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1. Introduction

Carleson and boundary Harnack estimates are among the most important tools
in the study of the boundary behaviour of solutions to elliptic and parabolic
equation. Carleson estimates apply to nonnegative solutions u continuously
vanishing on some distinguished part S of the boundary with the goal of show-
ing that nearby, u is controlled above in a non-tangential fashion. More pre-
cisely, this means that an inequality of the following type

u ≤ γ u(Pρ) (1)

holds in a box ψρ of size ρ, based on S, where Pρ approaches S in a non-
tangential fashion as ρ → 0 and γ depends only on the dimension and the
structure of the equation. The first results of this kind are due to Carleson [13],
for harmonic functions in sawtooth regions and to Kemper [38] for solutions of
the heat equation in parabolic C1,1/2 domains. Since then, an inequality like
(1) is known as a Carleson estimate.

A Boundary Comparison Principle or Boundary Harnack Inequality is a
relation of the type

u/v ≈ u(Pr)/v(Pr) in ψρ. (2a)
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where both u and v are nonnegative solutions vanishing on S. It implies that
u and v vanish at the same speed approaching S. For linear equations, it also
implies the Hölder continuity up to the boundary of the quotient u/v.

Both (1) and (2a) have been generalized to more general contexts and op-
erators. In the elliptic context we mention [37] for the Laplace operator in
non-tangentially accessible domains, [11], and [3, 7, 26] for elliptic operators
in divergence and non-divergence form, respectively, [44, 46], for the p-Laplace
operator, [16, 15] for the Kolmogorov operator.

Actually, for uniformly elliptic linear equations, the Carleson estimate has
been proved to be equivalent to the boundary Harnack principle as shown in [1].
It would be interesting to explore this connection between the two inequalities
also in the nonlinear setting.

For parabolic operators, we quote [28, 29, 35, 50] for cylindrical domains,
and [27] for parabolic Lipschitz domains.

A classical application of the two inequalities is to Fatou-type theorems,
but even more remarkable is their use in the regularity theory of two-phase
free boundary problems, as shown in the two seminal papers [9, 10], where a
general strategy to attack the regularity of the free boundary governed by the
Laplace operator has been set up.

This technique has been subsequently extended to stationary problems gov-
erned by variable coefficients linear and semilinear operators [14, 32], to fully
nonlinear operators [30, 31], and to the p-Laplace operator [45, 47].

The free boundary regularity theory for two-phase parabolic problems is
less developed. For Stefan type problems we mention [12, 17, 33, 34] and the
references therein.

In this brief review we describe and comment recent results concerning
a class of singular/degenerate equations whose prototype is the parabolic p-
Laplace equation

ut − div(|Du|p−2Du) = 0, (1)o

where Dw denotes the gradient of w with respect to the space variables. Pre-
cisely, let Ω be an open set in RN and for T > 0 let ΩT denote the cylindrical
domain Ω× (0, T ]. Moreover let

ST = ∂Ω× (0, T ) , ∂PΩT = ST ∪ (Ω× {0})

denote the lateral, and the parabolic boundary respectively.
We shall consider quasi-linear, parabolic partial differential equations of the

form
ut − divA(x, t, u,Du) = 0 weakly in ΩT (3)

where the function A : ΩT ×R× RN → RN is only assumed to be measurable
and subject to the structure conditions{

A(x, t, u, ξ) · ξ ≥ Co|ξ|p
|A(x, t, u, ξ)| ≤ C1|ξ|p−1 a.e. (x, t) ∈ ΩT , ∀u ∈ R, ∀ξ ∈ RN (4)
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where Co and C1 are given positive constants, and p > 1. We refer to the
parameters N, p,Co, C1 as our structural data. We say that a constant is
universal if it depends only on the structural data and on the Lipschitz (or Ck,
if it is the case) character of the domain Ω.

A function
u ∈ C([0, T ];L2(Ω)) ∩ Lp(0, T ;W 1,p(Ω)) (5)

is a weak sub(super)-solution to (3)–(4) if for every sub-interval [t1, t2] ⊂ (0, T ]∫
Ω

uvdx

∣∣∣∣t2
t1

+

∫ t2

t1

∫
Ω

[−uvt + A(x, t, u,Du) ·Dv]dxdt ≤ (≥) 0 (6)

for all non-negative test functions

v ∈W 1,2(0, T ;L2(Ω)) ∩ Lp(0, T ;W 1,p
o (Ω)).

Under the conditions (4), equation (3) is degenerate when p > 2 and singular
when 1 < p < 2, since the modulus of ellipticity |Du|p−2 respectively tends to
0 or to +∞ as |Du| → 0. In the latter case, we further distinguish between
singular super-critical range (when 2N

N+1 < p < 2), and singular critical and

sub-critical range (when 1 < p ≤ 2N
N+1 ).

Let us first focus on Carleson’s estimate and, in particular, on the approach
developed for linear elliptic equations in [11] and for linear parabolic equations
in [50]. Two are the main tools: the Harnack inequality and the geometric decay
of the oscillation of u up to the boundary. Let us sketch the main strategy.
Consider a non-negative solution u in a cylinder, and assume further that the
solution vanishes on a part of the lateral boundary, which we assume to be a
part of the hyperplane {xN = 0}, containing the origin. One wants to show
that

u(P ) ≤ γ, (7)

γ universal, for all P ∈ Ψ1, where

Ψr =
{

(x′, xN ) ∈ RN−1 × R, |x′| ≤ r, 0 < xN < r
}
×
(
−2r2,−r2

)
.

