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1. Introduction

There are different ways to extend the usual Weyl correspondence between
functions on R2n and operators on L2(Rn) to the general setting of a Lie group
acting on a homogeneous space [1, 14, 31, 34]. Here we are concerned with
Stratonovich-Weyl correspondences. The notion of Stratonovich-Weyl corre-
spondence was introduced in [51] and its systematic study began with the work
of J.M. Gracia-Bond̀ıa, J.C. Vàrilly and their co-workers (see [26, 29, 32, 33]
and also [12]). The following definition is taken from [32], see also [33].

Definition 1.1. Let G be a Lie group and π be a unitary representation of
G on a Hilbert space H. Let M be a homogeneous G-space and let µ be a
G-invariant measure on M . Then a Stratonovich-Weyl correspondence for the
triple (G, π,M) is an isomorphism W from a vector space of operators on H
to a vector space of functions on M satisfying the following properties:

1. the function W(A∗) is the complex-conjugate of W(A);

2. Covariance: we have W(π(g)Aπ(g)−1)(x) =W(A)(g−1 · x);

3. Traciality: we have∫
M

W(A)(x)W(B)(x) dµ(x) = Tr(AB).
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Stratonovich-Weyl correspondences were constructed for various Lie group
representations, see [26, 32]. In particular, in [20], Stratonovich-Weyl corre-
spondences for the holomorphic representations of quasi-Hermitian Lie groups
were obtained by taking the isometric part in the polar decomposition of the
Berezin quantization map, see also [3, 4, 16, 17, 24, 29].

The basic example is the case when G is the (2n+1)-dimensional Heisenberg
group acting on R2n ∼= Cn by translations. Each non-degenerate unitary irre-
ducible representation of G has then two classical realizations: the Schrödinger
model on L2(Rn) and the Bargmann-Fock model on the Fock space [30], an
intertwining operator between these realizations being the Segal-Bargmann
transform [27, 30]. In this context, it is well-known that the usual Weyl cor-
respondence provides a Stratonovich-Weyl correspondence for the Schrödinger
realization [6, 49, 54]. It is also known that this Stratonovich-Weyl correspon-
dence is connected by the Segal-Bargmann transform to the Stratonovich-Weyl
correspondence for the Bargmann-Fock realization which was obtained by po-
larization of the Berezin quantization map [43, 44]. In [22], we obtained similar
results for the (2n+2)-dimensional real diamond group. This group, also called
oscillator group, is a semidirect product of the Heisenberg group by the real
line.

The aim of the present paper is to extend the preceding results to the Heisen-
berg motion groups. An Heisenberg motion group is the semidirect product of
the (2n+1)-dimensional Heisenberg group Hn by a compact subgroup K of the
unitary group U(n). Note that Heisenberg motion groups play an important
role in the theory of Gelfand pairs, since the study of a Gelfand pair of the
form (K0, N) where K0 is a compact Lie group acting by automorphisms on a
nilpotent Lie group N can be reduced to that of the form (K0, Hn), see [8, 9].

More precisely, we introduce a Schrödinger realization for the unitary ir-
reducible representations of a Heisenberg motion group and we prove that we
obtain a Stratonovich-Weyl correspondence by combining the usual Weyl cor-
respondence and the unitary part of the Berezin calculus for K.

Let us briefly describe our construction. First notice that each Heisen-
berg motion group is, in particular, a quasi-Hermitian Lie group and that we
can obtain its unitary irreducible representations as holomorphically induced
representations on some generalized Fock space by the general method of [46],
Chapter XII. Then we can get Schrödinger realizations for these representations
by using, as in the case of the Heisenberg group, a (generalized) Bargmann-
Fock transform. Hence we obtain a Stratonovich-Weyl correspondence for such
a Schrödinger realization by introducing a generalization of the usual Weyl
correspondence.

Note that, in [45], a Schrödinger model and a generalized Segal-Bargmann
transform for the scalar highest weight representations of an Hermitian Lie
group of tube type were introduced and studied. Let us also mentioned that
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B. Hall has obtained some generalized Segal-Bargmann transforms in various
situations by means of the heat kernel, see [36] and references therein. Then
one can hope for futher generalizations of our results to quasi-Hermitian Lie
groups.

This paper is organized as follows. In Section 2, we review some well-
known facts about the Fock model and the Schrödinger model of the unitary
irreducible representations of an Heisenberg group and about the correspond-
ing Berezin calculus and Weyl correspondence. In Section 3, we introduce
the Heisenberg motion groups and, in Section 4 and Section 5, we describe
their unitary irreducible representations in the Fock model and the associated
Berezin calculus. We introduce the (generalized) Segal-Bargmann transform
and the Schrödinger model in Section 6. In Section 7, we show that the usual
Weyl correspondence also gives a Stratonovich-Weyl correspondence for the
Schrödinger model. Moreover, we compare it with the Stratonovich-Weyl cor-
respondence for the Fock model which is directly obtained by polarization of
the Berezin quantization map.

2. Heisenberg groups

In this section, we review some well-known results about the the Schrödinger
model and the Fock model of the unitary irreducible (non-degenerated) rep-
resentations of the Heisenberg group. We follow the presentation of [22] in a
large extend.

Let G0 be the Heisenberg group of dimension 2n + 1 and g0 be the Lie
algebra of G0. Let {X1, . . . , Xn, Y1, . . . , Yn, Z̃} be a basis of g0 in which the
only non trivial brackets are [Xk , Yk] = Z̃, 1 ≤ k ≤ n and let

{X∗1 , . . . , X∗n, Y ∗1 , . . . , Y ∗n , Z̃∗}

be the corresponding dual basis of g∗0.
For a = (a1, a2, . . . , an) ∈ Rn, b = (b1, b2, . . . , bn) ∈ Rn and c ∈ R, we

denote by [a, b, c] the element expG0
(
∑n
k=1 akXk +

∑n
k=1 bkYk + cZ̃) of G0.

