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Abstract. The neutral inclusion problem in two dimensional isotropic
elasticity is considered. The neutral inclusion, when inserted in a ma-
trix having a uniform applied field, does not disturb the field outside
the inclusion. The inclusion consists of the core and shell of arbitrary
shapes, and their elasticity tensors are isotropic. We show that if the
coated inclusion is neutral to a uniform bulk field, then the core and
shell must be concentric disks, provided that the shear and bulk moduli
satisfy certain conditions.
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1. Introduction

Some inclusions, when inserted in a matrix having a uniform field, do not dis-
turb the field outside the inclusion. Such inclusions are called neutral inclusions
(to the given field). A typical neutral inclusion consists of a core coated by a
shell having the material property different from that of the core.

It is easy to construct neutral inclusions of circular shapes in the context of
conductivity (or anti-plane elasticity). LetD = { |x| < r1 } and Ω = { |x| < r2 }
(r1 < r2) so that D is the core and Ω \D is the shell. The conductivity is σc
in the core, σs in the shell, and σm in the matrix (R2 \Ω). So the conductivity
distribution is given by

σ = σcχ(D) + σsχ(Ω \D) + σmχ(R2 \ Ω)

where χ is the characteristic function. If σc, σs and σm satisfy the relation

r2
2(σs + σc)(σm − σs)− r2

1(σs − σc)(σm + σs) = 0, (1)

then Ω is neutral to uniform fields. In other words, for any constant vector a,
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the solution u to the problem{
∇ · σ∇u = 0 in R2,
u(x)− a · x = O(|x|−1) as |x| → ∞

satisfies u(x)− a · x = 0 in R2 \ Ω.
Much interest in neutral inclusions was aroused by the work of Hashin [6, 7],

where it is shown that since insertion of neutral inclusions does not perturb the
outside uniform field, the effective conductivity of the assemblage filled with
neutral inclusions of many different scales is σm satisfying (1). It is also proved
that this effective conductivity is a bound of the Hashin-Shtrikman bounds on
the effective conductivity of arbitrary two phase composites. We refer to a
book of Milton [13] for development on neutral inclusions in relation to theory
of composites.

Another interest in neutral inclusions has aroused in relation to the invis-
ibility cloaking by transformation optics. In this regard, we first observe that
in general the solution u to{

∇ · σ∇u = 0 in R2,
u(x)− h(x) = O(|x|−1) as |x| → ∞ (2)

for a given harmonic function h satisfies u(x) − h(x) = O(|x|−1) as |x| → ∞.
But, if the inclusion is neutral to all uniform fields, then the linear part of
h is unperturbed and one can show using multi-polar expansions that u(x) −
h(x) = O(|x|−2) as |x| → ∞ for any h (not necessarily linear). Recently,
Ammari et al [2] extended the idea of neutral inclusions to construct multi-
coated circular structures which are neutral not only to uniform fields but also
to fields of higher order, so that the solution u to (2) satisfies u(x) − h(x) =
O(|x|−N ) as |x| → ∞ for any given N and any h (such structures are called
GPT vanishing structures). Such structures have a strong connection to the
cloaking by transformation optics. The transformation optics proposed by
Pendry et al [16] transforms a punctured disk (or a sphere) to an annulus to
achieve perfect cloaking. The same transform was used to show non-uniqueness
of the Calderón’s problem by Greenleaf et al [5]. Kohn et al [12] showed that
if one transforms a disk with small hole, then one can avoid singularity of the
conductivity which occurs on the inner boundary of the annulus and achieve
near-cloaking instead of perfect cloaking. In [2] it is shown that if we coat
the core by multiple layers so that the structure becomes neutral to fields of
higher order (and transform the structure), then the near-cloaking effect is
dramatically improved.

