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Abstract. Considering a geometry made of three concentric spheri-
cal nested layers (brain, skull, scalp), each with constant homogeneous
conductivity, we establish a uniqueness result in inverse conductivity
estimation, from partial boundary data in presence of a known source
term. We make use of spherical harmonics and linear algebra computa-
tions, that also provide us with stability results and a robust reconstruc-
tion algorithm. As an application to electroencephalography (EEG), in
a spherical 3-layer head model (brain, skull, scalp), we numerically es-
timate the skull conductivity from available data (electrical potential
at electrodes locations on the scalp, vanishing current flux) and given
pointwise dipolar sources in the brain.
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1. Introduction

We study an inverse conductivity recovery problem in the particular case of a
spherical 3D domain Ω (a ball in R3) and for piecewise constant conductivity
functions, of which one value is unknown. More precisely, we assume Ω to be
made of 3 nested spherical layers, whose conductivity values are known in the
innermost and outermost layers. We assume that the elliptic partial differential
conductivity equation (conductivity PDE) holds with a given source term in
divergence form supported in the innermost layer.

Provided a single measurement as a pair of Cauchy data on the bound-
ary (open subset of the sphere ∂Ω), we will establish uniqueness and stability
properties together with a reconstruction algorithm for the intermediate con-
ductivity. We will also perform some analysis in order to investigate robustness
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of the reconstruction with respect to available measurements and sources in-
formation.

We face a very specific version of the many inverse conductivity issues for
second order elliptic PDE under study nowadays. This one is related to piece-
wise constant conductivities in a spherical geometry in R3, and set from a
single (Cauchy pair of partial) boundary measurement. Similar inverse con-
ductivity recovery problems may be formulated in more general (Lipschitz
smooth) domains of arbitrary dimension, with more general conductivities.
They are often considered from (several or) infinitely many boundary measure-
ments (pairs of Cauchy data, related Dirichlet-to-Neumann operator), and are
called after Calderón, or after medical imaging processes (Electrical Impedance
Tomography). Uniqueness and stability conductivity recovery issues are deeply
discussed in [1, 2, 3, 6, 19, 29, 24].

More general inverse problems for elliptic PDEs, in particular transmission
issues, are discussed in [20, 25]. Stability properties of Cauchy boundary value
problems are described in [5] (see also references therein).

A fundamental problem in experimental neuroscience is the inverse problem
of source localization, which aims at locating the sources of the electric activ-
ity of the functioning human brain using non-invasive measurements, such as
electroencephalography (EEG), see [10, 14, 16, 17, 18, 21].

EEG measures the effect of the electric activity of active brain regions
through values of the electric potential obtained by a set of electrodes placed
at the surface of the scalp [14] and serves for clinical (location of epilepsy foci)
and cognitive studies of the living human brain.

The inverse source localization problem in EEG is influenced by the electric
conductivities of the several head tissues and especially by the conductivity of
the skull [30]. The human skull is a bony tissue consisting of compact and
spongy bone compartments, whose distribution and density varies across in-
dividuals, and according to age, since humidity of tissues, and therefore their
conductivity tends to decrease [28]. Therefore conductivity estimation tech-
niques are required to minimize the uncertainty in source reconstruction due
to the skull conductivity.

Typically, an inverse conductivity estimation problem aims at determining
an unknown conductivity value inside a domain Ω from measurements acquired
on the boundary ∂Ω. In the EEG case, the measurements can be modeled as
pointwise values obtained on a portion of the boundary ∂Ω (the upper part
of the scalp) but they are also affected by noise and measurement errors. The
questions arising are: the uniqueness of the skull conductivity for known sources
inside the brain; the stability of this estimation; and a constructive estimation
method.

Quite frequently, for piecewise constant conductivities, the sub-domain (sup-
porting the unknown conductivity value) is also to be determined, in some cases
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more importantly than the constant conductivity value itself (for example for
tumor detection, see [7, Ch. 3] and references therein, [22, 23]). But in the
case of EEG, the sub-domains containing the various tissues can be consid-
ered known, because they can be extracted from magnetic resonance images.
And for simplicity, we only consider the inverse skull conductivity estimation
problem in a three-layer spherical head geometry, using partial boundary EEG
data. The dipolar sources positions and moments will be considered to be
known. This may appear to be an unrealistic assumption because sources
reconstruction is itself a difficult inverse problem. But in fact, in some situa-
tions there are prior assumptions as to the positions of the sources (in primary
evoked electrical potentials), and the position of a source also constrains its
orientation, because to the laminar organization of pyramidal neurons in the
grey matter.

The overview of this work is as follows. In Section 2, we precise the model
and the considered inverse conductivity recovery issue. Our main uniqueness
and stability results are stated and proved in Section 3, while an application
to EEG and a numerical study are given in Section 4. We then provide a short
conclusion in Section 5.

2. Model, problems

2.1. Domain geometry, conductivity

We consider the inverse conductivity estimation problem in a spherical domain
Ω ⊂ R3 made of 3 concentric spherical layers (centered at 0), a ball Ω0, and
2 consecutive surrounding spherical shells Ω1, Ω2. Their respective boundaries
are the spheres denoted as S0, S1, and S2, with Si of radius ri such that
0 < r0 < r1 < r2. We also put Ω3 = R3 \ Ω = R3 \ (Ω ∪ S2).