Similarly, for α = (α1, α2, . . . , αn) ∈ Rn, β = (β1, β2, . . . , βn) ∈ Rn and γ ∈ R,
we denote by (α, β, γ) the element

∑n
k=1 αkX

∗
k +

∑n
k=1 βkY

∗
k +γZ̃∗ of g∗0. The

coadjoint action of G0 is then given by

Ad∗([a, b, c]) (α, β, γ) = (α+ γβ, β − γα, γ).

Now we fix a real number λ > 0 and denote by Oλ the orbit of the element
λZ̃∗ of g∗0 under the coadjoint action of G0 (the case λ < 0 can be treated
similarly). By the Stone-von Neumann theorem, there exists a unique (up to
unitary equivalence) unitary irreducible representation of G0 whose restriction
to the center of G0 is the character [0, 0, c] → eiλc [7, 30]. Note that this
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representation is associated with the coadjoint orbit Oλ by the Kirillov-Kostant
method of orbits [41, 42]. More precisely, if we choose the real polarization
at λZ̃∗ to be the space spanned by the elements Yk for 1 ≤ k ≤ n and Z̃ then
we obtain the Schrödinger representation σ0 realized on L2(Rn) as

σ0([a, b, c])(f)(x) = eiλ(c−bx+ 1
2ab)f(x− a),

see [30] for instance. Here we denote xy :=
∑n
k=1 xkyk for x = (x1, x2, . . . , xn)

and y = (y1, y2, . . . , yn) in Rn.
The differential of σ0 is then given by

dσ0(Xk)f(x) = −∂kf(x), dσ0(Yk)f(x) = −iλxkf(x), dσ0(Z̃)f(x) = iλf(x)

where k = 1, 2, . . . , n.
On the other hand, if we consider the complex polarization at λZ̃∗ to be the

space spanned by the elements Xk + iYk for 1 ≤ k ≤ n and Z̃ then the method
of orbits leads to the Bargmann-Fock representation π0 defined as follows [13].

Let F0 be the Hilbert space of holomorphic functions F on Cn such that

‖F‖2F0
:=

∫
Cn
|F (z)|2 e−|z|

2/2λ dµλ(z) < +∞

where dµλ(z) := (2πλ)−n dx dy. Here z = x+ iy with x and y in Rn.
Let us consider the action of G0 on Cn defined by g · z := z + λ(b − ia)

for g = [a, b, c] ∈ G0 and z ∈ Cn. Then π0 is the representation of G0 on F0

given by
π0(g)F (z) = α(g−1, z)F (g−1 · z)

where the map α is defined by

α(g, z) := exp
(
−icλ+ (1/4)(b+ ai)(−2z + λ(−b+ ai))

)
for g = [a, b, c] ∈ G0 and z ∈ Cn.

The differential of π0 is then given by
dπ0(Xk)F (z) =

1

2
izkF (z) + λi

∂F

∂zk

dπ0(Yk)F (z) =
1

2
zkF (z)− λ ∂F

∂zk

dπ0(Z̃)F (z) =iλF (z).

As in [35, Section 6] or [27, Section 1.3] we can verify by using the previous
formulas for dπ0 and dσ0 that the Segal-Bargmann transform B0 : L2(Rn) →
F0 defined by

B0(f)(z) = (λ/π)n/4
∫
Rn

e(1/4λ)z2+ixz−(λ/2)x2

f(x) dx
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is a (unitary) intertwining operator between σ0 and π0. The inverse Segal-
Bargmann transform B−1

0 = B∗0 is then given by

B−1
0 (F )(x) = (λ/π)n/4

∫
Cn

e(1/4λ)z̄2−ixz̄−(λ/2)x2

F (z) e−|z|
2/2λ dµλ(z).

For z ∈ Cn, consider the coherent state ez(w) = exp(z̄w/2λ). Then we
have the reproducing property F (z) = 〈F, ez〉F0 for each F ∈ F0 where 〈·, ·〉F0

denotes the scalar product on F0.
Now, we introduce the Berezin quantization map and we review some of its

properties. Let C0 be the space of all operators (not necessarily bounded) A
on F0 whose domain contains ez for each z ∈ Cn. Then the Berezin symbol of
A ∈ C0 is the function S0(A) defined on Cn by

S0(A)(z) :=
〈Aez , ez〉F0

〈ez , ez〉F0

.

We have the following result, see for instance [22].

Proposition 2.1. 1. Each A ∈ C0 is determined by S0(A);

2. For each A ∈ C0 and each z ∈ Cn, we have S0(A∗)(z) = S0(A)(z);

3. For each z ∈ Cn, we have S0(IF0
)(z) = 1. Here IF0

denotes the identity
operator of F0;

4. For each A ∈ C0, g ∈ G0 and z ∈ Cn, we have π0(g)−1Aπ0(g) ∈ C0 and

S0(A)(g · z) = S0(π0(g)−1Aπ0(g))(z);

5. The map S0 is a bounded operator from L2(F0) (endowed with the Hilbert-
Schmidt norm) to L2(Cn, µλ) which is one-to-one and has dense range.

Proof. For 1 and 2, see [10] and [25]. Note that 4 follows from the following
property: For each g ∈ G0 and each z ∈ Cn, we have π0(g)ez = α(g, z)eg·z,
see [20]. Finally, 5 is a particular case of [52, Proposition 1.19].

Recall that the Berezin transform is then the operator B0 on L2(Cn, µλ)
defined by B0 = S0(S0)∗. Thus we have the integral formula

B0(F )(z) =

∫
Cn

F (w) e|z−w|
2/2λ dµλ(w),

see [10, 11, 48, 52] for instance. Recall also that we have B0 = exp(λ∆/2)
where ∆ = 4

∑n
k=1 ∂

2/∂zk∂z̄k, see [44, 52].
Note that Berezin transforms have been studied, in the general setting, by

many authors, see in particular [28, 47, 48, 52, 56].
Note also that S0 allows us to connect π0 to Oλ as shown by the following

proposition. Here we denote by gc0 the complexification of g0.
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Proposition 2.2 ([22]). Let Φλ be the map defined by

Φλ(z) :=

n∑
k=1

(Re zkX
∗
k + Im zkY

∗
k ) + λZ̃∗.