All above mentioned neutral inclusions have circular shapes and it is of
interest to consider neutral inclusions of arbitrary shapes. For a given core
of arbitrary shape, the shape of the outer boundary of the shell has been
constructed by Milton & Serkov [14] so that the coated inclusion is neutral to a
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single uniform field. This is done when the conductivity σc of the core is either 0
or ∞. See [9] for an extension to the case when σc is finite. It is also proved
in [14] that if an inclusion is neutral to all uniform field (or equivalently, to
two linearly independent uniform fields), then the inclusion is concentric disks
(confocal ellipses if the conductivity of the matrix is anisotropic), when σc is 0
or ∞. In recent paper [10], Kang and Lee proved that this is the case even
when σc is finite. See also [11] for an extension to three dimensions.

In this paper the problem of neutral inclusions in two dimensional linear
isotropic elasticity is considered. Let the shear and bulk moduli of the core, the
shell, and the matrix be (µc, κc), (µs, κs), and (µm, κm), respectively, and let µ
and κ denote their distributions in R2. Define the elasticity tensor C = (Cijkl)
by

Cijkl = (κ− µ)δijδk` + µ(δikδj` + δi`δjk), i, j, k, l = 1, 2 , (3)

where δij is the Kronecker’s delta. Let h(x) = x, whose gradient represents
the bulk strain field, and consider the following interface problem:{

divC∇̂u = 0 in R2,

u(x)− h(x) = O(|x|−1) as |x| → ∞,
(4)

where ∇̂u is the symmetric gradient (or the strain tensor), i.e.,

∇̂u :=
1

2
(∇u + (∇u)T ) (T for transpose).

The inclusion is neutral to the (strain) field ∇h if the solution u to (4) satisfies
u(x)−h(x) = 0 in R2 \Ω. Inclusions neutral to the bulk field was found using
the exact effective bulk modulus of the assemblage of coated disks which was
derived by Hashin and Rosen [8]. The purpose of this paper is to prove that
concentric disks are the only coated inclusions neutral to bulk fields under some
conditions on the shear and bulk moduli.

The following is the main theorem of this paper.

Theorem 1.1. Let Ω and D be bounded simply connected domains in R2 with
Lipschitz boundaries such that D ⊂ Ω. Suppose that

µc 6= µs, κm 6= κs, and κc < 2κs + µs. (5)

If (Ω, D) is neutral to the bulk field, or equivalently, if the solution u to (4)
with h(x) = x satisfies u(x) − x = 0 in R2 \ Ω, then D and Ω are concentric
disks.

The conditions in (5) are required to show that the solution is linear in the
core. The first two conditions seem natural because the elasticity properties of
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the core, the shell, and the matrix must be different. However, we don’t know
if the third condition is necessary.

It is worth mentioning that inclusions consisting of the concentric disks are
not neutral to shear fields: for example, if h(x) = (y, x)T , then u(x) − h(x)
has a term of order |x|−1 and a term of order |x|−3 as |x| → ∞, and it is not
possible to make both terms vanish. Christensen and Lo [3] constructed circular
inclusions such that the term of order |x|−1 vanishes and derived an effective
transverse shear modulus of the assemblage of coated disks. It is interesting to
construct coated inclusions neutral to shear fields or to prove non-existence of
such inclusions.

The rest of the paper is organized as follows: In the next section we show
that if (Ω, D) is neutral to the bulk field, then ∇u is symmetric and divu is
constant in the shell. The main theorem is proved in section 3 by showing
that u is linear in the core. To do so we use a complex representation of the
displacement vector.

2. Properties of the solution in the shell

In this section we prove the following proposition. We emphasize that (5) is
not required for this proposition.

Proposition 2.1. Let Ω and D be bounded simply connected domains in R2

with Lipschitz boundaries such that D ⊂ Ω. If (Ω, D) is neutral to the bulk
field, then the solution u to (4) satisfies the following:

(i) ∆u = 0, or equivalently div u = constant in Ω \D.

(ii) ∇u is symmetric in Ω \D, namely, ∂1u2 = ∂2u1.