For i = 0, 1, 2, we assume that σ is a real valued piecewise constant con-
ductivity coefficient with values σi > 0 in Ωi. Let also σ3 = 0.

Note that in the present work, the values σi of the conductivity in Ωi for
i 6= 1 outermost layers Ω0, Ω2 are assumed to be known.

In the EEG framework and for spherical three-layer head models, the do-
mains Ωi respectively represent the brain, the skull and the scalp tissues for
i = 0, 1, 2, as shown in Figure 1, see [17, 18]. There, under isotropic assumption,
it holds that 0 < σ1 < σ0 ' σ2.

Throughout the present work, the geometry Ω and the conductivity σ will
be assumed to satisfy the above assumptions.

More general situations are briefly discussed in Remark 3.2 and Section 5.
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Figure 1: Spherical head model, with one source Cq, pq.

2.2. PDE, source terms, statement of the problem

We consider conductivity Poisson equations

∇ ·
(
σ∇u

)
= S or div (σ gradu) = S in R3 , (1)

(in the distributional sense), with a source term S taken to be a distribution
on R3 compactly supported in Ω0.

We investigate situations where source terms S are of divergence form:

S = ∇ · JP = divJP ,

for distributions JP made of Q pointwise dipolar sources located at Cq ∈ Ω0

with (non zero) moments pq ∈ R3:

JP =

Q∑
q=1

pq δCq
, whence S =

Q∑
q=1

pq · ∇δCq
, (2)

where δCq is the Dirac distribution supported at Cq ∈ Ω0. Therefore, in R3,

∇ ·
(
σ∇u

)
=

Q∑
q=1

pq · ∇δCq . (3)

For the EEG case, under the quasi-static approximation and modeling the
primary cerebral current JP as in (2), Maxwell’s equations imply that the con-
ductivity PDE (3) drives the behaviour of the electric potential u [17].
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In this work, we consider the following inverse conductivity estimation prob-
lem in the 3-layered spherical framework of Section 2.1.

From (a single pair of) Cauchy boundary data u = g in a (non-empty) open
subset Γ of ∂Ω = S2 and ∂nu = 0 on S2 of a solution to (3), and from a (known)
source term S given by (2), we want to recover the constant value σ1 of the
conductivity σ in the intermediate layer Ω1.

In Section 3, we establish uniqueness properties of σ1 from Cauchy data u
on Γ ⊂ S2, ∂nu on S2 and from the source term S. A stability result is also
given for Γ = S2 and equation (1) for more general source terms S will be
discussed as well.

Before, we still need to describe the PDE and associated boundary value
problems in each of the consecutive layers Ωi.

2.3. Laplace-Poisson PDE and transmission issues

For i = 0, 1, 2, 3, write u|Ωi
= ui for the restriction to Ωi of the solution u to

(3). We put ∂nui for the normal derivative of ui on spheres in Ωi, the unit
normal vector being taken towards the exterior direction (pointing to Ωi+1).
In the present spherical setting, we actually have ∂n = ∂r.

For i = 1, 2, 3, the following transmission conditions hold on Si−1, in par-
ticular in L2(Si−1), see [10, 14, 16] (and Section 2.4):

ui−1 = ui , σi−1 ∂nui−1 = σi ∂nui .

Linked by those boundary conditions, the solutions ui to (3) in Ωi satisfy the
following Laplace and Laplace-Poisson equations:

∆ui = 0 in Ωi , i > 0 ,

∆u0 =
1

σ0

Q∑
q=1

pq · ∇δCq in Ω0 .
(4)

We will see (in Section 3.2.2) that the transmission from

[
ui
∂nui

]
on Si to[

ui−1

∂nui−1

]
on Si−1, for i = 1, 2, may be written

[
ui−1

∂nui−1

]
|Si−1

=

[
1 0

0 σi

σi−1

]
T (Si−1, Si)

[
ui

∂nui

]
|Si

.

for some operator T (Si−1, Si) that accounts for the harmonicity of ui in Ωi and
that we will express using spherical harmonics.
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Provided (a single pair of non identically vanishing smooth enough) Cauchy
boundary data u, ∂nu on Γ ⊂ S2, whenever Γ 6= ∅ is open, and for given
conductivity values σ0, σ1, σ2, uniqueness of u holds on S2, then on S1 and S0,
as ensured by the above formulation and Holmgren’s theorem. It is enough to
assume that u ∈ W 1,2(Γ) (the Sobolev-Hilbert space of L2(Γ) functions with
first derivative in L2(Γ)) and ∂nu ∈ L2(Γ), see [11, 13, 15].

We then face a preliminary data transmission issue from Γ to S0, a Cauchy
boundary value problem for Laplace equation, which needs to be regularized in
order to be well-posed [20]. This is usually done by Thykonov regularization or
the addition of an appropriate constraint and may be solved using boundary
elements methods, see [8, 14] and references therein.