Then

1. For each X ∈ gc0 and each z ∈ Cn, we have

S0(dπ0(X))(z) = i〈Φλ(z), X〉.

2. For each g ∈ G0 and each z ∈ Cn, we have Φλ(g · z) = Ad∗(g) Φλ(z).

3. The map Φλ is a diffeomorphism from Cn onto Oλ.

Now we aim to transfer S0 to operators on L2(Rn). To this goal, we define
S1(A) := S0(B0AB

−1
0 ) for A operator on L2(Rn). Of course, the properties of

S0 give rise to similar properties of S1. In particular, S1 is a bounded operator
from L2(L2(Rn)) to L2(Cn, µλ) and S1 is G0-covariant with respect to σ0.

Moreover, denoting by IB0
the (unitary) map from L2(L2(Rn)) onto L2(F0)

defined by IB0
(A) = B0AB

−1
0 , we have S1 = S0IB0

then

S1(S1)∗ = (S0IB0
)(S0IB0

)∗ = S0IB0
I∗B0

(S0)∗ = S0(S0)∗ = B0.

This shows that the Berezin transform corresponding to S1 is the same as the
Berezin transform corresponding to S0. Then we can write the polar decom-
positions of S0 and S1 as S0 = (B0)1/2U0 and S1 = (B0)1/2U1 where the maps
U0 : L2(F0)→ L2(Cn, µλ) and U1 : L2(L2(Rn))→ L2(Cn, µλ) are unitary.

Moreover, as in the proof of [17], Proposition 3.1, we can verify that U0 is
a Stratonovich-Weyl correspondence for (G0, π0,Cn) and that U1 is a Strato-
novich-Weyl correspondence for (G0, σ0,Cn). Note that G0-covariance of U0

and U1 immediately follows from G0-covariance of S0 and S1. Note also that
we have U1 = U0IB0

.
Now, we show how to use the usual Weyl correspondence in order to get

another Stratonovich-Weyl correspondence for σ0. The Weyl correspondence
on R2n is defined as follows. For each f in the Schwartz space S(R2n), let
W0(f) be the operator on L2(Rn) defined by

W0(f)φ(p) = (2π)
−n
∫
R2n

eisq f(p+ (1/2)s, q)φ(p+ s) ds dq.

The Weyl calculus can be extended to much larger classes of symbols (see
for instance [38]). In particular, if f(p, q) = u(p)qα where u ∈ C∞(Rn) then
we have, see [53],

W0(f)ϕ(p) =

(
i
∂

∂s

)α
(u(p+ (1/2)s)φ(p+ s))

∣∣∣
s=0

.
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From this, we can deduce the following proposition. Consider the action
of G0 on R2n given by g · (p, q) := (p+ a, q + λb) where g = [a, b, c].

Proposition 2.3 ([22]). Let Ψλ be the map defined by

Ψλ(p, q) :=

n∑
k=1

(qkX
∗
k − λpkY ∗k ) + λZ̃∗.

Then

1. For each X ∈ gc0 and each (p, q) ∈ R2n, we have

W−1
0 (dσ0(X))(p, q) = i〈Ψλ(p, q), X〉.

2. For each g ∈ G0 and (p, q) ∈ R2n, we have Ψλ(g ·(p, q))=Ad∗(g) Ψλ(p, q).

3. The map Ψλ is a diffeomorphism from R2n onto Oλ.

4. For each (p, q) ∈ R2n, we have Φλ(q − λpi) = Ψλ(p, q).

Now, we assume that R2n is equipped with the G0-invariant measure µ̃ :=
(2π)−ndpdq. Then one has the following result.

Proposition 2.4 ([22, 30]). The map W−1
0 is a Stratonovich-Weyl correspon-

dence for (G0, σ0,R2n).

The following proposition asserts that if we identify R2n with Cn by the
map j : (p, q)→ q−λpi then the unitary part in the polar decomposition of S1

coincides with the inverse of the Weyl transform, see [44] and [48].

Proposition 2.5. Let J be the map from L2(Cn, µλ) onto L2(R2n) defined by
J(F ) = F ◦ j. Then we have U1 = (W0J)−1.

Finally, note that we can obtain Stratonovich-Weyl correspondences for
(G0, σ0,Oλ) and (G0, π0,Oλ) by transferring W−1

0 and U0 by using Φλ and
Ψλ. More precisely, let νλ be the G0-invariant measure on Oλ defined by
νλ := (Φ−1

λ )∗(µλ) = (Ψ−1
λ )∗(µ̃). Then the maps τΦλ : F → F ◦ Φ−1

λ from
L2(Cn, µλ) onto L2(Oλ, νλ) and τΨλ : F → F ◦ Ψ−1

λ from L2(R2n) onto
L2(Oλ, νλ) are unitary and we have τΦλ = τΨλJ . Hence we can assert the
following proposition.

Proposition 2.6. The map W1 := τΨλW
−1
0 is a Stratonovich-Weyl corre-

spondence for (G0, σ0,Oλ), the map W2 := τΦλU
0 is a Stratonovich-Weyl cor-

respondence for (G0, π0,Oλ) and we have W1 =W2IB0
.
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3. Generalities on Heisenberg motion groups

In order to introduce the Heisenberg motion groups, it is convenient to write
the elements of the Heisenberg group G0 and its multiplication law as follows.
For each z ∈ Cn, c ∈ R, we denote here by (z, z̄, c) the element G0 which is
denoted by [Re z, Im z, c] in Section 2. Moreover, for each z, w ∈ Cn, we denote
zw :=

∑n
k=1 zkwk and we consider the symplectic form ω on C2n defined by

ω((z, w), (z′, w′)) =
i

2
(zw′ − z′w).

for z, w, z′, w′ ∈ Cn. Then the multiplication of G0 is given by

((z, z̄), c) · ((z′, z̄′), c′) = ((z + z′, z̄ + z̄′), c+ c′ + 1
2ω((z, z̄), (z′, z̄′))), (1)

the complexification Gc0 of G0 is Gc0 = {((z, w), c) : z, w ∈ Cn, c ∈ C} and
the multiplication of Gc0 is obtained by replacing (z, z̄) by (z, w) and (z′, z̄′) by
(z′, w′) in Eq. 1.