To prove Proposition 2.1, we need some preparartion. The Kelvin matrix
Γ(x) = (Γij(x))2

i,j=1 of the fundamental solution to the Lamé operator divC∇̂
in two dimensions is given by

Γij(x) :=
α1

2π
δij log |x| − α2

2π

xixj
|x|2

, x 6= 0 , (6)

where

α1 =
1

2

(
1

µ
+

1

µ+ κ

)
and α2 =

1

2

(
1

µ
− 1

µ+ κ

)
. (7)

A straight-forward computation shows that

divy Γ(x− y) =
α2 − α1

2π
∇x log |x− y| = − 1

2π(µ+ κ)
∇x log |x− y| . (8)
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In particular, we have∫
Ω

divy Γ(x− y)dy = − 1

2π(µ+ κ)
∇
∫

Ω

log |x− y|dy. (9)

Since
1

2π
∆

∫
Ω

log |x− y|dy =

{
1 if x ∈ Ω,

0 if x ∈ R2 \ Ω,

we have

div

∫
Ω

divy Γ(x− y)dy =

−
1

µ+ κ
if x ∈ Ω,

0 if x ∈ R2 \ Ω.
(10)

We also have

rot

∫
Ω

divy Γ(x− y)dy = 0 . (11)

Proof of Proposition 2.1. Suppose that (Ω, D) is neutral to the bulk field. Then
the following over-determined problem admits a solution:{

∇ · (C∇̂u) = 0 in Ω,

u(x) = x, (Cs∇̂u)n = (CmI)n on ∂Ω.
(12)

Here and throughout this paper, n denotes the outward normal to ∂Ω (and ∂D).
Let uc and us denote the solution on D and Ω \ D, respectively. Then the
transmission conditions along ∂D are given by

uc = us and (Cc∇̂uc)n = (Cs∇̂us)n on ∂D. (13)

Let v be a smooth vector field in Ω. Then we have∫
∂Ω

(Cs∇̂u)n · v dσ =

∫
Ω

C∇̂u : ∇̂v dy.

Here and afterwards, A : B denotes the contraction of two matrices A and
B, i.e., A : B =

∑
aijbij = tr(ATB). On the other hand, we have from the

Neumann boundary condition in (12)∫
∂Ω

(C∇̂u)n · v dσ =

∫
Ω

CmI : ∇̂v dy.

So, we have∫
Ω\D

Cs∇̂u : ∇̂v dy +

∫
D

Cc∇̂u : ∇̂v dy =

∫
Ω

CmI : ∇̂v dy. (14)
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Using the Dirichlet boundary condition in (12) we have for any elasticity
tensor C0∫

∂Ω

u · (C0∇̂v)n dσ =

∫
Ω

C0∇̂u : ∇̂v dy +

∫
Ω

u · div(C0∇̂v) dy

and ∫
∂Ω

u · (C0∇̂v)n dσ =

∫
∂Ω

y · (C0∇̂v)n dσ

=

∫
Ω

C0I : ∇̂v dy +

∫
Ω

y · div(C0∇̂v) dy.

Thus we have ∫
Ω

C0∇̂u : ∇̂v dy +

∫
Ω

u · div(C0∇̂v) dy

=

∫
Ω

C0I : ∇̂v dy +

∫
Ω

y · div(C0∇̂v) dy. (15)

Subtracting (15) with C0 = Cs from (14) we obtain∫
D

(Cc − Cs)∇̂u : ∇̂v dy −
∫

Ω

u · div(Cs∇̂v) dy

=

∫
Ω

(Cm − Cs)I : ∇̂v dy −
∫

Ω

y · div(Cs∇̂v) dy. (16)