In EEG, data are provided as pointwise values of g at points in Γ (electrodes
measurements), and yet another extension step is needed in order to compute
an estimate of g on S2, using best constrained approximation, see Section 4.

Concerning the source term S, note that it’s knowledge only determines u0

on S0 up to the addition of a harmonic function in Ω0. Indeed, by convolution
with a fundamental solution of Laplace equation in R3, we see that

us(x) =
1

4π

Q∑
q=1

< pq,x−Cq >

|x−Cq|3
, x 6∈ {Cq} , (5)

satisfies us(x)→ 0 at |x| → ∞,

∆us =

Q∑
q=1

pq · ∇δCq
,

in R3, whence in Ω and Ω0, and ∆us = 0 outside Ω0. Solutions u0 to (4) in
Ω0 are then provided by us/σ0 up to the addition of a harmonic function in
Ω0. The later is in fact (uniquely) determined by the (transmitted) boundary
conditions, see [10, Sec. 1.2], [14, 16, 21] where inverse source problems in the
EEG setting are discussed, together with reconstruction algorithms.

2.4. Associated forward Neumann problem

Let φ ∈ L2(S2) (actually it is enough to take φ ∈ W−1/2,2(S2)) of vanishing
mean value on S2. Then, there exists a solution u to (3) in Ω, Hölder con-
tinuous in Ω \ {Cq}, which satisfies ∂nu = φ on S2; it is unique up to an
additive constant. In particular, the associated Dirichlet boundary trace u|S2

is Hölder continuous on S2. Indeed, looking to u−us as a (weak) solution to a
strictly elliptic PDE in a bounded smooth domain Ω or to a sequence of Laplace
equations in the domains Ωi, variational formulation and Lax-Milgram theo-
rem imply that u−us ∈W 1,2(Ω) and the uniqueness property, see [11, 13, 15].
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Hence u−us belongs to W 1/2,2(S2) and actually to W 1,2(S2). That u possesses
yet more regularity properties is established in [10, Prop. 1], see also [5] for
stability results of Cauchy boundary transmission problems.

3. Conductivity recovery

3.1. Uniqueness result

Recall that the geometry Ω and the conductivity coefficients satisfy the hy-
potheses of Section 2.1. Let Γ ⊂ S2 a (non empty) open set.

Assume the source term S given by (2) to be known, and not to be reduced
to a single dipolar pointwise source located at the origin (S 6= p · ∇δ0).

Theorem 3.1. Let σ, σ′ be piecewise constant conductivities in Ω associated
to two values σ1, σ′1 in Ω1 and equal values σ0, σ2 in Ω0, Ω2. If two solutions
u, u′ to (3) associated with σ, σ′ and such that ∂nu = ∂nu

′ = 0 on S2 coincide
on Γ: u|Γ = u′|Γ, then σ1 = σ′1.

This implies that a single pair of partial boundary Dirichlet data u|Γ on Γ
and Neumann data ∂nu = 0 (vanishing) on S2 of a solution u to (3) uniquely
determines σ1 > 0.

As the proof in Section 3.3 will show, source terms S that guarantee unique-
ness are such that associated Dirichlet data u|Γ on Γ do not identically vanish.
Notice also that if no source is present, uniqueness fails (boundary data iden-
tically vanish on S2). However, Theorem 3.1 would also hold true for non
identically vanishing Neumann on S2. We will discuss more general statements
the Theorem in Remark 3.2 after the proof, see also Section 5.

In order to establish the result, we use spherical harmonics expansions that
we now precise.

3.2. Spherical harmonics expansions

In order to express harmonic functions in the spherical shells and balls Ωi and
their boundary values on Si, we use the spherical harmonics basis rk Ykm(θ, ϕ),
r−(k+1) Ykm(θ, ϕ), k ≥ 0, |m| ≤ k, in the spherical coordinates (r, θ, ϕ). These
are homogeneous harmonic and anti-harmonic polynomials for which we refer
to [9, Ch. 9, 10],[15, Ch. II, Sec. 7.3] as for their properties. (the basis
functions Ykm(θ, ϕ) are products beteween associated Legendre functions of
indices k ≥ 0, |m| ≤ k, applied to cos θ and elements of the Fourier basis of
index m on circles in ϕ (real or complex valued, cos mϕ, sin mϕ or e±imϕ).
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3.2.1. Source term, boundary data

The decomposition theorem [9, Thm 9.6], [15, Ch. II, Sec. 7.3, Prop. 6], is to
the effect that the restriction ui of u to Ωi for i = 1, 2 may be expanded on the
spherical harmonics basis as follows, at (r, θ, ϕ) ∈ Ωi:

ui(r, θ, ϕ) =

∞∑
k=0

k∑
m=−k

[
αikmr

k + βikmr
−(k+1)

]
Ykm(θ, ϕ) ∈ Ωi , (6)

where αikm and βikm are the spherical harmonic coefficients of the harmonic
and anti-harmonic parts of ui, respectively (harmonic inside or outside ∪j≤iΩi).
Similarly, because it is harmonic in a spherical layer surrounding S0, the re-
striction u0 of u to Ω0 is given at points (r, θ, ϕ) with r > maxq |Cq| > 0
by

u0(r, θ, ϕ) =

∞∑
k=0

k∑
m=−k

α0kmr
k Ykm(θ, ϕ) + us(r, θ, ϕ) ,

where us given by (5) is expanded there as: r−(k+1) Ykm(θ, ϕ):

us(r, θ, ϕ) =
∑
k,m

β0kmr
−(k+1)Ykm(θ, ϕ) . (7)

Here, β0km are the spherical harmonic coefficients of the anti-harmonic (har-
monic outside Ω0) function uS .