Now, let K be a closed subgroup of U(n). Then K acts on G0 by k ·
((z, z̄), c) = ((kz, k̄z), c) and we can form the semidirect product G := G0 oK
which is called a Heisenberg motion group. The elements of G can be written
as ((z, z̄), c, k) where z ∈ Cn, c ∈ R and k ∈ K. The multiplication of G is then
given by

((z, z̄), c, k) · ((z′, z̄′), c′, k′) =

((z, z̄) + (kz′, k̄z′), c+ c′ + 1
2ω((z, z̄), (kz′, k̄z′)), kk′).

We denote by Kc the complexification of K and we consider the action of
Kc on Cn×Cn given by k ·(z, w) = (kz, (kt)−1w) (here, the subscript t denotes
transposition). The group Gc is then the semidirect product Gc = Gc0 o Kc.
The elements of Gc can be written as ((z, w), c, k) where z, w ∈ Cn, c ∈ C and
k ∈ Kc and the multiplication law of Gc is given by

((z, w), c, k) · ((z′, w′), c′, k′) =

((z, w) + k · (z′, w′), c+ c′ + 1
2ω((z, w), k · (z′, w′)), kk′).

We denote by k, kc, g and gc the Lie algebras of K, Kc, G and Gc. The
derived action of kc on Cn × Cn is then A · (z, w) := (Az,−Atw) and the Lie
brackets of gc are given by

[((z, w), c, A), ((z′, w′), c′, A′)] =

(A · (z′, w′)−A′ · (z, w), ω((z, w), (z′, w′)), [A,A′]).
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Let K̃ be the subgroup of G defined by K̃ := {((0, 0), c, k) : c ∈ R, k ∈ K}.
Also, let h0 be a Cartan subalgebra of k. Then the Lie algebra k̃ of K̃ is
a maximal compactly embedded subalgebra of g and the subalgebra h of g
consisting of all elements of the form ((0, 0), c, A) where c ∈ R and A ∈ h0 is a
compactly embedded Cartan subalgebra of g [46], p. 250.

Following [46, Chapter XII.1], we set p+ = {((z, 0), 0, 0) : z ∈ Cn} and
p− = {((0, w), 0, 0) : w ∈ Cn} and we denote by P+ and P− the corresponding
analytic subgroups of Gc, that is, P+ = {((z, 0), 0, In) : z ∈ Cn} and P− =
{((0, w), 0, In) : w ∈ Cn}.

Note that G is a group of the Harish-Chandra type [46, p. 507] (see also [50]
and [37, Chapter VIII]), that is, the following properties are satisfied:

1. gc = p+ ⊕ k̃c ⊕ p− is a direct sum of vector spaces, (p+)∗ = p− and
[̃kc, p±] ⊂ p±;

2. The multiplication map P+K̃cP− → Gc, (z, k, y)→ zky is a biholomor-
phic diffeomorphism onto its open image;

3. G ⊂ P+K̃cP− and G ∩ K̃cP− = K̃.

We denote by pp+ , pk̃c and pp− the projections of gc onto p+, k̃c and p−

associated with the above direct decomposition.
We can easily verify that each g = ((z0, w0), c0, k) ∈ Gc has a P+K̃cP−-

decomposition given by

g = ((z0, 0), 0, In) · ((0, 0), c, k) · ((0, w0), 0, In)

where c = c0− i
4z0w0. We denote by ζ : P+K̃cP− → P+, κ : P+K̃cP− → Kc

and η : P+K̃cP− → P− the projections onto P+-, K̃c- and P−-components.
We can introduce an action (defined almost everywhere) of G on p+ as

follows. For Z ∈ p+ and g ∈ Gc, we define g ·Z ∈ p+ by g ·Z := log ζ(g expZ).
From the above formula for the P+K̃cP−-decomposition, we deduce that if
g = ((z0, w0), c0, k) ∈ G and Z = ((z, 0), 0, 0) ∈ p+ then we have g · Z =
log ζ(g expZ) = ((z0 + kz, 0), 0, 0). Note that D := G · 0 = p+ ' Cn here.

A useful section Z → gZ for the action of G on D can be obtained by using
[21, Proposition 4.5]. Here we get gZ = ((z, z̄), 0, In) for each Z = ((z, 0), 0, 0),
z ∈ Cn.

Now we compute the adjoint and coadjoint actions of Gc. Consider g =
(v0, c0, k0) ∈ Gc where v0 ∈ C2n, c0 ∈ C, k0 ∈ Kc and X = (w, c,A) ∈ gc

where w ∈ C2n, c ∈ C and A ∈ kc. We can easily verify that

Ad(g)X =
d

dt
(g exp(tX)g−1)|t=0 =

(
k0w − (Ad(k0)A) · v0, c

+ ω(v0, k0w)− 1
2ω(v0, (Ad(k0)A) · v0),Ad(k0)A

)
.
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Now, let us denote by ξ = (u, d, φ), where u ∈ C2n, d ∈ C and φ ∈ (kc)
∗
,

the element of (gc)∗ defined by

〈ξ, (w, c,A)〉 = ω(u,w) + dc+ 〈φ,A〉.

Also, for u, v ∈ C2n, we denote by v × u the element of (kc)∗ defined by 〈v ×
u,A〉 := ω(u,A · v) for A ∈ kc. Then, from the above formula for the adjoint
action, we deduce that for each ξ = (u, d, φ) ∈ (gc)∗ and g = (v0, c0, k0) ∈ Gc
we have

Ad∗(g)ξ =
(
k0u− dv0, d,Ad∗(k0)φ+ v0 × (k0u− d

2v0)
)

By restriction, we also get the analogous formula for the coadjoint action of G.
From this, we see that if a coadjoint orbit of G contains a point (u, d, φ) with
d 6= 0 then it also contains a point of the form (0, d, φ0). Such an orbit is called
generic.