Let Γs and Γc be the Kelvin matrices for divCs∇̂ and divCc∇̂, respectively.
For x ∈ Ω, let v(y) be a column of Γs(x − y). Then we may apply the same
argument of integration by parts (over Ω with an ε ball around x deleted) as
above and obtain from (16) the following representation of the solution:

u(x) = x +

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs(x− y) dy

+

∫
Ω

(Cs − Cm)I : ∇̂Γs(x− y) dy, x ∈ Ω. (17)

Since (Cm − Cs)I : ∇̂v = 2(κm − κs)div v, the identity (16) takes the form∫
D

(Cc − Cs)∇̂u : ∇̂v dy −
∫

Ω

u · div(Cs∇̂v) dy

= 2(κm − κs)
∫

Ω

div v dy −
∫

Ω

y · div(Cs∇̂v) dy, (18)
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One can also see from (9) that the representation formula (17) takes the form

u(x) = x +

∫
D

(Cc − Cs)∇̂u(y) : ∇̂yΓs(x− y) dy

+
κm − κs
π(µs + κs)

∇
∫

Ω

log |x− y| dy, x ∈ Ω. (19)

Let Γs,j be the j-th column of Γs. Let x ∈ R2 \ Ω. Substitute vj(y) :=
∂
∂xj

Γs,j(x − y) for v in (18) and add the identities for j = 1, 2. Note that

div(Cs∇̂vj) = 0 in Ω since x /∈ Ω. We infer from (10) that

2∑
j=1

∫
Ω

div vj =

2∑
j=1

∂

∂xj

∫
Ω

divy Γs,j(x− y) dy = 0.

It then follows from (18) that

2∑
j=1

∂

∂xj

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs,j(x− y) dy = 0, x ∈ R2 \ Ω. (20)

Observe that the left-hand side in the above is a real analytic function in R2\D.
So, by unique continuation (20) holds for all x ∈ R2\D. We then infer from (10)
and (19) that

div u = α in Ω \D, (21)

where α is the constant given by

α = 2 +
2(κm − κs)
µs + κs

. (22)

Since div(Cs∇̂u) = µs∆u + κs∇divu = 0, we also have

∆u = 0 in Ω \D. (23)

We now prove (ii). Let x ∈ R2 \ Ω and substitute ∂
∂x2

Γs,1(x − y) for v
in (18) to obtain from (9) that

∂

∂x2

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs,1(x− y) dy

= 2(κm − κs)
∂

∂x2

∫
Ω

divy Γs,1(x− y) dy

= − (κm − κs)
π(µs + κs)

∂2

∂x1∂x2

∫
Ω

log |x− y| dy ,
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By substituting ∂
∂x1

Γs,2(x− y) for v in (18), we also obtain

∂

∂x1

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs,2(x− y) dy

= − (κm − κs)
π(µs + κs)

∂2

∂x1∂x2

∫
Ω

log |x− y| dy .

So, we have using unique continuation again that

∂

∂x2

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs,1(x− y) dy

=
∂

∂x1

∫
D

(Cc − Cs)∇̂u(y) : ∇̂Γs,2(x− y) dy, x ∈ R2 \D,

and so (ii) is proved.

3. Neutral Inclusions to the bulk field

3.1. Complex representation of the solution and a lemma

Let u = (u1, u2)T be the solution to (4). There are functions ϕ and ψ which
are analytic in D, Ω \D, and C \D, separately, such that

u1 + iu2 =
1

2µ

(
kϕ(z)− zϕ′(z)− ψ(z)

)
, (24)

where

k = 1 +
2µ

κ
. (25)

See for example [1, 15] for derivation of (24). Conversely, one can see that
u = (u1, u2)T of the form (24) with k > 1 for a pair of analytic functions ϕ and
ψ in D is a solution in D of the Lamé system determined by the shear modulus
µ and the bulk modulus κ = 2µ/(k − 1).

