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Abstract. We study the inverse conductivity problem with discontin-
uous conductivities. We consider, simultaneously, a regularisation and
a discretisation for a variational approach to solve the inverse problem.
We show that, under suitable choices of the regularisation and discreti-
sation parameters, the discrete regularised solutions converge, as the
noise level on the measurements goes to zero, to the looked for solution
of the inverse problem.
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1. Introduction

In this paper we consider the inverse conductivity problem with discontinuous
conductivity. For a given conducting body contained in a bounded domain
Ω ⊂ RN , N ≥ 2, we call X the space of admissible conductivities, or better
conductivity tensors, in Ω. For any σ ∈ X, we call Λ(σ) either the Dirichlet-
to-Neumann map, or the Neumann-to-Dirichlet map, corresponding to σ. It
is a well-known fact that Λ(σ) is a bounded linear operator between suitable
Banach spaces defined on the boundary of Ω, and we call Y the space of these
bounded linear operators. The forward operator Λ : X → Y is the one that to
each σ ∈ X associates Λ(σ) ∈ Y .

The aim of the inverse problem is to determine an unknown conductivity
in Ω by performing suitable electrostatic measurements of current and voltage
type on the boundary. If σ0 is the conductivity we aim to recover by solving
our inverse problem, then we measure its corresponding Λ(σ0) ∈ Y . Due to the
noise that is present in the measurements, actually the information that we are
able to collect is Λ̂ ∈ Y , which is a perturbation of Λ(σ0). We call ‖Λ̂−Λ(σ0)‖Y
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the noise level of the measurements and we notice that the choice of the space
Y corresponds to the way we measure the errors in our measurements.

The inverse problem may be stated, at least formally, in the following way.
Given our measurements Λ̂, we wish to find σ ∈ X such that

Λ(σ) = Λ̂. (1)

Due to the noise, such a problem may not have any solution, therefore we better
consider a least-square formulation

min
σ∈X
‖Λ(σ)− Λ̂‖Y . (2)

Unfortunately, the inverse conductivity problem is ill-posed, therefore to solve
(2) numerically, a regularisation strategy need to be implemented. Considering
a regularisation à la Tikhonov, this means to choose a regularisation operator
R, usually a norm or a seminorm, and a regularisation parameter a and solve

min
σ∈X
‖Λ(σ)− Λ̂‖Y + aR(σ). (3)

A solution to (3) is called a regularised solution. A good regularisation op-
erator need to satisfy the following two criteria. First of all, it should make
the minimisation process stable from a numerical point of view. Second, the
regularised solution should be a good approximation of the looked for solution
of the inverse problem.

For the nonsmooth case, often this second requirement is not proved an-
alytically but rather it is (not rigorously) justified by numerical tests only.
However, a convergence analysis, using techniques inspired by variational con-
vergences such as Γ-convergence, allows to rigorously justify the choice of the
regularisation operator, [38]. For the inverse conductivity problem with dis-
continuous conductivity, by this technique, in the same paper [38], the use of
some of the usually employed regularisation methods was rigorously justified.
For instance, a convergence analysis was developed for regularisations such as
the total variation penalisation or the Mumford-Shah functional. Several other
works followed this approach, for instance it was extended to smoothness or
sparsity penalty regularisations for the inverse conductivity problem in [28],
whereas in [27] the analysis for the Mumford-Shah functional was slightly re-
fined and applied to other inverse problems.

Once the regularisation operator is chosen, and proved to be effective, the
issue of the numerical approximation for the regularised problem comes into
play. One of the key points of the numerical approximation is represented by
the discretisation of the regularised minimum problem. Again, two issues come
forward. The first one is the choice of the kind of space of discrete unknowns we
intend to use. The second important issue is how fine the discretization should
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be. A compromise is necessary between a better resolution (finer discretization)
and a more stable reconstruction (coarser discretization). Again, the discrete
regularised solution, that is, the solution to the regularised problem (3) with
σ varying in such a discrete subset, should be a good approximation of the
solution of the inverse problem. Actually, for inverse problems, this may not
be necessarily so, as an example in [36] shows. Therefore, studying the effect
of the discretisation when solving an inverse problem is not at all an easy task.
This fundamental and nontrivial issue went rather unlooked, at least for the
inverse conductivity problem and other classical inverse problems dealing with
nonsmooth unknowns.

The crucial point we wish to address here is the following. We want to
simultaneously fix both the regularisation parameter and the discretisation
parameter, in correspondence to the given noise level, such that the discrete
regularised solutions converge, as the noise level goes to zero, to the solution
of the inverse problem. Previously, only the analysis of the approximation of
the regularised problem with discrete ones, with a fixed regularisation param-
eter, was performed. For instance, a nice finite element approximation for the
inverse conductivity problem, with the total variation as regularisation, may
be found in [23]. In [40], instead, it was proved that the regularised inverse
conductivity problem, with the Mumford-Shah as a regularisation term, could
be well approximated by replacing the Mumford-Shah with its approximating
Ambrosio-Tortorelli functionals developed in [6, 7]. Here the approximating pa-
rameter for the Ambrosio-Tortorelli functionals may be seen as another version
of the discretisation parameter.