Observe that, if dist(P, ∂ΩT ) ≈ 2−k, by the Harnack inequality we infer u(P1) ≤
Hk. Suppose now that (7) is not true. Then, given an integer h, there must
exist P1 ∈ Ψ1, such that u(P1) > Hh, which forces dist(P1, ∂ΩT ) < 2−h. By
the geometric decay of the oscillation of u up to the boundary, one deduces the
existence of P2 such that u(P2) > Hh+1, and dist(P2, ∂ΩT ) < 2−(h+1).

If h is chosen large enough, an iteration of this procedure yields a sequence
of points {Pj}∞j=1 all belonging to Ψ2/3 (say) and approaching the boundary,
whereas the sequence {u(Pj)}∞j=1 blows up. This contradicts the assumption
that u vanishes continuously on the boundary, and we conclude

sup
Ψ1

u ≤ Hh ≡ γ.
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Due to recent development in the field of Harnack inequalities for the above
class of equations [20, 21, 23, 39], it is possible to prove suitable versions of Car-
leson estimate for non-negative solutions to (3)–(4) both in cylindrical Lipschitz
domains and in time-independent NTA-cylinders (non-tangentially accessible
domain). For more particulars on these sets, we refer the reader to [12, § 12.3].

According to the theory developed in the above papers, a Carleson type
estimate makes sense only for p > 2N/(N + 1).

Indeed, in the critical and sub-critical range, explicit counterexamples rule
out the possibility of a Harnack inequality. Only so-called Harnack-type es-
timates are possible, where, however, the ratio of infimum over supremum in
proper space-time cylinders depends on the solution itself (for more details, see
[24, Chapter 6, § 11–15]).

Although the overall strategy in the nonlinear setting follows the same kind
of arguments of the linear case, its implementation presents a difficulty due
to the lack of homogeneity of the equations. Also there is a striking differ-
ence between the singular and the degenerate case; this is already reflected in
the intrinsic character of the interior Harnack inequality, and it is amplified
when approaching the boundary through dyadically shrinking intrinsic cylin-
ders. Concerning the Carleson estimate, its statement in the degenerate case
can be considered as the intrinsic version of the analogous statement in the lin-
ear uniformly parabolic case. Things are different in the singular super-critical
case, where, in general, one can only prove a somewhat weaker estimate, due
to the possibility for a solution to extinguish in finite time. Indeed, we exhibit
some counterexamples which show that one cannot do any better, unless some
control of the interior oscillation of the solution is available.

The difference between the two cases, degenerate and singular super-critical,
becomes more evident when one considers the validity of a boundary Harnack
principle, even in smooth cylinders. In the singular case, for C2 cylinders,
the existence of suitable barriers provides a linear behavior. Together with
Carleson’s estimate, this fact implies almost immediately a Hopf principle and
the boundary Harnack inequality. The extension of the boundary Harnack
principle to Lipschitz cylinders remains an open question.

On the other hand, solutions to the parabolic p-Laplace equations can van-
ish arbitrarily fast in the degenerate case p > 2, so that no possibility exists to
prove a boundary Harnack principle in its generality. Indeed, when p > 2, two
explicit solutions to the parabolic p-Laplacian in the half space {xN ≥ 0}, that
vanish at xN = 0, are given by

u1(x, t) = xN , u2(x, t) =

(
p− 2

p
p−1
p−2

)
(T − t)−

1
p−2x

p
p−2

N . (8)

The power–like behavior, as exhibited in the second one of (8), is not the
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“worst” possible case. Indeed, let Ω = {−1 ≤ xi ≤ 1, 0 ≤ xN ≤ 1
4}, and

consider the following Cauchy-Dirichlet Problem in Ω× [0, T [:

ut − div(|Du|p−2Du) = 0

u(x, 0) = C T−
1
p−2 exp(− 1

xN
)

u(x′, 0, t) = 0

u(x′, 1
4 , t) = C(T − t)−

1
p−2 e−4

u(x, t) = C(T − t)−
1
p−2 exp(− 1

xN
), x ∈ ∂Ω ∩ {0 < xN < 1

4},

(9)

where

C =
1

2(p− 1)(p− 2)

(
Ω(p− 2)

2p

) 2p
p−2

.

It is easy to check that the function

u3 = C(T − t)−
1
p−2 exp(− 1

xN
), xN > 0 (10)

is a super-solution to such a problem. Therefore, the solution to the same
problem (which is obviously positive) lies below u3 and approaches the zero
boundary value at xN = 0 at least with exponential speed.

There is more. Let γ ∈ (0, 1), Ω = {xN > 0}, T = 2
γ − 1: then

u(x, t) =

[
p− 2

p− 1
γ

1
p−1 (t+ 1)

(
γ +

xN − 2

t+ 1

)
+

] p−1
p−2

(11)

is a solution to (1)o in ΩT , and vanishes not only on the boundary {xN = 0},
but also in the set {0 < xN < 2 − γ(t + 1), 0 < t < T}, which has positive
measure.

Therefore, if one wants to prove an estimate like (2a), one needs to be able
to rule out examples like the ones we have just discussed.

2. The Degenerate Case p > 2

2.1. Harnack inequality and Harnack chains

As we mentioned in the Introduction, our results are strongly based on the
interior Harnack inequalities proved in [20, 21, 22, 39], that we recall below.

First we need to introduce further notations. D′w stands for the gradient
of w with respect to x′.