We denote ϕ and ψ by ϕc and ψc in the core, ϕs and ψs in the shell, and ϕm
and ψm in the matrix. Then the transmission conditions (12) and (13) along
the interfaces ∂D and ∂Ω take the following forms: along ∂D,

1

2µs

(
ksϕs(z)− zϕ′s(z)− ψs(z)

)
=

1

2µc

(
kcϕc(z)− zϕ′c(z)− ψc(z)

)
,

d(ϕs(z) + zϕ′s(z) + ψs(z)) = d(ϕc(z) + zϕ′c(z) + ψc(z)),

and similar conditions on ∂Ω, where d is the exterior differential. The first
condition is the continuity of the displacement and the second one is that of
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the traction. Using complex notation dz = dx + idy and dz = dx − idy, the
exterior differential is given by

df =
∂f

∂z
dz +

∂f

∂z
dz.

It is convenient to use notation

U(z) := u1 + iu2 =
1

2µ

(
kϕ(z)− zϕ′(z)− ψ(z)

)
, (26)

and
DU(z) := d(ϕ+ zϕ′ + ψ) = (ϕ′ + ϕ′)dz + (zϕ′′ + ψ′)dz. (27)

Then the transmission conditions read

Uc = Us, DUc = DUs on ∂D, (28)

and
Um = Us, DUm = DUs on ∂Ω. (29)

The proofs in the subsequent subsection use the following lemma, which
may be well-known. We include a short proof for readers’ sake.

Lemma 3.1. Let D be a simply connected bounded domain with the Lipschitz
boundary, and let g be a square integrable function on ∂D. If∫

∂D

g(z)f ′(z)dz = 0 (30)

for any function f analytic in a neighborhood of D, then there is an analytic
function G in D such that G = g on ∂D.

Proof. Define the Cauchy transform by

C[g](w) :=
1

2πi

∫
∂D

g(z)

z − w
dz, w ∈ C \ ∂D.

Then by Plemelj’s jump formula (see [15]), we have

g(w) = C[g]|−(w)− C[g]|+(w), w ∈ ∂D,

where C[g]|− and C[g]|+ denote the limits from inside and outside of D, re-
spectively. Since D is simply connected, f(z) = log(z − w) is well-defined and
analytic in a neighborhood of D if w /∈ D. So, C[g](w) = 0 if w /∈ D by (30).
Thus, we have

g(w) = C[g]|−(w), w ∈ ∂D.

So, G := C[g] in D is the desired analytic function.
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3.2. Proof of Theorem 1.1

Let us prove the following proposition first.

Proposition 3.2. Let Ω and D be bounded simply connected domains in R2

with Lipschitz boundaries such that D ⊂ Ω, and assume that (5) holds. If
(Ω, D) is neutral to the bulk field, then the solution u to (4) is linear in D and
of the form

u(x) = ax + b (31)

for a constant a and a constant vector b.

Proof. Let u be the solution to (4) when h(x) = x, and U be defined by (26).
Since (Ω, D) is neutral to the bulk field, u(x) = x in R2 \Ω, and hence we have

Um(z) = z, ϕm(z) = κmz, ψm(z) = 0, DUm(z) = 2κmdz.

Moreover, Proposition 2.1 implies that

ϕs(z) = βz + constant, z ∈ Ω \D, (32)

where β is a real constant. In fact, we see from Proposition 2.1 that

∂

∂z
Us =

1

2

(
∂

∂x1
− i ∂

∂x2

)
(u1 + iu2) =

1

2

(
divu + i

(
∂u2

∂x1
− ∂u1

∂x2

))
=
α

2
,

where α is the constant in (22). Thus we have

α

2
=

∂

∂z
Us(z) =

1

2µs

(
ksϕ

′
s(z)− ϕ′s(z)

)
,

which implies that ϕ′s(z) = β = κsα/2 by (25). One can see from (22) that

κm − β =
(κm − κs)(2κs + µs)

κs + µs
. (33)

Let f and g be functions analytic on Ω, and let F (z) = f(z) + g(z). We
have from the first identity in (29), Cauchy’s theorem and Stokes’ theorem that∫