Actually, the first attempt to vary, in a suitable way, the regularisation
and discretisation parameters simultaneously, may be found in a Master the-
sis supervised by the author, [14]. There the Ambrosio-Tortorelli functionals
were considered, and their approximating parameter and the regularisation pa-
rameter were chosen accordingly to the noise level to guarantee the required
convergence of this type of regularised solutions. For the convenience of the
reader, we present a brief summary of this result in Subsection 3.2 of the present
paper.

The main result of the paper, Theorems 3.5 and 3.6, is contained in Subsec-
tion 3.1. We consider the inverse conductivity problem and its regularisation
by a total variation penalisation. We consider a discrete subset of admissible
conductivities which is simply given by standard conforming piecewise linear
finite elements over a regular triangulation. The triangulation is characterised
by a discretisation parameter h, which is an upper bound for the diameter of
any simplex forming the triangulation.

We show that, if we choose the regularisation parameter a and the discreti-
sation parameter h according to the noise level, then the discrete regularised
solution would converge to a solution of the inverse problem. An interesting
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feature of this result is that it shows that the discretisation parameter should
go to zero in a polynomial way with respect to the noise level.

We remark that in this paper we limit ourselves to a very simple scenario
but we believe that this is just a first step to tackle a full discretisation of the
inverse conductivity problem, in a more general setting as well. This will be
the object of future work.

It would also be very interesting to address the issue of convergence esti-
mates. In the smooth case they may be obtained by using Tikhonov regularisa-
tion for nonlinear operators, see for instance [20]. Actually, for the inverse con-
ductivity problem in the smooth case, some convergence estimates are available
for the regularised solutions, without adding the discretisation, see for instance
[31] and [28]. We notice that our technique involves Γ-convergence, which is of
a qualitative nature thus does not lead easily to convergence estimates.

Finally we wish to mention that, for discrete sets of unknowns, that is, un-
knowns depending on a finite number of parameters, the usual ill-posedness of
these kinds of inverse problems considerably reduces. In fact, Lipschitz stabil-
ity estimates may be obtained instead of the classical logarithmic ones. Such
an important line of research was initiated in [3] and pursued in several other
paper (let us mention the recent one [2] which is the closest to the setting we
use in this paper). Unfortunately, the behaviour of the Lipschitz constant as
the discretisation parameter approaches zero is extremely bad, as it explodes
exponentially with respect to h, a fact firstly noted in [37]. This fact seems to
prevent the use of these kinds of estimates at the discrete level to prove con-
vergence estimate, or even just convergence, of discrete regularised solutions.

The plan of the paper is the following. In Section 2, besides fixing the
notation and stating the inverse conductivity problem, we present a rather
complete introduction to the regularisation issue for this inverse problem. Most
of the material here is not new, a part from a few instances that we point out
in a while, but our aim is to present a self-contained review to this line of
research that is scattered in several papers. We begin with uniqueness results
for scalar conductivities, that is, for the isotropic case, and nonuniqueness for
symmetric conductivity tensors, that is, for the anisotropic case, Subsection 2.1.
We recall that nonuniqueness is due to the invariance of the boundary operators
by smooth changes of variables of the domain Ω that keep fixed the boundary.

In Subsection 2.2, we study the existence of a solution to (1). This part
is mostly from [39]. We show that existence is true in the anisotropic case,
whereas it may fail in the isotropic case, see Example 2.5. We notice that
Example 2.5 appeared in a Master thesis supervised by the author, [18], and
it is a slight generalisation of a similar example in [39]. The crucial ingredient
for both is a nice construction due to Giovanni that may be found in [39,
Example 4.4]. Even if existence of (1) is guaranteed, the ill-posedness nature
of this inverse problem implies that minimiser to (1) may fail to converge to the
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looked for solution to the inverse problem, as the noise level goes to zero. This
is shown in three different examples, Examples 2.8, 2.10 and 2.11. Example 2.8
shows how nonuniqueness in the anisotropic case leads to instability, see also
Proposition 2.9 which is taken from [22] for a corresponding partial stability
result. Examples 2.10 and 2.11 deal with the isotropic case. The latter is new
and slightly improves the former, which is taken from [1].

In Subsection 2.3, we recall the approach to regularisation for inverse prob-
lems with nonsmooth unknowns, and in particular for the inverse conductivity
problem with discontinuous conductivities, that was developed in [38].

Section 3 is the main of the paper. We investigate simultaneous numerical
approximation and regularisation for the inverse conductivity problem with
discontinuous conductivities. In Subsection 3.1, we present our main result, the
convergence analysis of the discretisation by the finite element method coupled
with a total variation regularisation. Finally, in Subsection 3.2, we present
the result of [14], that is, the convergence analysis for the regularisation by
Ambrosio-Tortorelli functionals.

2. Statement of the inverse problem, preliminary
considerations, and previous results

Throughout the paper we shall keep fixed positive constants λ0, λ1, and λ̃1,
with 0 < λ0 ≤ λ1, λ̃1. The integer N ≥ 2 will always denote the space dimen-
sion and we recall that we shall usually drop the dependence of any constant
on N . For any Borel set E ⊂ RN , we denote with |E| its Lebesgue measure,
whereas HN−1(E) denotes its (N − 1)-dimensional Hausdorff measure.

