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Notes on a combinatorial identity

Horst Alzer and Helmut Prodinger

Abstract. We present a short and simple proof by induction for
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where n ≥ 1 is an integer and m 6= 0,−1, . . . ,−n is a complex number.
This is a q-analogue of a combinatorial identity obtained by Kirschen-
hofer (1996) and Larcombe, Fennessey, and Koepf (2004). Moreover,
we show that the alternating q-binomial sum is completely monotonic
with respect to m, if m > 0 and q ∈ (0, 1). The general case where
the exponent 2 is replaced by a positive integer d is dealt with using the
elementary technique of partial fraction decomposition.
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1. Introduction

The work on this note has been inspired by an interesting research paper pub-
lished in 1996 by Kirschenhofer [11], who performed manipulations of generat-
ing functions to find identities for the alternating binomial sum

n∑
k=0

(−1)k
(
n

k

)
f(k). (1)

A well-known approach to study sums of the type (1) is attributed to Rice,
who made use of Complex Analysis. The Rice method is based upon the
formula

n∑
k=0

(−1)k
(
n

k

)
f(k) = − 1

2πi

∫
C

B(n+ 1,−z)dz,

where B(x, y) is Euler’s beta function, C is a positively oriented closed curve
surrounding 0, 1, 2, . . . , n and f is an analytic function with no poles inside the
region surrounded by C .
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The main reason for the interest in alternating binomial sums is that they
have remarkable applications in Computer Science and the Theory of Algo-
rithms. For more information on this subject we refer to [7, 8, 16].

Kirschenhofer proved that the sum

n∑
k=0

(−1)k
(
n

k

)
1

(k +m)d
(d ∈ N) (2)

can be expressed in terms of Bell polynomials and harmonic numbers, whereas
Coffey [5] showed that this sum can be written as an infinite series involving
Stirling numbers. As a special case Kirschenhofer found the elegant identity
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where

h(j)m,n =

m+n∑
k=m

1

kj
= H

(j)
m+n −H

(j)
m−1.

Here, H
(j)
n denotes the n-th harmonic number of order j.

In 2004, Larcombe et al. [13] presented a new method to find identities
for (2). They used an integration technique to offer proofs for (3) and
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Moreover, they demonstrated that (3) and (4) as well as corresponding
identities for the sum in (2) with d ≥ 4 can be obtained by differentiation with
respect to m, starting with
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)
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=

1

m
(
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) .
Larcombe et al. [14] provided a recursive equation for a sum closely related

to (2) and used their result to find new proofs for (3), (4) and similar identities.
Other methods to deal with the sums in question are described in [10, 12, 15].

In this paper we demonstrate that the identity (3) can be proved easily by
using induction. More precisely, in the next section we present a short and
elementary proof for a q-analogue of (3). Furthermore, as an application we
prove a monotonicity property of the alternating q-binomial sum. In a final
section, we show how to deal with the general case in a completely elementary
fashion, using not more than partial fraction decomposition from elementary
calculus.



NOTES ON A COMBINATORIAL IDENTITY 533

2. The identity

The q-binomial coefficients (also known as Gaussian binomial coefficients) are
defined by[

n

k

]
q

=

k∏
j=1

1− qn+1−j

1− qj
if 0 ≤ k ≤ n and

[
n

k

]
q

= 0 otherwise.

If q → 1, then
[
n
k

]
q

tends to
(
n
k

)
. A collection of the most important properties

of q-binomial coefficients can be found, for instance, in [4].
The following q-version of (3) holds.

Theorem 2.1. Let n ≥ 1 be an integer and let m be a complex number with
m 6= 0,−1, . . . ,−n. Then,
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Throughout, we denote the sum on the left-hand side of (5) by S(m,n, q).

Proof. We use induction on n to prove (5). If n = 1, then both sides of (5) are
equal to

(1− q)qm(2− qm − qm+1)

(1− qm)2(1− qm+1)2
.

We set

T (m,n, q) = 2 +
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.