4. Fock model for Heisenberg motion groups

In this section, we introduce the Fock model of the unitary irreducible rep-
resentations of G by using the general method of [46, Chapter XII] that we
describe here briefly.

Let ρ be a unitary irreducible representation of K on a (finite-dimensional)
Hilbert space V and λ ∈ R. Let ρ̃ be the representation of K̃ on V defined by
ρ̃((0, 0), c, k) = eiλcρ(k) for each c ∈ R and k ∈ K.

For each Z,W ∈ D, let K(Z,W ) := ρ̃(κ(expW ∗ expZ))−1 and for each
g ∈ G, Z ∈ D, let J(g, Z) := ρ̃(κ(g expZ)), [46, Chapter XII.1]. Consider the
Hilbert space F̃ of all holomorphic functions on D with values in V such that

‖f‖2F̃ :=

∫
D
〈K(Z,Z)−1f(Z), f(Z)〉V dµ(Z) < +∞

where µ denotes an invariant G-measure on D. Then the equation

π̃(g)f(Z) = J(g−1, Z)−1 f(g−1 · Z)

defines a unitary representation of G on F̃ . This representation can be also
obtained by holomorphic induction from ρ̃, that is, it corresponds to the natural
action of G on the square-integrable holomorphic sections of the Hilbert G-
bundle G ×ρ̃ V over G/K ∼= D [22]. Note also that π̃ is irreducible since ρ̃ is
irreducible, [46, p. 515].

Here we can easily compute K and J . For each Z = ((z, 0), 0, 0), W =
((w, 0), 0, 0) ∈ D, we have K(Z,W ) = eλzw̄/2IV . Moreover, for each g =
((z0, z̄0), c0, k) ∈ G and Z = ((z, 0), 0, 0) ∈ D, we have

J(g, Z) = exp
(
iλc0 + λ

2 z̄0(kz) + λ
4 |z0|2

)
ρ(k).
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Note that µ can be taken to be the G-invariant measure on D ' Cn defined
by dµ(Z) := λn(2π)−n dx dy. Here Z = ((z, 0), 0, 0) and z = x+ iy with x and
y in Rn. From now on, we identify Z = ((z, 0), 0, 0) ∈ D with z ∈ Cn and each
function on D with the corresponding function on Cn.

Consequently, the Hilbert product on F̃ is given by

〈f, g〉F̃ =

∫
Cn
〈f(z), g(z)〉V e−λ|z|

2/2

(
λ

2π

)n
dx dy

and we get the following formula for π̃:

(π̃(g)f)(z) = exp
(
iλc0 + λ

2 z̄0z − λ
4 |z0|2

)
ρ(k) f(k−1(z − z0))

where g = ((z0, z̄0), c0, k) ∈ G and z ∈ Cn.
In fact, in order to use the results of Section 2, it is convenient to replace

π̃ by an equivalent representation π whose restriction to G0 is precisely π0. To
this aim, we consider the Fock space F of all holomorphic functions f : Cn → V
such that

‖f‖2F :=

∫
Cn
‖f(z)‖2V e−|z|

2/2λ dµλ(z) < +∞.

Let J : F̃ → F be the unitary operator defined by J (f)(z) = f(iλ−1z)
and set π(g) := J π̃(g)J−1 for each g ∈ G. Then we have

(π(g)f)(z) = exp
(
iλc0 + 1

2 iz̄0z − λ
4 |z0|2

)
ρ(k) f(k−1(z + iλz0))

where g = ((z0, z̄0), c0, k) ∈ G and z ∈ Cn.
We can easily compute the differential of π:

Proposition 4.1. Let X = ((a, ā), c, A) ∈ g. Then, for each f ∈ F and each
z ∈ Cn, we have

(dπ(X)f)(z) = dρ(A)f(z) + i(λc+ 1
2 āz)f(z) + dfz(−Az + iλa).

Clearly, one has F = F0 ⊗ V . For f0 ∈ F0 and v ∈ V , we denote by
f0 ⊗ v the function z → f0(z)v. Moreover, if A0 is an operator of F0 and A1

is an operator of V then we denote by A0 ⊗ A1 the operator of F defined by
(A0 ⊗A1)(f0 ⊗ v) = A0f0 ⊗A1v.

Let τ be the left-regular representation of K on F0, that is, (τ(k)f0)(z) =
f0(k−1z). Then we have

π((z0, z̄0), c0, k) = π0((z0, z̄0), c0)τ(k)⊗ ρ(k) (2)

for each z0 ∈ Cn, c0 ∈ R and k ∈ K. Note that this is precisely Formula (3.18)
in [8].
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5. Stratonovich-Weyl correspondence via Berezin
quantization

In this section, we introduce the Berezin quantization map associated with π
and the corresponding Stratonovich-Weyl correspondence. We consider first
the Berezin quantization map associated with ρ [5, 15, 55].

Let us fix a positive root system of k relative to h0 and denote by Λ ∈ (hc0)∗

the highest weight of ρ and by kc = n+ ⊕ hc0 ⊕ n− the corresponding triangular
decomposition of kc. Let ϕ̃0 be the element of (kc)∗ defined by ϕ̃0 = −iΛ on
h0 and by ϕ̃0 = 0 on n±. We denote by ϕ0 the restriction of ϕ̃0 to k. Then
the orbit o(ϕ0) of ϕ0 under the coadjoint action of K is said to be associated
with ρ [14, 55].

Here we assume that ϕ0 is regular in the sense that the stabilizer of ϕ0 for
the coadjoint action of K is precisely the connected subgroup H0 of K with
Lie algebra h0 [15].