Throughout the paper we also fix Ω, a bounded connected open set con-
tained in RN , N ≥ 2. We assume that Ω has a Lipschitz boundary in the
following usual sense. For any x ∈ ∂Ω there exist r > 0 and a Lipschitz
function ϕ : RN−1 → R such that, up to a rigid change of coordinates, we have

Ω ∩Br(x) = {y = (y1, . . . , yN−1, yN ) ∈ Br(x) : yN < ϕ(y1, . . . , yN−1)}.

We call MN×N (R) the space of real valued N × N matrices. For any σ ∈
MN×N (R), with N ≥ 2, several equivalent ellipticity conditions may be used.
For example {

σξ · ξ ≥ λ0‖ξ‖2 for any ξ ∈ RN

σ−1ξ · ξ ≥ λ−1
1 ‖ξ‖2 for any ξ ∈ RN .

(4)

Otherwise we can use{
σξ · ξ ≥ λ0‖ξ‖2 for any ξ ∈ RN

‖σ‖ ≤ λ̃1

(5)
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where ‖σ‖ denotes its norm as a linear operator of RN into itself.
The following remark shows that these two conditions are equivalent. If σ

satisfies (4) with constants λ0 and λ1, then it also satisfies (5) with constants λ0

and λ̃1 = λ1. If σ satisfies (5) with constants λ0 and λ̃1, then it also satisfies (4)
with constants λ0 and λ1 = λ̃2

1/λ0. If σ is symmetric then, picking λ̃1 = λ1,
(4) and (5) are exactly equivalent and coincide with the condition

λ0‖ξ‖2 ≤ σξ · ξ ≤ λ1‖ξ‖2 for any ξ ∈ RN ,

that we write in short as follows

λ0IN ≤ σ ≤ λ1IN ,

where IN is the N ×N identity matrix. Finally, if σ = sIN , where s is a real
number, the condition simply reduces to

λ0 ≤ s ≤ λ1.

We use the following classes of conductivity tensors in Ω. For positive
constants λ0 ≤ λ1 we call M(λ0, λ1) the set of σ = σ(x), x ∈ Ω, an N × N
matrix whose entries are real valued measurable functions in Ω, such that,
for almost any x ∈ Ω, σ(x) satisfies (4). We call Msym(λ0, λ1), respectively
Mscal(λ0, λ1), the set of σ ∈M(λ0, λ1) such that, for almost any x ∈ Ω, σ(x) is
symmetric, respectively σ(x) = s(x)IN with s(x) a real number. We say that σ
is a conductivity tensor in Ω if σ ∈M(λ0, λ1) for some constants 0 < λ0 ≤ λ1.
We callM the class of conductivity tensors in Ω. We say that σ is a symmetric
conductivity tensor in Ω if σ ∈M and σ(x) is symmetric for almost any x ∈ Ω.
We callMsym the class of conductivity tensors in Ω. We say that σ is a scalar
conductivity in Ω if σ ∈ M and σ(x) = s(x)IN , with s(x) ∈ R, for almost any
x ∈ Ω. We call Mscal the class of scalar conductivities in Ω.

Since M ⊂ L∞(Ω,MN×N (R)), we may measure the distance between any
two conductivity tensors σ1 and σ2 in Ω with an Lp metric, for any p, 1 ≤ p ≤
+∞, as follows

‖σ1 − σ2‖Lp(Ω) = ‖(‖σ1 − σ2‖)‖Lp(Ω).

With any of these Lp metrics, any of the classesM(λ0, λ1),Msym(λ0, λ1), and
Mscal(λ0, λ1) is a complete metric space.

For any p, 1 ≤ p ≤ +∞, we denote with p′ its conjugate exponent, that
is 1/p + 1/p′ = 1. For any p, 1 < p < +∞, we call W 1−1/p,p(∂Ω) the
space of traces of W 1,p(Ω) functions on ∂Ω. We recall that W 1−1/p,p(∂Ω) ⊂
Lp(∂Ω), with compact immersion. For simplicity, we denote H1(Ω) = W 1,2(Ω),
H1/2(∂Ω) = W 1/2,2(∂Ω) and H−1/2(∂Ω) its dual.

We call L2
∗(∂Ω) the subspace of functions f ∈ L2(∂Ω) such that

∫
∂Ω
f = 0.

We set H
−1/2
∗ (∂Ω) the subspace of g ∈ H−1/2(∂Ω) such that

〈g, 1〉(H−1/2(∂Ω),H1/2(∂Ω)) = 0.
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We recall that L2
∗(∂Ω) ⊂ H

−1/2
∗ (∂Ω), with compact immersion, if for any

g ∈ L2
∗(∂Ω) and any ψ ∈ H1/2(∂Ω) we define

〈g, ψ〉(H−1/2(∂Ω),H1/2(∂Ω)) =

∫
∂Ω

gψ. (6)

Analogously, H
1/2
∗ (∂Ω) is the subspace of ψ ∈ H1/2(∂Ω) such that

∫
∂Ω
ψ = 0.