∂Ω

UsdF =

∫
∂Ω

UmdF =

∫
∂Ω

zg′ dz = −
∫

Ω

g′ dm ,

where dm := dz ∧ dz. We also have from Stokes’ theorem that∫
∂Ω

UsdF =

∫
Ω

d(UdF ) =

∫
Ω

[
∂

∂z
(Uf ′)− ∂

∂z

(
Ug′

)]
dm

= −
∫

Ω

1

2µ

[(
zϕ′′ + ψ′

)
f ′ + (kϕ′ − ϕ′)g′

]
dm . (34)
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Equating above two identities, we have∫
Ω

g′ dm =
1

2µs

∫
Ω\D

[(
zϕ′′s + ψ′s

)
f ′ + (ksϕ

′
s − ϕ′s)g′

]
dm

+
1

2µc

∫
D

[(
zϕ′′c + ψ′c

)
f ′ + (kcϕ

′
c − ϕ′c)g′

]
dm .

It then follows from (25) and (32) that∫
Ω

g′ dm− β

κs

∫
Ω\D

g′ dm

=
1

2µs

∫
Ω\D

ψ′sf
′ dm+

1

2µc

∫
D

(
zϕ′′c + ψ′c

)
f ′ dm+

1

2µc

∫
D

(kcϕ
′
c − ϕ′c)g′ dm .

Since f and g are arbitrary, we have

1

µs

∫
Ω\D

ψ′sf
′ dm+

1

µc

∫
D

(
zϕ′′c + ψ′c

)
f ′ dm = 0 , (35)

and
1

2µc

∫
D

(kcϕ
′
c − ϕ′c)g′ dm =

∫
Ω

g′ dm− β

κs

∫
Ω\D

g′ dm . (36)

Similarly, we have from the second identity in (29)∫
∂Ω

FDUs =

∫
∂Ω

FDUm = 2κm

∫
∂Ω

g dz = 2κm

∫
Ω

g′ dm ,

and hence

2κm

∫
Ω

g′ dm =

∫
Ω

d(FDU)

=

∫
Ω

[
∂

∂z

(
(f + g)(ϕ′ + ϕ′)

)
− ∂

∂z

(
(f + g)(zϕ′′ + ψ′)

)]
dm

=

∫
Ω

[
g′(ϕ′ + ϕ′)− f ′

(
zϕ′′ + ψ′

)]
dm .

Since f and g are arbitrary and (32) holds, we obtain∫
Ω\D

ψ′sf
′dm+

∫
D

(
zϕ′′c + ψ′c

)
f ′ dm = 0 , (37)

and ∫
D

(ϕ′c + ϕ′c)g
′dm = 2κm

∫
Ω

g′ dm− 2β

∫
Ω\D

g′dm . (38)
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Since µs 6= µc by the assumption (5), we infer from (35) and (37) that∫
D

(
zϕ′′c + ψ′c

)
f ′ dm = 0 ,

or equivalently, ∫
∂D

(
zϕ′c + ψc

)
f ′ dz = 0 . (39)

Note that (39) holds for all functions f analytic in Ω. However, one can in-
fer using Runge’s approximation theorem that it holds for all f analytic in a
neighborhood of D. So, by Lemma 3.1, there is an analytic function η1 in D
such that

zϕ′c + ψc = η1 on ∂D. (40)

On the other hand, (36) can be rewritten as

1

2µc

∫
D

(kϕ′c − ϕ′c −
2βµc
κs

)g′ dm =

(
1− β

κs

)∫
Ω

g′ dm , (41)

while (38) as ∫
D

(ϕ′c + ϕ′c − 2β)g′dm = 2(κm − β)

∫
Ω

g′ dm . (42)

Since κm−β 6= 0 by the assumption (5) and (33), we see from (41) and (42)
that ∫

D

(kcϕ
′
c − ϕ′c −

2βµc
κs

)g′ dm− γ
∫
D

(ϕ′c + ϕ′c − 2β)g′dm = 0.