The normal derivative of ui, i = 0, 1, 2, is then given in Ωi (with r >
maxq |Cq| for i = 0) by:

∂nui(r, θ, ϕ) =
∑
k,m

[
αikmkr

k−1 − βikm(k + 1)r−(k+2)
]
Ykm(θ, ϕ) (8)

On Si, we put (because ui ∈ L2(Si) where the spherical harmonics form an
orthogonal basis [9, Thm 5.12]):

ui(ri, θ, ϕ) =

∞∑
k=0

k∑
m=−k

γikmYkm(θ, ϕ),

∂nui(ri, θ, ϕ) =

∞∑
k=0

k∑
m=−k

δikmYkm(θ, ϕ),

with l2 summable coefficients γikm, δikm (that may be real or complex valued
depending on the choice for Ykm).

In particular, once the boundary data u2 = g is extended from Γ to S2

(see [8, 14] and the discussion in Section 2.3), we have:

u2(r2, θ, ϕ) =
∑
k,m

γ2kmYkm(θ, ϕ) =
∑
k,m

gkmYkm(θ, ϕ) ,
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with gkm = γ2km, whereas the corresponding δ2km = 0 since ∂nu2 = 0 on S2

(because σ3 = 0).

3.2.2. Preliminary computations

Below, we write for sake of simplicity, for i = 0, 1, 2: αik = αikm, βik = βikm,
γik = γikm, δik = δikm, gk = gkm, for all k ≥ 0, and every |m| ≤ k (we could
also take the sums over |m| ≤ k).

Recall from Section 2.3 that the following transmission conditions hold on
Si−1 for i = 1, 2, 3:

Σi−1

[
ui−1

∂nui−1

]
|Si−1

= Σi

[
ui
∂nui

]
|Si−1

, (9)

with

Σi =

[
1 0

0 σi

]
hence Σ−1

i =

[
1 0

0 1
σi

]
and σi Σ−1

i =

[
σi 0

0 1

]
.

By projection of (6), (8), onto (the orthogonal L2(Si) basis of) spherical har-
monics, and with

Tk(ri) =

[
rki r

−(k+1)
i

krk−1
i −(k + 1)r

−(k+2)
i

]
,

we obtain for all k ≥ 0 the following relations on Si:[
γik

δik

]
= Tk(ri)

[
αik

βik

]
.

In particular:

βik =
rk+1
i

2k + 1
(k γik − δik) . (10)

The transmission conditions (9) through Si−1 express as:

Σi−1

[
γi−1k

δi−1k

]
= Σi Tk(ri−1)

[
αik
βik

]
.

Because Tk(ri) is invertible (ri > 0), this implies that:[
γi−1k

δi−1k

]
= Σ−1

i−1 Σi Tk(ri−1)Tk(ri)
−1

[
γik

δik

]
.
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Therefore, in the spherical geometry, T (Si−1, Si) = Tk(ri−1)Tk(ri)
−1 for the

operator T (Si−1, Si) introduced at the end of Section 2.3.
Hence, because γ2k = gk and δ2k = 0:[

δ0k

γ0k

]
= Σ−1

0 Σ1 Tk(r0)Tk(r1)−1 Σ−1
1 Σ2 Tk(r1)Tk(r2)−1

[
gk

0

]
, (11)

while

β0k = [0 1]Tk(r0)−1

[
δ0k

γ0k

]
. (12)

These formula express a linear relation between the source term coefficients
β0k and the boundary Dirichlet data with coefficients gk, which is studied in
Appendix and gives rise to (13) below. We already see the particular role of
σ1 that appears through Σ−1

1 and Σ1. This explains why, after multiplication
by σ1 and algebraic manipulations, we obtain in (13) a polynomial of degree 2
in σ1.

3.2.3. Algebraic equations

As computed in Appendix, equations (11), (12) can be rewritten, for all k ≥ 0,
as:

B1(k)σ1 β0k =
(
A2(k)σ2

1 +A1(k)σ1 +A0(k)
)
gk , (13)

with non negative quantities Ai(k), i = 0, 1, 2, B1(k) that depend only on
the geometry, on the given conductivity values σ0, σ2, and on k. Actu-
ally, A1(k), B1(k) > 0 for all k ≥ 0 while A0(k), A2(k) > 0 for k > 0 but
A0(0) = A2(0) = 0. In particular, for all k ≥ 0 and for σ1 > 0, we have
A2(k)σ2

1 +A1(k)σ1 +A0(k) > 0.