We have H
1/2
∗ (∂Ω) ⊂ L2

∗(∂Ω), with compact immersion.
For any two Banach spaces B1, B2, L(B1, B2) will denote the Banach space

of bounded linear operators from B1 to B2 with the usual operator norm.

2.1. Statement of the problem and uniqueness results

For any conductivity tensor σ in Ω, we define its Dirichlet-to-Neumann map
DN(σ) : H1/2(∂Ω)→ H−1/2(∂Ω) where for each ϕ ∈ H1/2(∂Ω),

DN(σ)(ϕ)[ψ] =

∫
Ω

σ∇u · ∇ψ̃ for any ψ ∈ H1/2(∂Ω)

where u solves {
div(σ∇u) = 0 in Ω
u = ϕ on ∂Ω

(7)

and ψ̃ ∈ H1(Ω) is such that ψ̃ = ψ on ∂Ω in the trace sense. We have that
DN(σ) is a well-defined bounded linear operator, whose norm is bounded by
a constant depending on N , Ω, λ0, and λ1 only, for any σ ∈ M(λ0, λ1). Let

us notice that, actually, we have DN(σ) : H1/2(∂Ω) → H
−1/2
∗ (∂Ω). More-

over, since for any constant function ϕ on Ω we have that ϕ ∈ H1/2(Ω) and
DN(σ)(ϕ) = 0, no matter what σ is, without loss of generality, we actually
define

DN(σ) : H
1/2
∗ (∂Ω)→ H

−1/2
∗ (∂Ω). (8)

For any conductivity tensor σ in Ω, we define its Neumann-to-Dirichlet map

ND(σ) : H
−1/2
∗ (∂Ω)→ H

1/2
∗ (∂Ω)

where for each g ∈ H−1/2
∗ (∂Ω),

ND(σ)(g) = v|∂Ω

where v solves 
div(σ∇v) = 0 in Ω

σ∇v · ν = g on ∂Ω∫
∂Ω
v = 0.

(9)
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We have that ND(σ) is a well-defined bounded linear operator, it is the inverse
of DN(σ) as defined in (8), and its norm is bounded by a constant depending
on N , Ω, and λ0 only, for any σ ∈M(λ0, λ1).

We consider the following forward operators

DN :M(λ0, λ1)→ L(H
1/2
∗ (∂Ω), H

−1/2
∗ (∂Ω))

and
ND :M(λ0, λ1)→ L(H

−1/2
∗ (∂Ω), H

1/2
∗ (∂Ω)).

We can state the inverse conductivity problem in the following way. We wish
to determine an unknown conductivity tensor σ in Ω by performing electrostatic
measurements at the boundary of voltage and current type. If all boundary
measurements are performed, this is equivalent to say that we are measuring
either its Dirichlet-to-Neumann map DN(σ) or its Neumann-to-Dirichlet map
ND(σ). In other words, given either DN(σ) or ND(σ), we wish to recover σ.

Such an inverse problem has a long history, it was in fact proposed by
Calderón [11] in 1980. About uniqueness, there are several result for scalar,
that is isotropic, conductivities. In dimension 3 and higher, already in the 80’s,
uniqueness was proved in [29, 30] for the determination of the conductivity at
the boundary and for the analytic case, and then in [42] for C2 conductivities.
Slightly later it appeared the first uniqueness result for smooth conductivities
in dimension 2, [35].

Recently, the two dimensional case was completely solved, [8], for L∞ scalar
conductivities. Also for the N dimensional case, with N ≥ 3, there has been a
great improvement. In [26], the regularity has been reduced to C1 or Lipschitz
but close to a constant. The case of general Lipschitz conductivities is treated
in [12]. The most general result is the one in [25], where conductivities with un-
bounded gradient are allowed and uniqueness is shown for W 1,N conductivities,
at least for N = 3, 4.

For what concerns anisotropic conductivities, for instance when we consider
symmetric conductivity tensors inMsym, uniqueness is never achieved. In fact,
let ϕ : Ω → Ω be a bi-Lipschitz mapping, that is a bijective map such that
ϕ and its inverse ϕ−1 are Lipschitz functions. Clearly ϕ can be extended to
a Lipschitz function defined on Ω. For any σ ∈ Msym in Ω and any of these
bi-Lipschitz mapping ϕ from Ω onto itself, we define the push-forward of the
conductivity tensor σ by ϕ as

ϕ∗(σ)(y) =
J(x)σ(x)J(x)T

|det J(x)|
for almost any y ∈ Ω (10)

where J(x) = Jϕ(x) is the Jacobian matrix of ϕ in x and x = ϕ−1(y). We
have that ϕ∗(σ) ∈Msym and that

DN(σ) = DN(ϕ∗(σ)) and ND(σ) = ND(ϕ∗(σ)) if ϕ|∂Ω = Id. (11)
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In dimension N = 2 and for Ω simply connected, (10) and (11) still hold even
if we consider ϕ : Ω→ Ω to be a quasiconformal mapping. We recall that, for
Ω ⊂ R2, simply connected bounded open set with Lipschitz boundary, we say
that ϕ : Ω → Ω is a quasiconformal mapping if ϕ is bijective, ϕ ∈ W 1,2(Ω),
and, for some K ≥ 1, we have

‖Jϕ(x)‖2 ≤ K det(Jϕ(x)) for a.e. x ∈ Ω.

