, J. Math. Anal. Appl. 168(1992),
540–551.

[8] C. Gupta, A note on a second order a three-point nonlinear boundary value
problem, J. Math. Anal. Appl. 186 (1994), 277-281.

[9] G. Gustafson and K. Schmitt, Nonzero solutions of boundary value prob-
lems for second order ordinary and delay differential equations, J. Differential
Equations 12 (1972), 129-149.

[10] G. A. Harris, The influence of boundary data on the number of solutions of
boundary value problems with jumping nonlinearities, Trans. Amer. Math. Soc.
321 (1990), 417–464.

[11] P. Hartman, Ordinary differential equations, Wiley, New York, 1964.
[12] E. Kaufmann and Y. Raffoul, Eigenvalue problems for a three-point boundary

value problem on a time scale, Electron. J. Qual. Theory Differ. Equ. 2004
(2004), No. 15, 1-10.

[13] N. Kosmatov, Semipositone m-point boundary value problems, Electron. J. Dif-
ferential Equations 2004 (2004), No. 119, 1–7.

[14] M. A. Krasnosel’skii, Positive solutions of operator equation, Noordhoff,
Groningen, 1964.



DIFFERENTIAL EQUATIONS WITH LINEAR CONSTRAINTS 39

[15] M. K. Kwong and J. S. W. Wong, An optimal existence theorem for posi-
tive solutions of a four point boundary value problem, Electron. J. Differential
Equations 2009 (2009), No. 165, pp. 1–8.

[16] M. K. Kwong and J. S. W. Wong, Some remarks on three-point and four-
point bvp’s for second order nonlinear differential equations, Electron. J. Qual.
Theory Differ. Equ. 2009 (2009), No. 20, pp. 1–18.
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