This implies that β0k = 0 ⇔ gk = 0 and that for all k such that gk 6= 0,
β0k/gk is real valued positive: the spherical harmonics basis diagonalizes the
transmission relations.

3.3. Uniqueness proof

Proof. (Theorem 3.1) Assume that there exists another value σ′1 > 0 of the
conductivity in Ω1 that gives rise to the same potential (and vanishing current
flux) on Γ ⊂ S2, from the same source term us (same boundary measurements
and coefficients gk = gkm, same sources term coefficients β0k = β0km, given).
Equation (13) then holds for both σ1, σ

′
1 > 0. We thus get that either β0k =

gk = 0 or

β0k

gk
=
A2(k)σ2

1 +A1(k)σ1 +A0(k)

B1(k)σ1
=
A2(k)σ′,21 +A1(k)σ′1 +A0(k)

B1(k)σ′1
,
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whence

A2(k)σ2
1 +A1(k)σ1 +A0(k)

B1(k)σ1
− A2(k)σ′,21 +A1(k)σ′1 +A0(k)

B1(k)σ′1
= 0 ,

hence multiplying by B1(k)σ1 σ
′
1 > 0:

(σ1 − σ′1) (A2(k)σ1 σ
′
1 −A0(k)) = 0 .

Thus either σ′1 = σ1 and uniqueness holds or, for all values of k ≥ 0 such that
β0k 6= 0,

A0(k) = σ1 σ
′
1A2(k) .

This holds for k = 0 but for k > 0 it implies that

A0(k)

A2(k)
= σ1 σ

′
1 ,

which could not be true for more than a single value of k > 0. Indeed, the
product σ1 σ

′
1 is constant while A0(k)/A2(k) stricly increases with k, as we now

show. We have:

A0(k)

A2(k)
= σ0 σ2 k

1−
(
r1
r2

)2k+1

(k + 1)
(
r1
r2

)2k+1

+ k

= σ0 σ2 k
1− %2k+1

(k + 1) %2k+1 + k
, (14)

with % = r1/r2 < 1, and we put:

E(k) =
1

σ0 σ2

A0(k)

A2(k)
=

1− %2k+1

1 + k+1
k %2k+1

, k > 0 , E(0) = 0 .

Because for k > 0, k + 2/(k + 1) < (k + 1)/k and %2k+3 < %2k+1, the numer-
ator of E(k) strictly increases with k while its denominator strictly decreases.
Thus, E is a strictly increasing function of k, which converges to 1 as k →∞.

Hence, among the k > 0, the equation E(k) =
σ1σ
′
1

σ0 σ2
admits at most one so-

lution, and pairs σ1, σ
′
1 > 0 cannot solve A2(k)σ1σ

′
1 − A0(k) = 0 for more

than 1 value of k > 0 (actually, a necessary condition for σ1, σ
′
1 to solve

A2(k)σ1σ
′
1 − A0(k) = 0 for 1 value of k > 0 is that σ1 σ

′
1 ∈ (0 , σ0 σ2)). So we

must have σ′1 = σ1, as soon as β0k (or gk) does not vanish for at least 2 distinct
values of k.

Finally, we show that potentials us associated to pointwise dipolar source
terms S 6= p · ∇δ0 have at least 2 non-null coefficients β0k in their spherical
harmonic expansion. Indeed, assume that all the coefficients β0km are 0, except



396 M. CLERC ET AL.

for a single value of k > 0, say k0. From (7), the function us is then a anti-
harmonic homogeneous polynomial of degree k0 and for r > maxq |Cq| > 0,

us(r, θ, ϕ) =
∑
|m|≤k0

β0k0mr
−(k0+1)Yk0m(θ, ϕ)

=
1

r2k0+1

∑
|m|≤k0

β0k0mr
k0Yk0m(θ, ϕ) .

From [9, Ch. 5], the distribution S = ∆us also coincides far from {0} with a
polynomial divided by an odd power of r. This contradicts the assumptions on
S, which has a pointwise support in Ω0 not reduced to {0}.

Remark 3.2. Theorem 3.1 is in fact valid for solutions to Equation (1) with
more general source terms S. To ensure uniqueness, it is indeed enough to
assume that us does not coincide with some homogeneous anti-harmonic poly-
nomial of positive degree, so that it admits on S0 at least two coefficients
β0k 6= 0.

In the present spherical geometry, note that us is equal on S0 to a homo-
geneous harmonic polynomial if and only if so is u on S2.

The last part of the proof actually implies that potentials us issued from
pointwise dipolar source terms S with support in Ω0 not reduced to {0} have
infiniteley many coefficients β0k 6= 0.

3.4. Stability properties

We now establish a stability result for the inverse conductivity estimation prob-
lem with respect to the source term whenever Γ = S2.

Proposition 3.3. Assume the source terms S, S ′ and the conductivities σ,
σ′ to satisfy the assumptions of Theorem 3.1. Let us, u

′
s be the associated

potentials through (5). Let u, u′ be the associated solutions to (3) such that
∂nu = ∂nu

′ = 0 on S2. Put g, g′ for their boundary values on S2. Then, there
exist c, cs > 0 such that

|σ1 − σ′1| ≤ c ‖g − g′‖L2(S2) + cs ‖us − u′s‖L2(S0) .