Note that a complex structure on o(ϕ0) is then defined by the diffeomor-
phism o(ϕ0) ' K/H0 ' Kc/Hc

0N
− where H0 is the connected subgroup of K

with Lie algebra h0 and N− is the analytic subgroup of Kc with Lie algebra n−.
Without loss of generality, we can assume that V is a space of holomorphic

sections of a complex line bundle over o(ϕ0) as in [15]. For each ϕ ∈ o(ϕ0) there
exists a unique function eϕ ∈ V (a coherent state) such that a(ϕ) = 〈a, eϕ〉V
for each a ∈ V . The Berezin calculus on o(ϕ0) associates with each operator B
on V the complex-valued function s(B) on o(ϕ0) defined by

s(B)(ϕ) =
〈Beϕ, eϕ〉V
〈eϕ, eϕ〉V

which is called the symbol of B. We denote by Sy(o(ϕ0)) the space of all such
symbols. Then we have the following proposition, see [5, 15, 25].

Proposition 5.1. 1. The map B → s(B) is injective.

2. For each operator B on V , we have s(B∗) = s(B).

3. For each ϕ ∈ o(ϕ0), k ∈ K and B ∈ End(V ), we have

s(B)(Ad∗(k)ϕ) = s(ρ(k)−1Bρ(k))(ϕ).

4. For each A ∈ k and ϕ ∈ o(ϕ0), we have s(dρ(A))(ϕ) = i〈ϕ,A〉.

In our papers [18, 19, 23], we developped a general method for construct-
ing a Berezin quantization map associated with a unitary representation of a
quasi-Hermitian Lie group which is holomorphically induced from a unitary
irreducible representation of a maximal compactly embedded subgroup. This
construction goes as follows.
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The evaluation maps Kz : H → V, f → f(z) are continuous [46], p. 539.
The vector coherent states of F are the maps Ez = K∗z : V → F defined by
〈f(z), v〉V = 〈f,Ezv〉F for f ∈ F and v ∈ V . Here we have that Ezv = ez ⊗ v,
that is, we have (Ezv)(w) = eλz̄w/2v.

Let Fs be the subspace of F generated by the functions ez ⊗ v for z ∈ Cn
and v ∈ V . Then Fs is a dense subspace of F . Let C be the space consisting of
all operators A on F such that the domain of A contains Fs and the domain
of A∗ also contains Fs. Then, following an idea of [40] and [2], we first introduce
the pre-symbol S0(A) of A ∈ C by

S0(A)(z) = (E∗zEz)
−1/2E∗zAEz(E

∗
zEz)

−1/2 = e−λzz̄/2E∗zAEz.

The Berezin symbol S(A) of A is thus defined as the complex-valued func-
tion on Cn × o(ϕ0) given by

S(A)(z, ϕ) = s(S0(A)(z))(ϕ).

By applying [23, Proposition 4.4] we can see that S has the following prop-
erties.

Proposition 5.2. 1. Each A ∈ C is determined by S(A).

2. For each A ∈ C, we have S(A∗) = S(A).

3. We have S(IF ) = 1.

4. For each A ∈ C, g = ((z0, z̄0), c, k) ∈ G, z ∈ Cn and ϕ ∈ o(ϕ0), we have

S(A)(g · z, ϕ) = S(π(g)−1Aπ(g))(z,Ad∗(k−1)ϕ).

Moreover, we can decompose S according to the decomposition F = F0⊗V .
Let f0 be a complex-valued function on Cn and f1 be a complex-valued function
on o(ϕ0). Then we denote by f0 ⊗ f1 the function on Cn × o(ϕ0) defined by
(f0 ⊗ f1)(z, ϕ) = f0(z)f1(ϕ).

Proposition 5.3. Let A0 ∈ C0 and let A1 be an operator on V . Then A0⊗A1 ∈
C and we have S(A0 ⊗A1) = S0(A0)⊗ s(A1).

From this, we deduce the following result. We denote by ϕ0 the restriction
to g of the extension of ϕ̃0 ∈ (kc)∗ to gc which vanishes on p±. We also denote
by O(ϕ0) the orbit of ϕ0 for the coadjoint action of G.

Proposition 5.4 ([23]). 1. Let g = ((z0, z̄0), c0, k) ∈ G. For each z ∈ Cn
and ϕ ∈ o(ϕ0), we have

S(π(g))(z, ϕ) = exp
(
iλc0 + 1

2 iz̄0z − λ
4 |z0|2 − λ

2 |z|
2 + λ

2 z̄k
−1(z + iλz0)

)
× s(ρ(k))(ϕ).
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2. For each X = ((a, ā), c, A) ∈ g, z ∈ Cn and ϕ ∈ o(ϕ0), we have

S(dπ(X))(z, ϕ) = iλc+
i

2

(
āz + λ2az̄

)
− λ

2
z̄(Az) + s(dρ(A))(ϕ).

3. For each X = ((a, ā), c, A) ∈ g, z ∈ Cn and ϕ ∈ o(ϕ0), we have

S(dπ(X))(z, ϕ) = i〈Φ(z, ϕ), X〉

where the map Φ : Cn × o(ϕ0)→ g∗ is defined by

Φ(z, ϕ) =
(
i(−z, λ2z̄), λ, ϕ− λ

2 (z, z̄) × (z, z̄)
)
.

Moreover Φ is a diffeomorphism from Cn × o(ϕ0) onto O(ϕ0).

Consider now the Berezin transforms B := SS∗, B0 := S0(S0)∗, b := ss∗

and the corresponding maps U := B−1/2S, U0 := (B0)−1/2S0 and w := b−1/2s.
We fix a K-invariant measure ν on o(ϕ0) and we endow Cn × o(ϕ0) with the
measure µλ ⊗ ν. Also, we consider the action of G on Cn × o(ϕ0) given by

g · (z, ϕ) := (g · z,Ad∗(k)ϕ)

for g = ((z0, z̄0), c0, k) ∈ G. Then we have the following results.

Proposition 5.5 ([23]). The map U is a Stratonovich-Weyl correspondence
for (G, π,Cn × o(ϕ0)).

Proposition 5.6 ([23]). For each f ∈ L2(Cn × o(ϕ0), µλ ⊗ ν), we have

B(f)(z, ψ) =

∫
Cn×o(ϕ0)

kB(z, w, ψ, ϕ) f(w,ϕ) dµλ(w)dν(ϕ)

where

kB(z, w, ψ, ϕ) := e−λ|z−w|
2/2 |〈eψ, eϕ〉V |2

〈eϕ, eϕ〉V 〈eψ, eψ〉V
.