By (11), it is immediate to notice that our inverse problem can not have a
unique solution if we consider symmetric conductivity tensors. On the other
hand, in dimension 2, this is the only obstruction to uniqueness for symmetric
conductivity tensors, as proved in [41] in the smooth case and in [9] in the
general L∞ case.

We summarise these results in the following theorem.

Theorem 2.1. Let Ω ⊂ RN , N = 2, 3, 4, be a bounded, connected domain with
Lipschitz boundary. Let σ1 and σ2 belong to Mscal.

If N = 3, 4 and σ1, σ2 ∈W 1,N (Ω), then we have, see [25],

DN(σ1) = DN(σ2) or ND(σ1) = ND(σ2) implies σ1 = σ2.

If N = 2 and Ω is simply connected, then we have, see [8],

DN(σ1) = DN(σ2) or ND(σ1) = ND(σ2) implies σ1 = σ2.

If N = 2 and Ω is simply connected, for any σ ∈Msym we define

Σ(σ) = {σ1 ∈Msym : σ1 = ϕ∗(σ)

where ϕ : Ω→ Ω is a quasiconformal mapping and ϕ|∂Ω = Id}.

Then DN(σ), or equivalently ND(σ), uniquely determines the class Σ(σ),
see [9].

2.2. Variational formulation and ill-posedness

In practice, the inverse problem consists in the following. Let σ0 be a con-
ductivity tensor in Ω that we wish to determine. Considering for example the
Dirichlet-to-Neumann case, we measure DN(σ0). Since our measurements are
obviously noisy, the information that is actually available is a perturbation of
DN(σ0), that we may call Λ̂. Therefore our inverse problem consists in finding
a conductivity σ such that DN(σ) = Λ̂. Due to the noise in the measurements
this problem may not have any solution. We should therefore solve the problem
in a least-square-type way, namely solve

min
σ
‖DN(σ)− Λ̂‖.
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The fact that such a minimum problem admits a solution depends on several
aspects. In particular it depends on the class of conductivity tensors on which
we consider the minimisation and, in part, also on the kind of norm we use to
measure the distance between DN(σ) and Λ̂. Next we discuss in details these
issues.

Occasionally, we shall use the so-called H-convergence. For a definition and
its basic properties we refer to [4, 34, 33]. We recall that G- or H-convergence
was shown to be quite useful for the inverse conductivity problem, see for
instance [1, 22, 39]. Here we just remark a few of its properties. This is
a very weak kind of convergence, in fact it is weaker than L1

loc convergence.
For symmetric conductivity tensors H-convergence reduces to the more usual
G-convergence. The most important fact is that M(λ0, λ1) is compact with
respect to H-convergence and Msym(λ0, λ1) is also compact with respect to
H-convergence, or equivalently G-convergence. Furthermore, Mscal(λ0, λ1) is
not closed with respect to G-convergence, actually any symmetric conductivity
tensor is the limit, in the G-convergence sense, of scalar conductivities assuming
only two different positive values.

We use the following notation. Let B1 and B2 be two Banach spaces such

that B1 ⊂ H1/2
∗ (∂Ω) andH

−1/2
∗ (∂Ω) ⊂ B2, with continuous immersions. More-

over, let B̃1 and B̃2 be two Banach spaces such that B̃1 ⊂ H
−1/2
∗ (∂Ω) and

H
1/2
∗ (∂Ω) ⊂ B̃2, with continuous immersions.

We denote with X the space M(λ0, λ1), Msym(λ0, λ1), or Mscal(λ0, λ1).
The natural metric on X will be the one induced by the L1 metric.

In the Dirichlet-to-Neumann case, we call Y = L(B1, B2), with the distance
induced by its norm, and denote Λ = DN : X → Y .

We speak of the natural norm of the Dirichlet-to-Neumann map when B1 =

H
1/2
∗ (∂Ω) and B2 = H

−1/2
∗ (∂Ω) and we denote it with ‖·‖nat or ‖·‖H1/2,H−1/2 .

We have a canonical continuous linear map from L(H
1/2
∗ (∂Ω), H

−1/2
∗ (∂Ω)) into

Y . If we assume that B1 is dense in H
1/2
∗ (∂Ω), then this map is injective, thus

L(H
1/2
∗ (∂Ω), H

−1/2
∗ (∂Ω)) ⊂ Y , with continuous immersion, and, if y ∈ Y is

such that ‖y‖Y = 0, then y ∈ L(H
1/2
∗ (∂Ω), H

−1/2
∗ (∂Ω)) and also ‖y‖nat = 0.

In the Neumann-to-Dirichlet case, we call Y = L(B̃1, B̃2), with the distance
induced by its norm, and denote Λ = ND : X → Y .

