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Abstract. We provide sufficient conditions for the existence of solu-
tion of the radially symmetric prescribed curvature problem with Neu-
mann boundary condition on a general Friedmann-Lemâıtre-Robertson-
Walker (FLRW) spacetime.
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1. Introduction

A Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime is a metric space
given by the cartesian product I × Rn of an open interval I =]a, b[ with the
n-dimensional Euclidean space endowed with the Lorentzian metric

ds2 = −dt2 + f(t)dx2,

where f(t) is a positive function of time known as the scale factor or warping
function. In Cosmology, the FLRW space is the accepted model for a spatially
homogeneous and isotropic Universe. In this context, the scaling factor f(t)
represents the size of the Universe at time t and must be determined as an
exact solution of Einstein’s field equations under the assumptions of isotropy
and homogeneity. Observe that for the particular case f(t) ≡ 1 we recover the
Lorentz-Minkowski spacetime. Other relevant examples are

• Einstein-De Sitter spacetime: f(t) = (t+ t0)2/3, I =]− t0,+∞[

• Steady state spacetime: f(t) = et, I = R

• Lambda-CDM model: f(t) = A sinh2/3(t+ t0), I =]− t0,+∞[

• Cycloid model: f(θ) = R
2 (1− cos θ), t(θ) = θ− sin θ, I =]−π/2, π/2[



20 PEDRO J. TORRES

We refer to the monograph [8] for more details on the derivation and physical
interpretation of these cosmologies.

We are interested on the problem of the existence of spacelike graphs with a
prescribed the mean curvature function. For a FLRW spacetime, the curvature
operator is given by the expression

Q[u] :=
1

n

{
div

(
∇u

f(u)
√
f(u)2−|∇u|2

)
+

f ′(u)√
f(u)2−|∇u|2

(
n+
|∇u|2

f(u)2

)}
. (1)

Then, the general problem of the curvature prescription is, given a function
H : I × Rn → R, to obtain solutions of the quasilinear elliptic problem

Q[u] = H(u, x), |∇u| < f(u).

Here, |∇u| < f(u) means that |∇u(x)| < f(u(x)) for all x. The prescription of
curvature has a physical meaning. Intuitively, a spacelike hypersurface is the
spatial universe at one instant of proper time of a family of normal observers.
Then, the mean curvature function measures how these observers spread away
(H > 0) or come together (H < 0) with respect to the surrounding observers.
In this sense, the problem may be seen as a local prescription of the behaviour
of normal observers.

The consideration of this problem is rather new on the literature. Up to
now, most of the efforts have been directed to the curvature prescription on
the Lorentz-Minkowski spacetime (f(t) ≡ 1), see for instance [1, 3, 6]. For
more general FLRW spacetimes, up to our knowledge the first contributions to
the literature are [2, 4], where it is studied the problem with radial symmetry
and Dirichlet conditions on a ball for a family of expanding FLRW spacetimes,
including the Einstein-de Sitter, steady state and Lambda-CDM models. A
first approach to the problem with Neumann conditions has been done in the
recent paper [7], where a kind of universal result is proved for big bang-big
crunch models that includes the cycloid as a particular case. Our purpose is to
revise the proof employed there and state a result applicable to any example
of FLRW spacetime.

2. Main result

Let us state precisely the mathematical problem under study. Let B(R) be the
Euclidean ball of Rn centered at 0 with radius R. Let I =]a, b[⊆ R,−∞ ≤ a <
0 < b ≤ +∞ be an open interval, and let f ∈ C1(I) a positive function. For a
given continuous function H : R× [0,+∞)→ R, we look for radially symmetric



THE PRESCRIBED CURVATURE PROBLEM IN FLRW SPACETIMES 21

solutions of the problem

Q[u] = H(u, |x|)
|∇u| < f(u) in B(R), (2)
∂u
∂ν = 0 in ∂B(R),

where the operator Q is defined by (1) and ∂u
∂ν denotes the outward normal

derivative of u.

Our main result is as follows.

Theorem 2.1. Let us assume that

lim sup
t→a+

{
H(t, r)− f ′(t)

f(t)

}
< 0 < lim inf

t→b−

{
H(t, r)− f ′(t)

f(t)

}
, for all r > 0. (3)

Then, there exists R0 > 0 (depending on f,H) such that if 0 < R < R0,
problem (2) has at least one radially symmetric solution u(|x|).