In particular, for each f0 ∈ L2(Cn) and f1 ∈ Sy(o(ϕ0)), we have B(f0 ⊗
f1) = B0(f0) ⊗ b(f1). Moreover for each A0 operator on F0 and A1 operator
on V , we have U(A0 ⊗A1) = U0(A0)⊗ w(A1).

Note that it is well-known that if ∆0 := 4
∑n
k=1(∂zk∂z̄k) is the Laplace

operator then we have B0 = exp(∆0/2γ), see [44]. Thus we get

U0 = exp(−∆0/4γ)S0.

Hence, by applying Proposition 5.4 and Proposition 5.6, we obtain the following
result.

Proposition 5.7 ([23]). For each X = ((a, ā), c, A) ∈ g, z ∈ Cn and ϕ ∈ o(ϕ0),
we have

U(dπ(X))(z, ϕ) = icλ+ w(dρ(A))(ϕ) +
1

2
Tr(A) +

i

2

(
āz + λ2az̄

)
− λ

2
z̄(Az).
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6. Schrödinger model for Heisenberg motion groups

Here we introduce the Schrödinger representations of G by using a Segal-
Bargmann transform which is obtained by a slight modification of B0. More
precisely, let us define the map B from L2(Rn, V ) ∼= L2(Rn)⊗V to F ∼= F0⊗V
by B := B0 ⊗ IV or, equivalently, by the integral formula

B(f)(z) = (λ/π)n/4
∫
Rn

e(1/4λ)z2+ixz−(λ/2)x2

f(x) dx

for each f ∈ L2(Rn, V ).
Now, by analogy with the case of the Heisenberg group, we define the

Schrödinger representation σ of G on L2(Rn, V ) by σ(g) := B−1π(g)B. Simi-
larly, recalling that τ is the representation of K on F0 given by (τ(k)F )(z) =
F (k−1z), we define the representation τ̃ of K on L2(Rn) by τ̃(k) := B−1

0 τ(k)B0.
Then we have the following proposition.

Proposition 6.1. Let g0 ∈ G0, k ∈ K and g = (g0, k) ∈ G. Then we have
σ(g) = σ0(g0)τ̃(k)⊗ ρ(k).

Proof. Let f0 ∈ L2(Rn) and v ∈ V . Then by Eq. 2 we have

σ(g)(f0 ⊗ v) = (B−1
0 ⊗ IV )(π0(g0)τ(k)⊗ ρ(k))(B0 ⊗ IV )(f0 ⊗ v)

= (B−1
0 π0(g0)τ(k)B0)f0 ⊗ ρ(k)v

= σ0(g0)(B−1
0 τ(k)B0)f0 ⊗ ρ(k)v,

hence the result.

The following proposition gives an explicit expression for dσ(X) when X is
of the form ((0, 0), 0, A) where A ∈ k.

Proposition 6.2. 1. For each A = (akl) ∈ k, we have

dτ̃(A) =
1

2λ

∑
k,l

akl
∂2

∂xk∂xl
+

1

2

∑
k,l

akl

(
xk

∂

∂xl
− xl

∂

∂xk

)
− λ

2
x(Ax) +

1

2
Tr(A).

2. For each X = ((0, 0), 0, A) with A ∈ k, we have

dσ(X) = dτ̃(A)⊗ IV + IF0 ⊗ dρ(A)

where dτ̃(A) is as in 1.
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Proof. In order to prove the first statement, first note that for each A ∈ k and
F 0 ∈ F0 we have

(dτ(A)F 0)(z) = −(dF 0)z(Az) = −
∑
k

∂F 0

∂zk
(z)(ek(Az)).

To simplify the notation we denote by kB0(z, x) the kernel of B0, that is,

kB0(z, x) :=

(
λ

π

)n/4
e(1/4λ)z2+ixz−(λ/2)x2

.

Then, for each f0 ∈ S(Rn) we have

(dτ(A)B0f0)(z) = −
∫
Rn

(
1

2λ
z(Az) + ix(Az)

)
kB0

(z, x)f0(x)dx.

Thus writing z(Az) =
∑
k,l aklzkzl and integrating by parts, we get∫

Rn
z(Az)kB0

(z, x)f0(x)dx

= −
(
λ

π

)n/4∑
k,l

akl

∫
Rn

e(1/4λ)z2+ixz ∂2

∂xk∂xl
(e−(λ/2)x2

f0(x))dx

and, similarly,∫
Rn

ix(Az)kB0
(z, x)f0(x)dx

= −
(
λ

π

)n/4∑
k,l

akl

∫
Rn

e(1/4λ)z2+ixz ∂

∂xl
(e−(λ/2)x2

xkf0(x))dx.

The first statement hence follows. The second statement is an immediate con-
sequence of Proposition 6.1 .

Note that σ is completely determined by the fact that σ(g0, In) = σ0(g0)⊗IV
and by Proposition 6.2.

7. Stratonovich-Weyl correspondence via Weyl calculus

In this section we first introduce a slight modification of the usual Weyl corre-
spondence in the spirit of our previous works, see for instance [14].

Recall that the Berezin calculus s associates with each operator B on V a
complex-valued function s(B) on o(ϕ0) which is called the symbol of B and
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that the space of all such symbols is denoted by Sy(o(ϕ0)), see Section 5. Then
the unitary part w of s is an isomorphism from End(V ) onto Sy(o(ϕ0)).

Now we say that a complex-valued smooth function f : (p, q, ϕ)→ f(p, q, ϕ)
is a symbol on R2n × o(ϕ0) if for each (p, q) ∈ R2n the function f(p, q, ·) :

ϕ → f(p, q, ϕ) is an element of Sy(o(ϕ0)). In that case, we denote f̂(p, q) :=
w−1(f(p, q, ·)). A symbol f on R2n×o(ϕ0) is called an S-symbol if the function

f̂ belongs to the Schwartz space S(R2n,End(V )) of rapidly decreasing smooth
functions on R2n with values in End(V ). For each S-symbol on R2n × o(ϕ0),
we define the operator W (f) on the Hilbert space L2(Rn, V ) by

W (f)φ(p) = (2π)
−n
∫
R2n

eisq f̂(p+ (1/2)s, q)φ(p+ s) ds dq.