We speak of the natural norm of the Neumann-to-Dirichlet map when B̃1 =

H
−1/2
∗ (∂Ω) and B̃2 = H

1/2
∗ (∂Ω) and we denote it with ‖·‖nat or ‖·‖H−1/2,H1/2 .

We have a canonical continuous linear map from L(H
−1/2
∗ (∂Ω), H

1/2
∗ (∂Ω)) into

Y . If we assume that B̃1 is dense in H
−1/2
∗ (∂Ω), then this map is injective, thus

L(H
−1/2
∗ (∂Ω), H

1/2
∗ (∂Ω)) ⊂ Y , with continuous immersion, and, if if y ∈ Y is

such that ‖y‖Y = 0, then y ∈ L(H
−1/2
∗ (∂Ω), H

1/2
∗ (∂Ω)) and also ‖y‖nat = 0.

Another interesting and useful choice for B̃1 and B̃2 is given by B̃1 = B̃2 =
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L2
∗(∂Ω), see the discussion in [39], and we denote its norm with ‖ · ‖L2,L2 . We

remark that L2
∗(∂Ω) is clearly dense in H

−1/2
∗ (∂Ω).

Let us notice in the following remark that, when we consider the natu-
ral norms, then all results related to the Dirichlet-to-Neumann maps may be
proved also for the Neumann-to-Dirichlet maps, and viceversa.

Remark 2.2. Let σ1, σ2 ∈ M(λ0, λ1). Then there exist positive constants C1

and C2, depending on N , Ω, λ0, and λ1 only, such that

C1‖ND(σ1)−ND(σ2)‖H−1/2,H1/2 ≤ ‖DN(σ1)−DN(σ2)‖H1/2,H−1/2

≤ C2‖ND(σ1)−ND(σ2)‖H−1/2,H1/2 .

In fact, we have

DN(σ1)−DN(σ2) = DN(σ1)(ND(σ2)−ND(σ1))DN(σ2)

and the same formula holds if we swap DN with ND.

If we call Λ̂ ∈ Y either the measured Dirichlet-to-Neumann map or the mea-
sured Neumann-to-Dirichlet map, then the inverse problem consists in finding
σ ∈ X such that Λ(σ) = Λ̂. However, since Λ̂ is a measured, therefore noisy,
quantity, this problem may not have any solution and we thus solve the problem
in a least-square-type way, namely solve

min{‖Λ(σ)− Λ̂‖Y : σ ∈ X}. (12)

Such a problem always admits a solution either if X = M(λ0, λ1) or if
X =Msym(λ0, λ1). In fact the following is proved in [39].

Proposition 2.3. Under the previous notation and assumptions, let us con-
sider a sequence of conductivity tensors {σn}n∈N ⊂ M(λ0, λ1) and a conduc-
tivity tensor σ in the same set.

If, as n → ∞, σn converges to σ strongly in L1
loc or in the H-convergence

sense, then

‖Λ̂− Λ(σ)‖Y ≤ lim inf
n
‖Λ̂− Λ(σn)‖Y .

If X is equal to M(λ0, λ1) or to Msym(λ0, λ1), by compactness of X with
respect to H-convergence, we deduce that (12) admits a solution.

On the other hand, if X is equal toMscal(λ0, λ1) then (12) may fail to have
a solution as we shall see later on in Example 2.5.

We notice that Proposition 2.3 contains a lower semicontinuity result. For
certain application, instead, continuity is needed. For our purposes it will be
enough the following result, proved in [1].
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Proposition 2.4. Under the previous notation and assumptions, let us con-
sider a sequence of symmetric conductivity tensors {σn}n∈N ⊂ Msym(λ0, λ1)
and a conductivity tensor σ in the same set. We assume that for some Ω′

compactly contained in Ω we have σn = σ almost everywhere in Ω\Ω′ for any
n ∈ N.

If, as n → ∞, σn converges to σ strongly in L1
loc or in the G-convergence

sense, then
lim
n
‖Λ(σ)− Λ(σn)‖nat = 0

as well as in ‖ · ‖Y for any Y as above.

We notice that a certain control of the conductivity tensors near the bound-
ary is indeed needed, see [22, Theorem 4.9]. In the same paper a more general
and essentially optimal version of Proposition 2.4 is proved, see [22, Theo-
rem 1.1].

Proposition 2.4 is enough to show that (12) may fail to have a solution if
X = Mscal(λ0, λ1). We slightly generalise [39, Example 3.4], which is based
on a nice remark by Giovanni, which is presented in [39] as Example 4.4. This
generalisation shows that existence may fail for both the Dirichlet-to-Neumann
and Neumann-to-Dirichlet case and for the natural norms, as well as for any

‖·‖Y with Y as above, if B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω),

respectively. It firstly appeared in [18], and we present its proof here for the
convenience of the reader.

Example 2.5. Let Ω = B1(0) ⊂ R2. Under the previous notation and assump-

tions, let us assume that B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω),

respectively.
Let a > 0 be a positive constant with a 6= 1. We define the conductivity

tensor σ̃ ∈Msym(λ0, λ1)\Mscal(λ0, λ1) in B1(0) ⊂ R2 as follows

σ̃ =


I2 in B1(0)\B1/2(0)[
a 0
0 a−1

]
in B1/2(0).