where

γ :=
2µc

(
1− β

κs

)
2(κm − β)

=
2µc

(
1− α

2

)
2(κm − β)

. (43)

So by the same argument as above, we infer that the function(
kcϕc − zϕ′c −

2βµc
κs

z

)
− γ(ϕc + zϕ′c − 2βz)

can be continued analytically to D, namely, there is an analytic function η2

in D such that(
kcϕc − zϕ′c −

2βµc
κs

z

)
− γ(ϕc + zϕ′c − 2βz) = η2 on ∂D,

which can be rephrased as

kc − γ
1 + γ

ϕc − zϕ′c = (1 + γ)−1η2 + δz on ∂D, (44)
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for some real constant δ. Observe that if f is analytic in D, then f is a solution
(in the complex representation) to the Lamé system for any shear modulus
µ > 0 and bulk modulus κ > 0. So, (1 + γ)−1η2 + δz is a solution to any Lamé
system. We claim (leaving the proof to the end of this proof) that

k∗ :=
kc − γ
1 + γ

> 1. (45)

It implies that k∗ϕc − zϕ′c is a solution to the Lamé system with the shear
modulus µ = 1 and the bulk modulus 2(k∗− 1)−1. So, it follows from (44) and
uniqueness of the Dirichlet boundary value problem for the Lamé system that

k∗ϕc − zϕ′c = (1 + γ)−1η2 + δz in D.

By differentiating both sides with respect to z, we see that ϕ′c is (real) constant
in D. We also see from (40) that ψc is constant in D. In fact, we have from (40)
that

ψc = η1 + cz on ∂D

for some constant c. Since ψc and η1 + cz are analytic in D, it implies that
they are constant in D.

Let us now prove (45). We see easily from (22), (33) and (43) that

γ =
µc

2κs + µs
.

So we have

(kc − γ)− (1 + γ) = 2µc

(
1

κc
− 1

2κs + µs

)
.

Then (45) follows by the third condition in (5). This completes the proof.

Proof of Theorem 1.1. According to Proposition 3.2, the solution u takes the
form (31). Substituting this into the representation formula (19) yields

u(x) = x + 2a(κc − κs)
∫
D

I : ∇̂yΓs(x−y) dy +
κm − κs
π(µs + κs)

∇
∫

Ω

log |x−y| dy

= x + 2a(κc − κs)
∫
D

div∇̂yΓs(x−y) dy +
κm − κs
π(µs + κs)

∇
∫

Ω

log |x−y| dy

for x ∈ Ω. It then follows from (9) that

u = ∇χ in Ω \D,

where

χ(x) =
1

2
|x|2 +

a(κs − κc)
π(µs + κs)

∫
D

log |x− y| dy +
κm − κs
π(µs + κs)

∫
Ω

log |x− y| dy.
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Since u = x on ∂Ω, u = ax + b on ∂D by (31), and divu is constant in
Ω \D, χ is a solution of the following over-determined problem:

∆χ = constant in Ω \D,
∇χ = x on ∂Ω,

∇χ = ax + b on ∂D.

(46)

It is proved in [10] (see also [11]) that if the problem (46) admits a solution if
and only if Ω and D are concentric disks. This completes the proof.

Conclusion

In this paper we prove that if a coated inclusion in two dimensions is neutral
to a bulk field, the core and the shell are concentric disks, provided that the
assumption (5) on elastic moduli holds. It is not clear whether or not there is a
coated structure neutral to shear fields, and it is of interest to clarify this. The
shear field is the gradient of h(x) = Ax where A is a symmetric matrix whose
trace is zero. An extension to three dimensions is also interesting. One can show
by the same proof that Proposition 2.1 holds to be true in three dimensions.
But, we do not know how to prove Proposition 3.2 in three dimensions.
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