Of course, W can be extended to much larger classes of symbols as the usual
Weyl calculus, see Section 2. As an immediate consequence of the definition of
W , we have the following proposition.

Proposition 7.1. 1. The map W is a unitary operator from L2(R2n, V )
onto L2(L2(Rn, V ));

2. For each f0 ∈ S(Rn) and f1 ∈ Sy(o(ϕ0)), we have

W (f0 ⊗ f1) = W0(f0)⊗ w−1(f1).

In order to compare W and U , it is convenient to transfer U to operators
on L2(Rn, V ) in the spirit of Proposition 2.5. First, for any operator A on
L2(Rn, V ), we define S1(A) := S(BAB−1). Clearly, one has S1S

∗
1 = SS∗ = B.

Then the unitary part U1 of S1 is given by U1(A) := U(BAB−1) for any
operator A on L2(Rn, V ). Moreover, we have

U1 = B−1/2S1 =
(

(B0)−1/2 ⊗ b−1/2
) (
S1 ⊗ s

)
= (B0)−1/2S1 ⊗ b−1/2s = U1 ⊗ w

with obvious notation. Hence we are in position to extend Proposition 2.5 to
Heisenberg motion groups.

Proposition 7.2. We have U1 = (J−1 ⊗ ISy(o(ϕ0)))W
−1.

Proof. By using Proposition 7.1 and Proposition 2.5, we get

(J−1 ⊗ ISy(o(ϕ0)))W
−1 = (J−1 ⊗ ISy(o(ϕ0)))(W

−1
0 ⊗ w)

= (J−1W−1
0 )⊗ w = U1 ⊗ w = U1.

This is the desired result.
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Now consider the action of G on R2n × o(ϕ0) given by

g · (p, q, ϕ) := (j−1(g · j(p, q)),Ad∗(k)ϕ)

for g = ((z0, z̄0), c0, k) ∈ G. Then we have the following result.

Proposition 7.3. 1. The map W−1 is a Stratonovich-Weyl correspondence
for (G, σ,R2n × o(ϕ0)).

2. For each X = ((a, ā), c, A) ∈ g, p, q ∈ Rn and ϕ ∈ o(ϕ0), we have

W−1(dσ(X))(p, q, ϕ) = iλc+
1

2
Tr(A) +

i

2

(
āj(p, q) + λ2aj(p, q)

)
− λ

2
j(p, q)(Aj(p, q)) + w(dρ(A))(ϕ).

Proof. 1. For each g = ((z0, z̄0), c0, k) ∈ G let us denote by Lg the operator of
L2(Cn × o(ϕ0), µλ ⊗ ν) defined by

(LgF )(z, ϕ) = F (g · z,Ad∗(k)ϕ).

Then the covariance property for U can be rewritten as

LgU(A) = U(π(g)−1Aπ(g))

for each g ∈ G and A ∈ L2(F). This gives the following covariance property
for U1:

LgU1(A) = U1(σ(g)−1Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn, V )). But by Proposition 7.2 we have
U1 = (J−1 ⊗ ISy(o(ϕ0)))W

−1. Thus we get

(J ⊗ ISy(o(ϕ0)))Lg(J
−1 ⊗ ISy(o(ϕ0)))W

−1(A) = W−1(σ(g)−1Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn, V )).
Now let

(L̃gf)(p, q, ϕ) := f(j−1(g · j(p, q)),Ad∗(k)ϕ)

for each g = ((z0, z̄0), c0, k) ∈ G and (p, q, ϕ) ∈ R2n × o(ϕ0). Since it is clear
that for each g ∈ G we have

L̃g = (J ⊗ ISy(o(ϕ0)))Lg(J
−1 ⊗ ISy(o(ϕ0))),

we see that
L̃gW

−1(A) = W−1(σ(g)−1Aσ(g))

for each g ∈ G and A ∈ L2(L2(Rn, V )). Hence W−1 is G-covariant. The other
properties of a Stratonovich-Weyl correspondence can be easily verified.
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2. For each X ∈ gc, we have

U(dπ(X)) = U1(dσ(X)) = ((J−1 ⊗ ISy(o(ϕ0)))W
−1(dσ(X))

hence the result follows from Proposition 5.7.

Finally, we can obtain Stratonovich-Weyl correspondences for (G, π,O(ϕ0))
and for (G, σ,O(ϕ0)) by transferring U and W−1 by means of Φ. Let

Ψ := Φ ◦ (j ⊗ 1) : R2n × o(ϕ0)→ O(ϕ0)

and let ν̃ be the G-invariant measure on O(ϕ0) defined by

ν̃ := (Φ−1)∗(µλ ⊗ ν) = (Ψ−1)∗(µ̃⊗ ν).

Consider also the unitary maps τΦ : F → F ◦Φ−1 from L2(Cn× o(ϕ0), µλ⊗ ν)
onto L2(O(ϕ0), ν̃) and τΨ : F → F ◦ Ψ−1 from L2(R2n × o(ϕ0), µ̃ ⊗ ν) onto
L2(O(ϕ0), ν̃). Then we have the following proposition.

Proposition 7.4. The map W ′1 := τΨW
−1 is a Stratonovich-Weyl correspon-

dence for (G, σ,O(ϕ0)), the map W ′2 := τΦU is a Stratonovich-Weyl correspon-
dence for (G, π,O(ϕ0)) and we have W ′1 =W ′2IB.

Proof. The first and the second assertions immediately follow from Proposi-
tion 5.5 and Proposition 7.3. To prove the third assertion, note that we have
τΨ(J ⊗ ISy(o(ϕ0))) = τΦ. Then, by Proposition 7.2, we can write

W ′2IB = τΦUIB = τΦU1 = τΦ(J−1 ⊗ ISy(o(ϕ0)))W
−1 = τΨW

−1 =W ′1,

hence the result.
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