(13)

Let us set Λ̂ = Λ(σ̃). There exist 0 < λ0 < λ1 such that the minimum
problem

min
σ∈Mscal(λ0,λ1)

‖Λ(σ̃)− Λ(σ)‖Y

does not have any solution, for any Y as above, thus including the natural
norms.

Proof. The crucial point is the following. By density of scalar conductivities
inside symmetric conductivity tensors that follows by the results in [33], see
[39, Proposition 2.2] for a convenient version, we can find 0 < λ0 < λ1 and



REGULARISATION FOR INVERSE CONDUCTIVITY PROBLEM 327

{σn}n∈N ⊂Mscal(λ0, λ1) such that σn G-converges to σ̃ as n→∞ and σn = I2
in B1(0)\B1/2(0) for any n ∈ N. Therefore, by Proposition 2.4, we immediately
conclude that

inf
σ∈Mscal(λ0,λ1)

‖Λ(σ̃)− Λ(σ)‖Y = 0.

In order for a minimiser to exist, then we need to find a scalar conductivity
σ̂ such that ‖Λ(σ̂) − Λ(σ̃)‖Y = 0, hence, by our density assumptions, such
that Λ(σ̂) = Λ(σ̃). By the main result of [9], recalled in Theorem 2.1, there
exists a quasiconformal mapping ϕ : B1(0) → B1(0) such that ϕ|∂B1(0) = Id

and ϕ∗(σ̂) = σ̃. We recall that actually ϕ : B1(0) → B1(0), it is continuous,
bijective and its inverse is continuous as well. We assume that σ̂(x) = s(x)I2,
x ∈ B1(0), with s ∈ L∞(B1(0)) and bounded away from 0. Then ϕ∗(σ̂) = σ̃
means that for almost any y ∈ B1(0) we have

σ̃(y) =
J(x)(s(x)I2)J(x)T

|det J(x)|

=
s(x)

|det J(x)|

[
|∇ϕ1(x)|2 ∇ϕ1(x) · ∇ϕ2(x)

∇ϕ1(x) · ∇ϕ2(x) |∇ϕ2(x)|2
]
,

where ϕ = (ϕ1, ϕ2), J(x) is the Jacobian matrix of ϕ in x, and x = ϕ−1(y).
Since det(σ̃(y)) = 1 for almost any y ∈ B1(0), we conclude that, for almost
any x ∈ B1(0), s(x) = 1, that is σ̂ ≡ I2 in B1(0). We also note that, since ϕ is
quasiconformal, then detJ(x) > 0 for almost any x ∈ B1(0).

By the structure of σ̃, we infer that for almost any x ∈ B1(0) we have
∇ϕ2(x) = λ(x)

[
0 −1
1 0

]
∇ϕ1(x) with λ(x) > 0, since det J(x) > 0, satisfying the

following

λ =

{
1 in D = ϕ−1(B1(0)\B1/2(0))

a−1 in D1 = B1(0)\D = ϕ−1(B1/2(0)).

We conclude that

∆ϕ1 = ∆ϕ2 = 0 in D and in D1.

More precisely, we have that ϕ1+iϕ2 is holomorphic inD. Since ϕ1(x1, x2) = x1

and ϕ2(x1, x2) = x2 on ∂B1(0), by the unique continuation from Cauchy data,
we infer that ϕ = Id in D as well. Therefore B1(0)\B1/2(0) = ϕ(D) = D.
We conclude that D1 = B1/2(0), ϕ1 and ϕ2 are harmonic in B1/2(0), and
ϕ1(x1, x2) = x1 and ϕ2(x1, x2) = x2 on ∂B1/2(0). We immediately conclude
that ϕ = Id on the whole B1(0) and we obtain a contradiction.

If we have no control on the conductivity tensors near the boundary, then
continuity of our forward operators may be achieved by suitably choosing the
spaces B1, B2, and B̃1, B̃2, that is by changing the distance, thus the space Y ,
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with respect to which we measure the error on our measurements. Namely we
have the following results, see [39].

Proposition 2.6. Under the previous notation and assumptions, there exists
Q1 > 2, depending on N , Ω, λ0, and λ1 only, such that the following holds for
any 2 < p < Q1.

In the Dirichlet-to-Neumann case, we assume that B1 ⊂ W
1−1/p,p
∗ (∂Ω),

with continuous immersion.
In the Neumann-to-Dirichlet case, we assume that B̃1 ⊂ (W 1−1/p′,p′(∂Ω))′∗,

with continuous immersion, where (W 1−1/p′,p′(∂Ω))′∗ is the subspace of g be-
longing to the dual of W 1−1/p′,p′(∂Ω) such that 〈g, 1〉 = 0.

Then Λ is Hölder continuous with respect to the L1 distance in M(λ0, λ1)
and the distance d on Y given by its norm. The Hölder exponent β is equal to
(p− 2)/(2p).