For y ∈ RN and ρ > 0, Kρ(y) denotes the cube of edge 2ρ, centered at y
with faces parallel to the coordinate planes. When y is the origin of RN we
simply write Kρ; K

′
ρ(y
′) denotes the (N−1)-dimensional cube {(x′ : |xi−yi| <

ρ, i = 1, 2, ..., N − 1}; we write for short {|xi − yi| < ρ}.
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For θ > 0 we also define

Q−ρ (θ) = Kρ × (−θρp, 0], Q+
ρ (θ) = Kρ × (0, θρp]

and for (y, s) ∈ RN × R,

(y, s) +Q−ρ (θ) = Kρ(y)× (s− θρp, s], (y, s) +Q+
ρ (θ) = Kρ(y)× (s, s+ θρp].

Now fix (xo, to) ∈ ΩT such that u(xo, to) > 0 and construct the cylinders

(xo, to) +Q±ρ (θ) where θ =

(
c

u(xo, to)

)p−2

, (12)

and c is a given positive constant. These cylinders are “intrinsic” to the solu-
tion, since their height is determined by the value of u at (xo, to). Cylindrical
domains of the form Kρ × (0, ρp] reflect the natural, parabolic space-time di-
lations that leave the homogeneous, prototype equation (1)o invariant. The
latter however is not homogeneous with respect to the solution u. The time
dilation by a factor u(xo, to)

2−p is intended to restore the homogeneity. Most
of the results we describe in this paper hold in such geometry.

Here is the Harnack inequality.

Theorem 2.1. Let u be a non-negative, weak solution to (3)–(4) in ΩT for
p > 2, (xo, to) ∈ ΩT such that u (xo, to) > 0. There exist positive universal
constants c and γ, such that for all intrinsic cylinders (xo, to) + Q±2ρ(θ) as in
(12), contained in ΩT ,

γ−1 sup
Kρ(xo)

u(·, to − θρp) ≤ u (xo, to) ≤ γ inf
Kρ(xo)

u(·, to + θρp). (13)

The constants γ and c deteriorate as p→∞ in the sense that γ(p), c(p)→∞
as p→∞; however, they are stable as p→ 2.

Some comments are in order. It could be interesting to examine the exis-
tence of a so-called Harnack chain allowing the control of the value of u(x, t)
by the value of u (xo, to) with t < to, thanks to the repeated application of the
Harnack inequality. A Harnack chain argument is indeed one of the usual tools
for proving a Carleson estimate.

In [21], the authors show that such a result actually holds for solutions
defined in RN × (0, T ), and not in a smaller domain ΩT . Although the correct
form of the Harnack chain for solutions defined in ΩT , when Ω ⊂ RN , can
be given, nevertheless, such a result is of no use in the proof of Carleson’s
estimates, as there are two different, but equally important obstructions.

First of all u can vanish and hence prevent any further application of the
Harnack inequality. Indeed, let us consider the following two examples.



BOUNDARY BEHAVIOUR OF THE PARABOLIC P -LAPLACIAN 469

Let γ ∈ (0, 1); the function

u(x, t) =

[
p− 2

p− 1
γ

1
p−1 (t+ 1)

(
γ +

xN − 2

t+ 1

)
+

] p−1
p−2

+

[
p− 2

p− 1
γ

1
p−1 (t+ 1)

(
γ − xN + 2

t+ 1

)
+

] p−1
p−2

is a solution to the parabolic p-Laplacian in the set RN×(0, 2
γ −1) and vanishes

in the cone {
0 < t < 2

γ − 1

− (2− γ (t+ 1)) < xN < 2− (γ (t+ 1)) .

If we take (x, t) and (xo, to) with t < to on opposite sides of the cone, there is
no way to build a Harnack chain that connects the two points.

Let γp =
(

1
λ

) 1
p−1 p−2

p , with λ = N(p− 2) + p, consider the cylinder {xN >

0} × (0, (2γp)
λ) and let x1 = (0, 0, . . . , 2), x2 = (0, 0, . . . , 6). The function

u(x, t) = t−
N
λ

[
1− γp

(
|x− x1|
t

1
λ

) p
p−1

] p−1
p−2

+

+ t−
N
λ

[
1− γp

(
|x− x2|
t

1
λ

) p
p−1

] p−1
p−2

+

is a solution to the parabolic p-Laplacian in the indicated cylinder and vanishes
on its parabolic boundary. Notice that such a solution is the sum of two
Barenblatt functions with poles respectively at x1 and x2 and masses M1 =
M2 = 1: in the interval 0 < t < (2γp)

λ the support of u is given by two
disjoint regions R1 and R2, and only at time T = (2γp)

λ the support of u
finally becomes a simply connected set. Once more, taking (x, t) and (xo, to)
respectively in R1 and R2, there is no way to connect them with a Harnack
chain. As a matter of fact, before the two supports touch, each Barenblatt
function does not feel in any way the presence of the other one. In particular,
we can change the mass of the two Barenblatt functions: this will modify the
time T the two supports touch, but up to T , there is no way one Barenblatt
component can detect the change performed on the other one.

On the other hand, one could think that if we have a solution vanishing on a
flat piece of the boundary and strictly positive everywhere in the interior, then
one could build a Harnack chain extending arbitrarily close to the boundary.
However, this is not the case, as clearly shown by the following example.