It is worth to note that for the Lorentz-Minkowski spacetime f(t) ≡ 1,
condition (3) is known in the literature as a Landesman-Lazer condition, in
fact for this case R0 can be taken as +∞ and Theorem 2.1 is just a particular
case of [3, Theorem 3.1]. On the other hand, taking the family of warping
functions considered in [7] we recover the main result therein. Furthermore,
Theorem 2.1 admits any general warping function with the minimal conditions
of being positive and regular. For example, for the Einstein-de Sitter spacetime
f(t) = (t + t0)2/3, this result is applicable to any curvature function H(t, r)
taking positive values for large times. This condition is natural in some way,
because if H(t, r) ≤ 0 for every (t, r), a simple integration (see equation (5)
below) proves that the problem has no solution. This occurs in general for any
expanding cosmology (that is, any strictly increasing scale factor f(t)).

3. Preliminaries

We follow the main ideas of [7]. Let us define the function ϕ : I → R by

ϕ(s) :=

∫ s

0

dt

f(t)
. (4)

Note that ϕ is an increasing diffeomorphism from I onto J :=ϕ(I) and ϕ(0)=0.
Doing the change v = ϕ(u) and taking radial coordinates, problem (2) is

equivalent to the boundary value problem(
rn−1 v′√

1−v′2

)′
= nrn−1

[
− f

′(ϕ−1(v))√
1−v′2 + f(ϕ−1(v))H(ϕ−1(v), r)

]
, (5)

v′(0) = 0 = v′(R).
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Let φ(s) = s√
1−s2 . The proof relies on a Leray-Schauder degree argument.

We introduce the homotopy(
rn−1φ(v′)

)′
= λnrn−1

[
−f
′(ϕ−1(v))√

1− v′2
+ f(ϕ−1(v))H(ϕ−1(v), r)

]
, r ∈ (0, R), (6)

v′(0) = 0 = v′(R),

where λ ∈ [0, 1].
Let us define the operator

F [v](t)=

∫ t

0

nrn−1

[
−f
′(ϕ−1(v(r)))√

1− v′(r)2
+ f(ϕ−1(v(r)))H(ϕ−1(v(r)), r)

]
dr. (7)

Then, taking some Γ < 1, let us consider the family of operators G : {v ∈
C1([0, R], J) : ‖v′‖∞ ≤ Γ} × [0, 1]→ C1([0, R]) defined as

G(v, λ)(r) = v(0) +
1

R
F [v](R) +

∫ r

0

φ−1
(

λ

tn−1
F [v](t)

)
dt.

It is not hard to prove that v ∈ C1([0, R], J) is a fixed point of G(·, λ) if and
only if v is a solution of (6) (see [7, Lemma 1]). Then, by the basic properties
of topological degree, the proof is reduced to the estimation of some a priori
bounds.

4. Proof of the main result

The key point is to obtain a proper bound for the fixed points of operator G(v, λ)
in the uniform norm. To this aim, we are going to use our main hypothesis (3).
Using that ϕ−1 : J → I is an increasing homeomorphism and (3), there exist
ρ∗, ρ

∗ ∈ J such that

f ′(ϕ−1(v))

f(ϕ−1(v))
−H(ϕ−1(v), r) < 0, v ∈]ρ∗, ϕ−1(b)[, r > 0 (8)

and

f ′(ϕ−1(v))

f(ϕ−1(v))
−H(ϕ−1(v), r) > 0, v ∈]ϕ−1(a), ρ∗[, r > 0 (9)

The first lemma proves the every solution must lie between these two values.

Lemma 4.1. Let v be a fixed point of G(·, λ) for some λ ∈ [0, 1]. Then,

ρ∗ ≤ v(r) ≤ ρ∗, for all r ∈ [0, R] (10)
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Proof. First, we consider the case λ = 0. A fixed point v = G(v, 0) takes the
constant value

v(r) = v(0) +
1

R
F [v](R).

Evaluating at r = 0 one has

v(0) = v(0) + F [v](R),

and therefore
F [v](R) = 0,

and considering that v is constant, then

F (v)(R) =

[
−f
′(ϕ−1(v))

f(ϕ−1(v))
+H(ϕ−1(v(r)), r)

]
f(ϕ−1(v))Rn = 0.