Applying the recurrence formula[
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and the induction hypothesis yields

S(m,n+ 1, q) = S(m,n, q)− qnS(m+ 1, n, q)

=
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This gives (2.1) with n+ 1 instead of n.
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Remark 2.2. (i) If we multiply both sides of (5) by (1 − q)2 and let q → 1,
then we obtain

n∑
k=0

(−1)k
(
n

k

)
1

(k +m)2
=

n!Γ(m)

Γ(m+ n+ 1)

[
ψ(m+ n+ 1)− ψ(m)

]
,

where ψ = Γ′/Γ denotes the digamma function. This identity is given in [13].
The special case that m is a natural number yields (3).

(ii) If we differentiate both sides of (5) with respect to m, then we obtain
the following q-analogue of (4):
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where

σk = σk(m,n, q) =
1

k

n∑
j=0

qj+m

(1− qj+m)k
.

Identity (4) follows easily from (6). Indeed, if we multiply both sides of (6) by
(1− q)3 and let q → 1, then we arrive at (4).

We recall that a function f : (0,∞)→ R is said to be completely monotonic,
if

(−1)Nf (N)(x) ≥ 0 (N = 0, 1, 2, . . . ; x > 0).

These functions have interesting applications, for instance, in probability the-
ory, numerical and asymptotic analysis. In numerous papers it was proved
that various functions which are defined in terms of gamma, polygamma and
other special functions are completely monotonic. We refer to [2, 3] and the
references therein. See also [17] for background information.

An application of Theorem 2.1 reveals that the alternating q-binomial sum
S(m,n, q) satisfies the following monotonicity property.

Corollary 2.3. Let n ≥ 1 be an integer and q ∈ (0, 1) be a real number. The
function m 7→ S(m,n, q) is completely monotonic on (0,∞).

Proof. Since a nonnegative constant function is completely monotonic and the
sum and the product of completely monotonic functions are also completely
monotonic, we conclude from (5) that in order to show that S(m,n, q) is com-
pletely monotonic with respect to m it suffices to show that the functions

f1(m) = qm and f2(m) =
1

1− qj+m
(j ≥ 0)
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are completely monotonic. This follows from

(−1)Nf
(N)
1 (m) = (− log q)Nqm > 0

and

(−1)Nf
(N)
2 (m) = (− log q)N

∞∑
k=0

qk(j+m)kN > 0

which hold for all integers N ≥ 0.

Remark 2.4. (i) Fink [6] proved that a completely monotonic function is not
only convex but even log-convex. This means that Corollary 2.3 leads to the
inequality

S
(a+ b

2
, n, q

)
≤
√
S(a, n, q)S(b, n, q). (7)

(ii) A theorem of Hardy et al. [9, p. 97] states that if a function φ is twice
differentiable and convex on (0,∞), then so is x 7→ xφ(1/x). Using this result
with φ = logS we obtain

S
( 2

1/a+ 1/b
, n, q

)a+b
≤ S(a, n, q)b S(b, n, q)a. (8)

The inequalities (7) and (8) are valid for all a, b > 0, n ≥ 1 and q ∈ (0, 1).
(iii) We have shown that identity (5) can be applied to prove a monotonicity

property of S(m,n, p). It might be of interest to present series, product or
integral representations for other binomial sums in order to find similar results.
An example is given in [1].

3. The general case

Let, as usual, (z; q)n = (1− z)(1− zq) . . . (1− zqn−1) and set

F (z) =
(q; q)n

(z; q)n+1
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(z − qm)d
.

This rational function has poles at q0, q−1, . . . , q−n, and at qm. We con-
struct the partial fraction decomposition:
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Multiplying this relation by z, and then letting z →∞, we get for n ≥ 1:
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We continue with the computation of
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Furthermore,
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}
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. . .
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which leads to the final formula:
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The special case d = 2 gives (5) and for d = 3 we obtain the following counter-
part of (6):
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[
n

k

]
q

1

(1− qk+m)3

=
qm

1− qm
n∏
j=1

1− qj

1− qj+m
[
3 + 3qmτ1 + q2m

(1

2
τ21 + τ2

)]
.

Remark 3.1. If m is a positive integer, then

τk =
q−mk

k
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j=m

( qj

1− qj
)k

=
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k

(
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(k)
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)
,

where H
(k)
n denotes the q-analogue of the n-th harmonic number of order k.
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