Let us consider a domain Ω ⊂ RN , which has a part of its boundary that
coincides with the hyperplane {xN = 0}, and let Γ = ∂Ω ∩ {xN = 0}. Let
T̄ > 0, be given and consider a non-negative solution u to ut − div(|Du|p−2Du) = 0, in ΩT̄

u > 0, in ΩT̄
u = 0, on Γ× (0, T̄ ].
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Let u be such that its value is bounded above by the distance to the flat
boundary piece raised to some given power a > 0, i.e.

u(x, t) ≤ γ dist(x,Γ)a, a > 0, (x, t) ∈ ΩT̄ , (14)

where γ > 0 is a proper parameter.
Let (xo, to) = (x′o, xo,N , to) ∈ ΩT be such that γ(xo,Γ) = 1. The goal is

to form a Harnack chain of dyadic non-tangential cylinders approaching the
boundary, while the chain stays inside ΩT̄ : we want to control the size of the
time interval, which we need to span in order to complete the chain. Let

uo = u (xo, to)

rk = 2−k

xk = (x̂′o, 2
−k)

tk = to − cp−2
k−1∑
i=0

u2−p
i rpi

uk = u(xk, tk) ≈ (2−k)a

for k = 1, . . . Assuming that at each step one can use Harnack’s inequality, we
get an estimate on the size of tk from above

tk ≤ to − cp−2
k−1∑
i=0

(2−ai)2−p2−ip ≤ to − cp−2
k−1∑
i=0

2ai(p−2)−ip

which diverges to −∞ as k → ∞ and xk → Γ, if a ≥ p/(p − 2). Considering
the solution u2 from (8), we see that the above dyadic Harnack chain would
diverge for such a solution as a = p

p−2 .
The infinite length of the time interval needed to reach the boundary, is

just one face (i. e. consequence) of the finite speed of propagation when
p > 2. Points (x, t) that lie inside a proper p-paraboloid centered at (xo, to)
can be reached, starting from (xo, to): if uo is very small, and therefore the
p-paraboloid is very narrow, with small values of r one ends up with very
large values of t. On the other hand, points (x, t) that lie outside the same
p-paraboloid centered at (xo, to) cannot be reached.

These difficulties have been recently overcome in [6], where a sequence of
Harnack chain estimates has been proved. The authors develop Harnack chains
based on the weak Harnack inequality of [39], valid for supersolutions to the p-
parabolic equation. As truncations of solutions are supersolutions, the authors
achieve a finer control of the waiting times (for further details, see § 3 of [6]).

2.2. The Carleson estimates

We need to introduce some further notation. Let ΩT be a Lipschitz cylinder
and fix (xo, to) ∈ ST ; in a neighbourhood of such a point, the cross section
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is represented by the graph {(x′, xN ) : xN = Φ(x′)}, where Φ is a Lipschitz
function with Lipschitz constant L. Without loss of generality, from here on
we assume Φ(x′o) = 0 and L ≥ 1.

For ρ ∈ (0, ro), let xρ = (x′o, 2Lρ), Pρ = Pρ (xo, to) = (x′o, 2Lρ, to) ∈ ΩT
such that u (Pρ) > 0. Note that dist(xρ, ∂Ω) is of order ρ. Set

Ψ−ρ (xo, to) = ΩT ∩
{
|xi − xo,i| < ρ

4 , |xN | < 2Lρ, t ∈ (to − α+β
2 θρp, to − βθρp

}
where θ =

[
c

u(Pρ)

]p−2

, with c given in Theorem 2.1, and α > β are two positive

parameters. We are now ready to state our main result in the degenerate case
p > 2 (see [5]).

Theorem 2.2. (Carleson’s Estimate, p > 2) Let u be a non-negative, weak
solution to (3)–(4) in ΩT . Assume that

(to − θ(4ρ)p, to + θ(4ρ)p] ⊂ (0, T ]

and that u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ} × (to − θ(4ρ)p, to + θ(4ρ)p).

Then there exist two universal positive parameters α > β, and a constant γ̃ > 0,
such that

u(x, t) ≤ γ̃ u (Pρ) for every (x, t) ∈ Ψ−ρ (xo, to) . (15)

Without going too much into details here, let us point out that for the
prototype equation (1)o, estimate (15) have been extended in [4] from Lipschitz
cylinders to a wider class of cylinders ΩT , whose cross section Ω is a NTA
domain.

Weak solutions to (3) with zero Dirichlet boundary conditions on a Lips-
chitz domain are Hölder continuous up to the boundary (see, for example, [19,
Chapter III, Theorem 1.2]). Combining this result with the previous Carleson
estimate, yields a quantitative estimate on the decay of u at the boundary,
invariant by the intrinsic rescaling

x = xo + ρy, t = to +
ρp

u (Pρ)
p−2 τ.

Corollary 2.3. Under the same assumption of Theorem 2.2, we have

0 ≤ u(x, t) ≤ γ
(

dist(x, ∂Ω)

ρ

)µ
u (Pρ) ,

for every (x, t) ∈ Ψ−ρ
2
(xo, to), where µ ∈ (0, 1) is universal.
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If we restrict our attention to solutions to the model equation (1)o, the
result of Corollary 2.3 was strengthened for C2 cylinders in [5].

Theorem 2.4. (Lipschitz Decay) Let ΩT be a C2 cylinder and u a non-negative,
weak solution to (1)o in ΩT . Let the other assumptions of Theorem 2.2 hold.
Then there exist two positive parameters α > β, and a constant γ > 0, depend-
ing only on p, N , and the C2–constant M2 of Ω, such that

0 ≤ u(x, t) ≤ γ
(

dist(x, ∂Ω)

ρ

)
u (Pρ) , (16)

for every (x, t) in the set

ΩT ∩
{
|xi − xo,i| <

ρ

4
, 0 < xN < 2M2ρ

}
×
(
to −

α+ 3β

4
θρp, to − βθρp

]
.