Whenever 0 < sm ≤ σ1 , σ
′
1 ≤ sM for constants sm, sM , then c, cs do not

depend on σ1 , σ
′
1 but on sm, sM .

Remark 3.4. For ordered lists of sources (pq,Cq) , (p′q,C
′
q) with length Q, we

can define the geometric distance

d(S,S ′) =

Q∑
q=1

(
|pq − p′q|+ |Cq −C′q|

)
.
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If the sources are located far enough from S0 in the sense that max(|Cq|, |C′q|) ≤
ρ < r0, and because us is on S0 a continuous function of pq,Cq, we can rewrite
the inequality in Proposition 3.3 as:

|σ1 − σ′1| ≤ c ‖g − g′‖L2(S2) + c′s d(S,S ′) ,

with c′s = K(ρ) cs for some constant K(ρ) which depends on ρ. Hence, the
conductivity σ1 depends continuously on the (complete) Dirichlet boundary
data g (in L2(S2)) and on the source term S, with appropriate topology.

Notice also the relation:

β0km =
1

2k + 1

Q∑
q=1

〈pq , ∇
(
rk Ykm(θ, ϕ)

)
(Cq)〉L2(S0) .

Finally, observe that the constants c, cs, c
′
s in the above inequalities also depend

on the data g′ whence on S ′. The dependence between Dirichlet data g′ on S2

and the source term S ′ can be precised by using, for instance, the last equality
together with relation (13) between their coefficients (g′k) and (β0k), and then
recalling the assumption sm ≤ σ′1 ≤ sM .

Proof. Let

εk(σ1, β0k, gk) = B1(k)σ1 β0k −
(
A2(k)σ2

1 +A1(k)σ1 +A0(k)
)
gk , (15)

It follows from (13) that σ′1 εk(σ1, β0k, gk)− σ1 εk(σ′1, β
′
0k, g

′
k) = 0 , whence we

get

0 = σ′1 εk(σ1, β0k − β′0k, gk − g′k) + σ′1 εk(σ1, β
′
0k, g

′
k)− σ1 εk(σ′1, β

′
0k, g

′
k) .

But

σ′1 εk(σ1, β
′
0k, g

′
k)− σ1 εk(σ′1, β

′
0k, g

′
k) = g′k(σ1 − σ′1) [A2(k)σ1σ

′
1 −A0(k)] ,

so

g′k(σ1 − σ′1) [A2(k)σ1σ
′
1 −A0(k)] =

− σ′1
[
B1(k)σ1(β0k − β′0k)− (A2(k)σ2

1 +A1(k)σ1 +A0(k))(gk − g′k)
]
.

Recall that A2(k) > 0 for k > 0 and other arguments of Section 3.3 together
with the computations in Appendix show that A0(k)/A2(k), A1(k)/A2(k),
rk+1
0 B1(k)/A2(k) are uniformely bounded in k from above and from below

(by strictly positive constants). We can then divide by A2(k), in order to
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obtain

|σ1 − σ′1|

∑
k,m

|g′k|2
∣∣∣∣σ1 σ

′
1 −

A0(k)

A2(k)

∣∣∣∣2
 1

2

≤
√

2σ′1

∑
k,m

(
σ2

1 +
A1(k)

A2(k)
σ1 +

A0(k)

A2(k)

)2

|gk − g′k|
2

 1
2

+
√

2σ1 σ
′
1

∑
k,m

B2
1(k)

A2
2(k)

|β0k − β′0k|
2

 1
2

.

In order to establish an upper bound, note that

∑
k,m

B2
1(k)

A2
2(k)

|β0k − β′0k|
2 ≤ sup

k

r
2(k+1)
0 B2

1(k)

A2
2(k)

∑
k,m

r
−2(k+1)
0 |β0k − β′0k|

2
,

with ∑
k,m

r
−2(k+1)
0 |β0k − β′0k|

2
= ‖us − u′s‖2L2(S0) .

Moreover, since gk (as β0k) possess non vanishing values for infinitely many
(at least two) values of k, and σ1 σ

′
1 −A0(k)/A2(k) can vanish for at most one

value of k, it holds that:∑
k,m

|g′k|2 |σ1 σ
′
1 −A0(k)/A2(k)|2 > 0 ,

can be bounded from below under the assumptions on σ1 σ
′
1.

4. Application to EEG

In order to illustrate Proposition 3.3, we now perform a short numerical analy-
sis of the inverse conductivity estimation problem in the spherical domain and
the EEG setting described in Section 2. Measurements of the Dirichlet data g
on the scalp S2 (pointwise values at electrodes locations) and known sources ac-
tivity are expanded on the spherical harmonics basis, using the FindSources3D
software1 (FS3D), see also [14]. We therefore have at our disposal the spherical
harmonics coefficients (gkm, β0km) for 0 ≤ k ≤ K for some K > 0 and |m| ≤ k.