From this last equation and (8)− (9), one deduces that ρ∗ ≤ v(r) ≤ ρ∗.
From now on, we can assume that λ > 0. Let v a fixed point of G(·, λ). Let

r∗ ∈ [0, R] such that v(r∗) = max[0,R] v(r). Our aim is to prove that v(r∗) ≤ ρ∗
by contradiction. Suppose that v(r∗) > ρ∗. We consider first the case r∗ > 0.
Observe that developing the derivative of the left-hand side term of (6) and
dividing by rn−1 we have

v′′

(1− v′2)3/2
+

v′

r
√

1− v′2
=λn

[
−f
′(ϕ−1(v))√

1− v′2
+ f(ϕ−1(v))H(ϕ−1(v), r)

]
, (11)

then, evaluating at r∗ and using that v′(r∗) = 0, v(r∗) > ρ∗, one has

v′′(r∗) = λn
[
−f ′(ϕ−1(v(r∗)) + f(ϕ−1(v))H(ϕ−1(v(r∗), r∗)

]
> 0

as a consequence of (8). But then v(r∗) can not be the global maximum, this
is a contradiction. The case r∗ = 0 is studied analogously, with the difference
that the second term of the left-hand side of (11) presents the indeterminate
limit 0/0 when r → 0+. We can solve it easily by L’Hôpital rule and the limit
is v′′(0+), and we conclude as before.

Hence, we have proved that v(r∗) ≤ ρ∗. A totally analogous argument
shows that v(r) ≥ ρ∗, using now (9).

Finally, we derive a bound for the derivative of the fixed points, by using
the same idea of [7, Lemma 3].

Lemma 4.2. There exists R0 > 0 (depending on f,H) such that if 0 < R < R0,
there exists γ∗ < 1 such that for each λ ∈ [0, 1] and each possible fixed point v
of G(·, λ), one has

max
r∈[0,R]

|v′(r)| ≤ γ∗.
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Proof. Let us define

M = max
{
|f ′(ϕ−1(v))| : v ∈ [ρ∗, ρ

∗]
}
,

NR = max
{
f(ϕ−1(v))|H(ϕ−1(v), r)| : v ∈ [ρ∗, ρ

∗], r ∈ [0, R]
}
.

We fix R0 = 1/M .
Now, recall that a fixed point of G(·, λ) verifies (6), then integrating both

members from 0 to r and using the boundary conditions, we get

rn−1φ(v′(r)) = λF [v](r).

If |v′(ρ)| = maxr∈[0,R] |v′(r)| = γ < 1, we get,

ρn−1
|v′(ρ)|√

1− |v′(ρ)|2
≤

[
M√

1− |v′(ρ)|2
+NR

]
ρn.

As we can assume, without loss of generality, that ρ ∈ (0, R), we obtain

γ < R
[
M +NR

√
1− γ2

]
.

Since R < R0 means RM < 1, solving this inequality we obtain a fixed γ∗ < 1
such that γ < γ∗. The result is proved with R0 = 1/M .

Now that some a priori bounds are stated, the proof of Theorem 2.1 follows
from a standard degree computation. The argument is completely analogous
to the one exposed in [7], so we just include here an outline for completeness.
The homotophy G(·, λ) is well-defined on the domain

Ω = {v ∈ C1([0, R]) : ρ∗ < v < ρ∗, ‖v′‖∞ < γ∗},

and by the homotopy invariance of Leray-Schauder degree

dLS [I − G(·, 1),Ω, 0] = dLS [I − G(·, 0),Ω, 0].

Now, the reduction theorem of Leray-Schauder degree (see for instance [5,
Proposition II.12], with L = I) implies that

dLS [I − G(·, 0),Ω, 0] = ±dB [g, (ρ∗, ρ
∗), 0],

where dB is the Bouwer degree and g : J → R is the continuous mapping
defined by

g(c) =

∫ R

0

nrn−1
[
−f ′(ϕ−1(c)) + f(ϕ−1(c))H(ϕ−1(c), r)

]
dr.

Noting that g((ρ∗) < 0 < g(ρ∗), then dB [g, (ρ∗, ρ
∗), 0] = 1 and the proof is

done.
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