Following Definition 2.2 of [6], let us recall that for a bounded domain
Ω ⊂ RN , we say that it satisfies the ball condition with radius ro > 0, if for each
point y ∈ ∂Ω there exist points x+ ∈ Ω and x− ∈ Ωc such that Bro(x

+) ⊂ Ω,
Bro(x

−) ⊂ Ωc, ∂Bro(x
+)∩∂Ω = {y} = ∂Bro(x

−)∩∂Ω, and x+(y), x−(y), and
y are collinear for each y ∈ ∂Ω; the previous result has been further extended
to C1,1 domains satisfying the ball condition with radius ro: in such a case it
is shown that u has a linear decay at the boundary (see Theorem 9.3 of [6]),
giving proper decay estimates both from above and from below.

Relying on the recent papers [8, 40, 41, 42], these results can be extended
both to a wider class of degenerate equations with differentiable principal part
which have the same structure of the p-Laplacian.

2.3. The Boundary Harnack Inequality

For xo ∈ ∂Ω, let ar(xo) := xo + r
2
x+−xo
|x+−xo| . In [6], the following result is proven.

Theorem 2.5. Let u and v be two non-negative, weak solutions to (1)o in ΩT ,
where Ω is a C1,1 domain satisfying the ball condition with radius ro. Let
xo ∈ ∂Ω, to ∈ (0, T ), and r ∈ (0, ro) be fixed. Let A− = (ar(xo), to), and
assume that u(A−) = v(A−). There exist constants c4, c5, c6, which depend
only on the data, which satisfy the following. Let θ− = u(A−)2−p, and assume

θ−r
p < to, and to + 2c4θ−r

p < T.

Set

A+ = (ar(xo), to + 2c4θ−r
p), θ+,u = c−1

6 u(A+)2−p.
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Assume that v(A+) ≥ u(A+). Then there exists a time t∗+, depending on v,
satisfying

t∗+ ∈ (to + (2c4θ− − θ+,u)rp, to + 2c4θ−r
p)

A∗+ = (ar(xo), t
∗
+), θ∗+,v = c−1

6 v(A∗+)2−p,

such that the following holds. If both u and v vanish continuously on

ST ∩ (Br(xo)× (to + [2c4θ− − 5θ+,u]rp, to + [2c4θ− − θ+,u]rp)) ,

then
1

c5

u(A−)

v(A∗+)
≤ u(x, t)

v(x, t)
≤ c5

u(A+)

v(A−)
,

whenever (x, t) belongs to the set

(Br(xo) ∩ Ω)×
(
to + [2c4θ− − (θ∗+,v + θ+,u)]rp, to + [2c4θ− − θ+,u]rp

)
.

It is important to notice that t∗+ cannot be precisely controlled, and the only
information at disposal is the interval it lies in. Moreover, the previous theo-
rem reduces to the classical Boundary Harnack inequality for linear parabolic
equations, whenever p = 2.

Finally, in [6] a global Harnack inequality is established as well; we refer
the interested reader to § 8 of this work.

3. The Singular Super-critical Case 2N
N+1

< p < 2

3.1. The Harnack inequality

As already mentioned in the introduction, in the singular case, Harnack inequal-
ity exhibits different features with respect the degenerate case. The following
theorem is proved in [23] (see also [24] for a thorough presentation).

For fixed (xo, to) ∈ ΩT and ρ > 0, set M = supKρ(xo) u(x, to), and require
that

K8ρ(xo)× I(to, 8ρ,M2−p) ⊂ ΩT . (17)

Theorem 3.1. (Harnack Inequality) Let u be a non-negative, weak solution to
(3)–(4), in ΩT for p ∈ ( 2N

N+1 , 2). There exist universal constants ε ∈ (0, 1) and

γ > 1 such that for all intrinsic cylinders (xo, to)+Q±8ρ(θ) for which (17) holds,

γ−1 sup
Kρ(xo)

u(·, σ) ≤ u(xo, to) ≤ γ inf
Kρ(xo)

u(·, τ) (18)

for any pair of time levels σ, τ in the range

to − ε u(xo, to)
2−pρp ≤ σ, τ ≤ to + ε u(xo, to)

2−pρp. (19)

The constants ε and γ−1 tend to zero as either p→ 2 or as p→ 2N
N+1 .
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With respect to the degenerate case, we now have c = 1 for the size of the
intrinsic cylinders. The upper boundM has only the qualitative role to insure
that (xo, to) +Q±8ρ(M) are contained within the domain of definition of u.

3.2. A Weak Carleson Estimate

Relying on the above Harnack inequality, one can first prove a weak form of
Carleson estimate. Let ΩT , u, (xo, to), ρ, xρ, Pρ be as in Theorem 2.2 and set

I(to, ρ, h) = (to − hρp, to + hρp).

Moreover, let u be a weak solution to (3)–(4) such that

0 < u ≤M in ΩT , (20)

and assume that

I(to, 9ρ,M
2−p) ⊂ (0, T ]. (21)

Then we define

Ψ̃ρ = ΩT ∩
{

(x, t) : |xi − xo,i| < 2ρ, |xN < 4Lρ| , t ∈ I(to, 9ρ, η
2−p
ρ )

}
Ψ̄ρ = ΩT ∩

{
(x, t) : |xi − xo,i| < ρ

4 , |xN < 2Lρ| , t ∈ I(to, ρ, η
2−p
ρ )

}
where ηρ is the first root of the equation

max
Ψ̃ρ(xo,to)

u = ηρ. (22)

Notice that both the functions y1(ηρ) = maxΨ̃ρ(xo,to) u, y2(ηρ) = ηρ are mono-

tone increasing. Moreover{
y1(0) ≥ u(Pρ) > 0,
y2(0) = 0,

and

{
y1(M) ≤M,
y2(M) = M.