1See http://www-sop.inria.fr/apics/FindSources3D/.
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4.1. Reconstruction algorithm

As the reconstruction of the conductivity σ1 does not depend on the spherical
harmonics indices m, in order to increase the robustness of our reconstruction
algorithm, the following normalization is applied over the different spherical
harmonics indices k:

g̃k =
∑
|m|≤k

gkm β̄0km ,

β̃0k =
∑
|m|≤k

β0km β̄0km =
∑
|m|≤k

|β0km|2 .

There, β̄0km is the complex conjugate number to β0km (indeed, β0km could be
complex valued if the basis elements Ykm are taken in their complex valued
form).

The procedure is a least square minimization of the error equation obtained
from (15) as a truncated finite sum for K > 0:

σest1 = arg min
s

K∑
k=0

∣∣∣εk(s, β̃0k, g̃k)
∣∣∣2 . (16)

4.2. Numerical illustrations

We consider the EEG framework in the spherical three-layer head model, as
described in Section 2.1, where the layers represent the brain, the skull and
the scalp tissues, respectively. The radii of the spheres used in the numerical
analysis are normalized to the values r0 = 0.87, r1 = 0.92 and r2 = 1. In the
present analysis, the brain and scalp tissue conductivities are set to σ0 = σ2 =
0.33 S/m, while the skull conductivity σ1 is to be recovered. When generating
simulated EEG data through the associated forward simulation, we will set
σ1 = 0.0042 S/m.

Our study uses simulated data associated to a single dipole and the mini-
mization of (16) for the conductivity estimation. The algorithm is written as a
MATLAB code and the forward simulations are run with the FS3D software.

We validate our reconstruction algorithm using simulated EEG data by
FS3D (for solving the direct EEG problem). Of course, the EEG data are sub-
ject to some ambient noise and measurements errors, and the a priori knowledge
on the sources is not perfect. The inverse conductivity estimation problem is
sensitive to such perturbations though it possesses the stability property de-
scribed in Proposition 3.3.

To investigate the stability of our algorithm with respect to the source
term, we select a source term S made of a single dipole located at C1 =
(0.019, 0.667, 0.1), mimicking an EEG source at the frontal lobe of the brain,
with moment p1 = (0.027, 0.959, 0.28). The associated spherical harmonics
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coefficients g̃k and β̃0k are computed for 0 ≤ k ≤ K = 30. The original source
location C1 is replaced by inexact locations Cn

1 for n = 1, · · · , 20 located at
a constant distance from C1 (a percentage of the inner sphere radius r0), as
illustrated in Figure 2, while the source moment p1 is retained. For each
new dipole location Cn

1 , the associated spherical harmonics coefficients β̃n0k are

simulated. We perform conductivity estimation from the pairs g̃k, β̃n0k (recall

that g̃k correspond to the actual β̃0k).

Figure 2: Locations (in Ω0) of C1 (red bullet) and of the 20 points Cn
1 (blue

cross) surrounding it, for |C1 −Cn
1 | equal to 10% of r0.

The effect of the source mislocation on the conductivity estimation is sum-
marized in Figure 3 and Table 4.2 which respectively shows and lists the values
and other characteristics of the estimated conductivities with respect to the
distance between actual and inexact sources.

These preliminary results illustrate the influence of source mislocation on
conductivity estimation, and the robustness character of our algorithm, in ac-
cordance with the stability result of Proposition 3.3. In order to penalize high
frequencies and to get more accurate estimations, we will in particular intro-
duce in the above criterion (16) appropriate multiplicative weights (decreasing
with the index k).
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Figure 3: Conductivity estimation results for various mislocations of the actual
dipole used to simulate the EEG data: 20 dipole locations Cn

1 are selected by
displacing C1 by a constant distance, computed as a percent of the brain radius
r0 (on the abcissa axis). Displayed are: σ1, the actual conductivity value used
in the EEG data simulation, σest1 , the estimated conductivity value for each
dipole position Cn

1 , and σ̃est1 , the mean value of σest1 among n = 1, · · · , 20.

Dipole mislocation
(% of radius r0)

σ̃est1
Standard
deviation

Mean of
relative errors

0 4.200e-03 0 1.858e-15
0.1 4.195e-03 1.450e-05 3.123e-03
1 4.187e-03 1.629e-04 3.318e-02
5 4.160e-03 7.703e-04 1.511e-01
10 4.741e-03 1.512e-03 3.350e-01

Table 1: Conductivity estimation results, continued; Listed in columns are: (i)
the distance between C1 and Cn

1 , (ii) the mean estimated conductivity value
σ̃est1 , (iii) the standard deviation of σest1 , (iv) the mean value of the relative
errors between σ1 and σest1 .

5. Conclusion

Observe that our uniqueness result, Theorem 3.1, may be expressed as an
identifiability property of the conductivity value (model parameter) σ1 in the
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relation (transfer function) from boundary data to sources (control to obser-
vation), [12, 26]. This could be useful in order to couple EEG with additional
modalities, like EIT (where ∂nu 6= 0 is known on Γ) or even MEG (magne-
toencephalography, which measures the magnetic field outside the head), and
to simultaneously estimate both σ1 and the source term S in situations where
the latter is (partially) unknown.

Following Remark 3.2, we may also wish to recover possibly unknown in-
formation about the (spherical) geometry of Ω1 (like r1 or/and r0).

Situations with more than 3 spherical layers could be described similarly,
which may help to consider more general conductivities (smooth but non con-
stant) by piecewise constant discretization.

As Theorem 3.1, Proposition 3.3 would still hold true under a weaker suffi-
cient condition for the source terms, according to which the associated potential
on S0 through (5) should admit at least 2 non-null coefficients (this is equiva-
lent to the same property for g on S2, see Remark 3.2). Moreover, it could be
extended to a stability property with respect to boundary data with close and
non vanishing Neumann data on S2. However, stability properties for situa-
tions with partial Dirichlet boundary data only (on Γ ⊂ S2) would be weaker,
see e.g. [8, 5, 14].

We have also begun to study the same uniqueness and stability issues in
more general (non-spherical) nested geometries, see [7, 22, 23, 27], and also [4]
for a number of open problems.
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Appendix: More computations related to Section 3.2.2

From (11), (12), we get for all k ≥ 0,

β0k = gk ×[0 1]Tk(r0)−1 Σ−1
0 Σ1 Tk(r0)Tk(r1)−1 Σ−1

1 Σ2 Tk(r1)Tk(r2)−1

[
1

0

]
.

The matrices Tk(ri) and Tk(ri)
−1 can be written:

Tk(ri) =

[
1 0

0 1
ri

] [
1 1

k −(k + 1)

] [
rki 0

0 r
−(k+1)
i

]
,
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Tk(rj)
−1 =

1

2k + 1

[
r−kj 0

0 r
(k+1)
j

] [
k + 1 1

k −1

] [
1 0

0 rj

]
.

Their products that give an expression of T (Si−1, Si) in the spherical geometry
are then such that:

Tk(ri−1)Tk(ri)
−1 =

1

2k + 1
×[

1 0

0 r−1
i−1

] [
1 1

k −(k + 1)

] 
(
ri−1

ri

)k
0

0
(

ri
ri−1

)k+1

 [k + 1 1

k −1

] [
1 0

0 ri

]

=
1

2k + 1

(
ri
ri−1

)k+1

×[
1 0

0 r−1
i−1

] [
1 1

k −(k + 1)

] [(
ri−1

ri

)2k+1

0

0 1

] [
k + 1 1

k −1

] [
1 0

0 ri

]
.

We can write

Tk(ri−1)Tk(ri)
−1 = ρ

(i)
k

a(i)
k b

(i)
k

c
(i)
k d

(i)
k

 ,
with

ρ
(i)
k =

1

2k + 1

(
ri
ri−1

)k+1

, i = 1, 2 , ρ
(0)
k =

rk+1
0

2k + 1
,

and the real valued quantities, with their equivalent asymptotic behaviours as
k →∞: 

a
(i)
k = (k + 1)

(
ri−1

ri

)2k+1

+ k ∼ k ,

b
(i)
k = ri

[(
ri−1

ri

)2k+1

− 1

]
∼ −ri ,

c
(i)
k = k (k+1)

ri−1 ri
b
(i)
k ∼ − k2

ri−1
,

d
(i)
k = ri

ri−1

[
k
(
ri−1

ri

)2k+1

+k + 1

]
∼ kri

ri−1
.

Define also the real valued quantities e
(0)
k , f

(0)
k :

e
(0)
k = k , f

(0)
k = f (0) = −r0 .

We have
[0 1]Tk(r0)−1 = ρ

(0)
k

[
e

(0)
k f

(0)
k

]
.
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Then, equation (13) holds true with:

B1(k) =
σ0

ρ
(0)
k ρ

(1)
k ρ

(2)
k

whence rk+1
0 B1(k) = σ0 (2k + 1)3

(
r0

r2

)k+1

∼ 8k3

(
r0

r2

)k+1

,

and 
A1(k) = σ0 e

(0)
k a

(1)
k a

(2)
k + σ2 f

(0)
k d

(1)
k c

(2)
k ∼ k3(σ0 + σ2) ,

A2(k) = f
(0)
k c

(1)
k a

(2)
k ∼ k3 ,

A0(k) = σ0 σ2 e
(0)
k b

(1)
k c

(2)
k ∼ k3σ0σ2 .

Observe that rk+1
0 B1(k) acts on r

−(k+1)
0 β0k that are members of an l2 sequence

(see Section 3.2.1 and equation (10) with i = 0).
As in (14), one can show with the above expressions that the behaviours

of the ratios Ai(k)/A2(k), B1(k)/A2(k) ensure that they all are uniformly
bounded from below on from above by positive constants, for k > 0 .

Note also that 

B1(k) = σ0 B̃1(k) ,

A1(k) = σ0 Ã10(k) + σ2 Ã12(k) ,

A2(k) = Ã2(k) ,

A0(k) = σ0 σ2 Ã0(k) ,

where Ãi, Ãij , B̃1 only depend on the spherical geometry.
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