Therefore, it is immediate to conclude that at least one root of (22) actually

exists. Moreover, by (21) Ψ̃ρ(xo, to) ⊂ ΩT .
A weak form of the Carleson estimate, is expressed by the following theorem

(see [5]).

Theorem 3.2. (Carleson-type Estimate, weak form, 2N
N+1 < p < 2). Let u be a

weak solution to (3)–(4), that satisfies (20). Assume that (21) holds true and
u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ} × I(to, 9ρ,M
2−p).
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Then there exist universal constants γ > 0 and α ∈ (0, 1), such that

u(x, t) ≤ γ
(

dist(x, ∂Ω)

ρ

)α
× sup
τ∈I(to,ρ,2η2−p

ρ )

u(xρ, τ),

for every (x, t) ∈ Ψ̄ρ(xo, to).

If we let

Ψρ,M (xo, to) = ΩT ∩
{

(x, t) : |xi−xo,i| <
ρ

4
, |xN | < 2Lρ, t ∈ I(to, ρ,M

2−p)
}
,

we have a second statement.

Corollary 3.3. Under the same assumptions of Theorem 3.2, we have

u(x, t) ≤ γ
(

dist(x, ∂Ω)

ρ

)α
× sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ),

for every (x, t) ∈ Ψρ,M (xo, to).

The quantity ηρ is known only qualitatively through (22), whereas M is a
datum. Therefore, Corollary 3.3 can be viewed as a quantitative version of a
purely qualitative statement. On the other hand, since ηρ could be attained
in Pρ, Theorem 3.2 gives the sharpest possible statement, and is genuinely
intrinsic.

Moreover, with respect to Theorem 2.2 and Corollary 2.3, Theorem 3.2
combines two distinct statements in a single one (mainly for simplicity), and
presents two fundamental differences: when p > 2, the value of u at a point
above controls the values of u below, whereas when 2N

N+1 < p < 2, the max-
imum of u over a proper time interval centered at to controls the values of
u both above and below the time level to. These are consequences of the
different statements of the Harnack inequality in the two cases.

Can we improve the result of Theorem 3.2, namely can we substitute the
supremum of u on I(to, ρ, 2η

2−p
ρ ) with the pointwise value u (Pρ)? This would

certainly be possible, if there existed a universal constant γ such that

∀ t ∈ I(to, ρ, 2η
2−p
ρ ) u(xρ, t) ≤ γ u (Pρ) .

Under a geometrical point of view, this amounts to building a Harnack chain
connecting (xρ, t) and Pρ, for all t ∈ I(to, ρ, 2η

2−p
ρ ). In general, without further

assumptions on u, this is not possible, as the following counterexample shows.
Let u be the unique non-negative solution to

u ∈ C(R+;L2(Ω)) ∩ Lp(R+;W 1,p
o (Ω))

ut − div(|Du|p−2Du) = 0 in ΩT
u(·, 0) = uo ∈ Co(Ω),
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with uo > 0 in Ω, and uo = 0 on ∂Ω.

By Proposition 2.1, Chapter VII of [19], there exists a finite time T∗, de-
pending only on N , p, uo, such that u(·, t) ≡ 0 for all t ≥ T∗. By the results of
[19, Chapter IV], u ∈ Co(Ω× (0, T∗)). Suppose now that at time t = T∗ + 1,
we modify the boundary value and for any t > T∗ + 1 we let u(·, t) = g(·, t) on
∂Ω, where g is continuous and strictly positive. It is immediate to verify that
u becomes strictly positive for any t > T∗ + 1. Therefore, the positivity set for
u is not a connected set, u(x, t) ≡ 0 for all ∀ (x, t) ∈ Ω× (T∗, T∗ + 1), and if
(xρ, t) and Pρ lie on opposite sides of the vanishing layer for u, by the intrinsic
nature of Theorem 3.1, there is no way to connect them with a Harnack chain.

The previous counterexample allows u to vanish identically for t in a proper
interval, but by suitably modifying the boundary values, it is clear that we
can have u strictly positive, and as close to zero as we want. Therefore, the
impossibility of connecting two arbitrary points by a Harnack chain, does not
depend on the vanishing of u, but it is a general property of solutions to (3)–
(4), whenever Ω 6= RN . Moreover, by properly adjusting the boundary value,
one can even create an arbitrary number of oscillations for u between positivity
and null regions.

We considered solutions to the p-Laplacian just for the sake of simplicity, but
everything continues to hold, if we consider the same boundary value problem
for (3)–(4).

Notice that if we deal with weak solutions to (3)–(4) in RN × (0, T ], then
we do not have boundary values any more, the situation previously discussed
cannot occur, and therefore any two points (x, t) and (xo, to) can always be
connected by a Harnack chain, provided both u(x, t) and u(xo, to) are strictly
positive, and 0 < t− to < ε

8p to, as discussed in [24, Chapter 7, Proposition 4.1].
The sub potential lower bound discussed there is then a property of weak
solutions given in the whole RN × (0, T ).

The Harnack inequality given in Theorem 3.1 is time-insensitive, and its
constants are not stable as p→ 2. A different statement, analogous to the one
given in Theorem 2.1, could be given, and in such a case the constants would be
stable (see [24, Chapter 6] for a thorough discussion of the two possible forms).
However, the eventual result is the same, and independently of the kind of
Harnack inequality one considers, two points (x, t) and (xo, to) of positivity for
u, cannot be connected by a Harnack chain.

Notice that we have a sort of dual situation: when 1 < p < 2 the support
of u can be disconnected in time, when p > 2, the support can be disconnected
in space.

Strictly speaking, the previous counterexample only shows that we cannot
replace the line with a point, but per se it does not rule out the possibility for
a strong form of Carleson’s estimate to hold true all the same. However, if one
tries to adapt to the singular super-critical context the standard proof based
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on the Harnack inequality and the boundary Hölder continuity (as we did, for
example, in the degenerate context), then one quickly realizes that, one needs
to know in advance the oscillation of u: this suggests that only a control in
terms of the supremum taken in a proper set can be feasible.

3.3. A Strong Carleson Estimate

With respect to the statement of Theorem 3.2, a stronger form is indeed pos-
sible, provided we allow the parameter γ to depend not only on the data, but
also on the oscillation of u. Let ΩT , u, (xo, to), ρ, Pρ be as in Theorem 2.2,
and for k = 0, 1, 2, . . . set

ρk =

(
7

8

)k
ρ, σk =

ρk

γk
2−p
p

,

xρk = (x′o, 2Lρk), Pρk = (x′o, 2Lρk, to),

Ψρk,M (xo, to)

= ET ∩
{

(x, t) : |xi − xo,i| <
ρk
4
, |xN | < 2Lρk, t ∈ I(to, σk,M

2−p)
}
,

mo = inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ), Mo = sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ).

Corollary 3.4. (Carleson-type Estimate, strong form, 2N
N+1 < p < 2). Let

u be a weak solution to (3)–(4) such that 0 < u ≤ M in ΩT . Assume that
I(to, 9ρ,M

2−p) ⊂ (0, T ] and that u vanishes continuously on

∂Ω ∩ {|xi − xo,i| < 2ρ, |xN | < 8Lρ} × I(to, 9ρ,M
2−p).

Then there exists a constant γ, depending only on ρ,N,Co, C1, L, and M
mo

,
such that

u(x, t) ≤ γ u(Pρk), (23)

for every (x, t) ∈ Ψρk,M (xo, to), for all k = 0, 1, 2, . . . .

The strong form of the Carleson-type estimate is derived from Corollary 3.3.
An analogous statement can be derived from Theorem 3.2.

Estimate (23) has the same structure as the backward Harnack inequality
for caloric functions that vanish just on a disk at the boundary (see [12, Theo-
rem 13.7, page 234]). This is not surprising, because (23) is indeed a backward
Harnack inequality, due to the specific nature of the Harnack inequality for the
singular case. However, it is worth mentioning that things are not completely
equivalent; indeed, the constants we have in the time-insensitive Harnack in-
equality (18)–(19) are not stable (and cannot be stabilized), and therefore,
the result for caloric functions cannot be recovered from the singular case, by
simply letting p→ 2 (as it is instead the case for many other results).
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3.3.1. Hopf Principle and Boundary Harnack inequality

Another striking difference with respect to the degenerate case appears when
we consider C1,1 cylinders and (mainly for simplicity) the prototype equation
(1)o. In this case, indeed, weak solutions vanishing on the lateral part enjoy
a linear behavior at the boundary with implications expressed in the following
result. Note that the role of L in the definition of Ψρ,M is now played by C1,1

constant M1,1 of Ω.

Theorem 3.5. Let 2N
N+1 < p < 2. Assume ΩT is a C1,1 cylinder, and (xo, to),

ρ, Pρ are as in Theorem 2.2. Let u, v be two weak solutions to (1)o in ΩT ,
satisfying the hypotheses of Theorem 3.2, 0 < u, v ≤ M in ΩT . Then there
exist positive constants s̄, γ, β, 0 < β ≤ 1, depending only on N , p, and M1,1,
and ρo, co > 0, depending also on the oscillation of u, such that the following
properties hold.

(a) Hopf Principle:
|Du| ≥ co in Ψρo,M (xo, to). (24)

(b) Boundary Harnack Inequality:

γ−1

inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

sup
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ u(x, t)

v(x, t)
≤ γ

sup
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

inf
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
, (25)

for all (x, t) ∈ {x ∈ Ks̄ ρ4
(xo) ∩ Ω : dist(x, ∂Ω) < s̄ρ8} × I(to, ρ,

1
2M

2−p),
with ρ < ρo.

(c) The quotient u/v is Hölder continuous with exponent β in Ψ ρo
2 ,M

(xo, to)

Since
sup

τ∈I(to,ρ,2M2−p)

u(xρ, τ)

inf
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ Mo,uu(Pρ)

mo,u

Mo,v

mo,vv(Pρ)
,

inf
τ∈I(to,ρ,2M2−p)

u(xρ, τ)

sup
τ∈I(to,ρ,2M2−p)

v(xρ, τ)
≤ mo,uu(Pρ)

Mo,u

mo,v

Mo,vv(Pρ)
,

the Boundary Harnack Inequality (25) can be rewritten as

γ̃−1u(Pρ)

v(Pρ)
≤ u(x, t)

v(x, t)
≤ γ̃ u(Pρ)

v(Pρ)

where now γ̃ depends not only on N , p, M1,1, but also on Mo,u/mo,u and
Mo,v/mo,v.
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Note that (a) implies that near a part of the lateral boundary, where a
non-negative solution vanishes, the parabolic p-Laplace operator is uniformly
elliptic. Since we do not have an estimate at the boundary of the type

|Du(x, t)| ≥ c u(x, t)

dist(x, ∂Ω)
,

(a) and (c) hold only in a small neighbourhood of ST , whose size depends on
the solution, as both co and the oscillation of the gradient Du depend on the
oscillation of u: this is precisely the meaning of ρo.

The proof relies on proper estimates from above and below, which were orig-
inally proved in [25, § 4] for solutions to the singular porous medium equations
in C2 domains by building explicit barriers.

We recast these estimates in the lemma below, in a form tailored to our
purposes. Indeed, the Hopf Principle and a weak version of the Boundary
Harnack Inequality follow easily from these estimates. Our improvement lies

in the use of the Carleson estimates, that allow a more precise bound for u(x,t)
v(x,t)

in terms of
u(Pρ)
v(Pρ) . The restriction to 2N

N+1 < p < 2 comes into play only in this

last step.
Thus, let ∂Ω be of class C1,1 and u be a non-negative, weak solution to

(1)o in ΩT , for 1 < p < 2. Assume that u ≤ M in ΩT . For x ∈ RN , set
d(x) = dist(x, ∂Ω), and for s > 0, let

Ωs = {x ∈ Ω :
s

2
≤ d(x) ≤ 2s}.

Lemma 3.6. Let τ ∈ (0, T ) and fix xo ∈ ∂Ω. Assume that u vanishes on

∂Ω ∩K2ρ(xo)× (τ, T ).

For every ν > 0, there exist positive constants γ1, γ2, and 0 < s̄ < 1
2 , depending

only on N , p, ν, and M1,1, such that for all τ + νM2−pρp < t < T , and for all
x ∈ Ω ∩K2s̄ρ(xo) with d(x) < s̄ρ,

γ2

(
d(x)

ρ

)
inf

K2ρ(xo)∩Ωs̄ρ×(τ,T )
u ≤ u(x, t) ≤ γ1

(
d(x)

ρ

)
sup

Ω∩K2ρ(xo)×(τ,T )

u.

Relying on the above lemma, the proof of Theorem 3.5 follows rather easily.
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[19] E. DiBenedetto, Degenerate Parabolic Equations, Series Universitext,
Springer, New York, 1993.

[20] E. DiBenedetto, U. Gianazza, and V. Vespri, Harnack Estimates for



BOUNDARY BEHAVIOUR OF THE PARABOLIC P -LAPLACIAN 481

Quasi-Linear Degenerate Parabolic Differential Equations, Acta Mathematica
200 (2008), 181–209.

[21] E. DiBenedetto, U. Gianazza, and V. Vespri, Subpotential lower bounds
for nonnegative solutions to certain quasi-linear degenerate parabolic equations,
Duke Math. J. 143 (2008), 1–15.

[22] E. DiBenedetto, U. Gianazza, and V. Vespri, Alternative Forms of the
Harnack Inequality for Non-Negative Solutions to Certain Degenerate and Sin-
gular Parabolic Equations, Rend. Lincei Mat. Appl. 20 (2009), 369–377.

[23] E. DiBenedetto, U. Gianazza, and V. Vespri, Forward, Backward and
Elliptic Harnack Inequalities for Non-Negative Solutions to Certain Singular
Parabolic Partial Differential Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci.
(5) 11 (2010), 385–422.

[24] E. DiBenedetto, U. Gianazza, and V. Vespri, Harnack’s Inequality for
Degenerate and Singular Parabolic Equations, Springer Monographs in Mathe-
matics, Springer, New York, 2012.

[25] E. DiBenedetto, Y.C. Kwong, and V. Vespri, Local Space Analyticity of
Solutions of Certain Singular Parabolic Equations, Indiana Univ. Math. J. 40
(1991), 741–765.

[26] E.B. Fabes, N. Garofalo, M. Malave, and S. Salsa, Fatou Theorems for
Some non Linear Elliptic Equations, Rev. Mat. Iberoam. 4 (1988), 227–251.

[27] E.B. Fabes, N. Garofalo, and S. Salsa, Comparison theorems for temper-
atures in non-cylindrical domains, Atti Accad. Naz. Lincei, Rend. Ser. 8 78
(1984), 1–12.

[28] E.B. Fabes, N. Garofalo, and S. Salsa, A backward Harnack inequality and
Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math.
30 (1986), 536–565.

[29] E.B. Fabes, M.V. Safonov, and Y. Yuan, Behavior near the boundary of
positive solutions of second order parabolic equations II, Trans. Amer. Math.
Soc. 351 (1999), 4947–4961.

[30] M. Feldman, Regularity of Lipschitz free boundaries in two-phase problems for
fully nonlinear elliptic equations, Indiana Univ. Math. J. 50 (2001), 1171–1200.

[31] F. Ferrari, Two-phase problems for a class of fully nonlinear elliptic opera-
tors. Lipschitz free boundaries are C1,γ , American Journal of Mathematics 128
(2006), 541–571.

[32] F. Ferrari and S. Salsa, Regularity of the free boundary in two-phase problems
for linear elliptic operators, Adv. Math. 214 (2007), 288–322.

[33] F. Ferrari and S. Salsa, Regularity of the solutions for parabolic two-phase
free boundary problems, Comm. Partial Differential Equations 35 (2010), 1095–
1129.

[34] F. Ferrari and S. Salsa, Two-phase free boundary problems for parabolic
operators: smoothness of the front, Comm. Pure Applied Math. 17 (2014), 1–
39.

[35] N. Garofalo, Second order parabolic equations in nonvariational forms: bound-
ary Harnack principle and comparison theorems for nonnegative solutions, Ann.
Mat. Pura Appl. (4) 138 (1984), 267–296.

[36] U. Gianazza, M. Surnachev, and V. Vespri, On a new proof of Hölder
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