A particularly interesting case for Neumann-to-Dirichlet maps is to choose
B̃1 = B̃2 = L2

∗(∂Ω) since L2(∂Ω) is contained in the dual of W 1−1/p′,p′(∂Ω) for

some p, 2 < p < Q1, with p close enough to 2, and H
1/2
∗ (∂Ω) ⊂ L2

∗(∂Ω), with

continuous immersions. Moreover, L2
∗(∂Ω) is dense in H

−1/2
∗ (∂Ω). In this case

we also have continuity with respect to H-convergence, see again [39].

Proposition 2.7. Under the previous notation and assumptions, let us con-
sider a sequence of conductivity tensors {σn}n∈N ⊂ M(λ0, λ1) and a conduc-
tivity tensor σ in the same set.

If, as n → ∞, σn converges to σ strongly in L1
loc or in the H-convergence

sense, then
lim
n
‖ND(σ)−ND(σn)‖L2,L2 = 0.

Let us consider that σ0 ∈ X is the conductivity tensor in Ω that we wish to
determine. Given the noise level ε > 0, our measurement is given by Λ̂ε ∈ Y ,
satisfying

‖Λ̂ε − Λ(σ0)‖Y ≤ ε. (14)

For consistency, we call Λ̂0 = Λ(σ0). Assume that our minimisation problem

min{‖Λ(σ)− Λ̂ε‖Y : σ ∈ X} (15)

admits a solution and let us call σ̃ε a minimiser for (15). The main question is
whether σ̃ε is a good approximation of the looked for conductivity tensor σ0,
namely we ask whether limε→0+ σ̃ε = σ0, where the limit is to be intended in a
suitable sense. Unfortunately this may not be true, in fact our inverse problem
is ill-posed, that is, we have no stability. There are two serious obstructions
to stability. In the anisotropic case, that is, when X = Msym(λ0, λ1), for
instance, the obstruction is due to invariance by changes of coordinates that
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keep fixed the boundary. In the isotropic case, that is, whenX =Mscal(λ0, λ1),
the obstruction is due to the fact that this class is not closed with respect to
G-convergence.

Let us illustrate these difficulties in the following three examples.

Example 2.8. Let Ω = B1(0) ⊂ R2. Let X = Msym(λ0, λ1), for some 0 <
λ0 < 1 < λ1 to be fixed later. We set σ̃0 ≡ I2 in B1(0) ⊂ R2. We fix a
C1 diffeomorphism ϕ : B1(0) → B1(0) such that ϕ is identically equal to the
identity in B1(0)\B1/2(0). We call σ0 = ϕ∗(σ̃0) and we assume that σ0 is the
conductivity tensor to be recovered. We notice that, if ϕ is not trivial, we have
that σ0 6= σ̃0.

Let σ̃ε, 0 < ε ≤ ε0, be a scalar conductivity satisfying ‖σ̃ε − σ̃0‖L∞(Ω) ≤ ε.
We notice that, choosing in a suitable way λ0 and λ1, we have σ0 ∈ X, and,
for any 0 ≤ ε ≤ ε0, also σ̃ε ∈ X.

We notice that Λ(σ0) = Λ(σ̃0) and, for some constant C, depending on λ0,
λ1, and Y only, we have

‖Λ(σ̃ε)− Λ(σ0)‖Y ≤ Cε.

If, for any 0 < ε ≤ ε0, we assume that Λ̂ε = Λ(σ̃ε), then, unfortunately, we
have

σ̃ε ∈ arg min
σ∈X

‖Λ(σ)− Λ̂ε‖Y ,

and, obviously, for any sequence {εn}n∈N ⊂ (0, ε0] such that limn εn = 0, σ̃εn
does not converge, not even in the G-convergence sense or in the weak L1 sense,
to σ0.

In dimension 2, in [22], it has been proved that this is the only obstruction
in the symmetric conductivity tensor case, if we consider the natural norms.
Namely, from [22, Theorem 1.3], we can immediately deduce the following.

Proposition 2.9. Let N = 2 and let Ω ⊂ R2 be a bounded, simply connected
open set with Lipschitz boundary. Let σ0 ∈ X =Msym(λ0, λ1). We pick either

Y = L(H
1/2
∗ (∂Ω), H

−1/2
∗ (∂Ω)), for the Dirichlet-to-Neumman case, or Y =

L(H
−1/2
∗ (∂Ω), H

1/2
∗ (∂Ω)), for the Neumann-to-Dirichlet case, respectively. For

any n ∈ N, let Λ̂n ∈ Y be such that

‖Λ̂n − Λ(σ0)‖Y = ‖Λ̂n − Λ(σ0)‖nat → 0 as n→∞.

Let σn ∈ arg minσ∈X ‖Λ̂n−Λ(σ0)‖Y , n ∈ N. Then, for any n ∈ N, there exists
a quasiconfomal mapping ϕn : Ω→ Ω such that (ϕn)|∂Ω = Id and

(ϕn)∗(σn)→ σ0 as n→∞

in the G-convergence sense.
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Proof. We have that

‖Λ(σn)− Λ(σ0)‖Y ≤ ‖Λ̂n − Λ(σn)‖Y + ‖Λ(σ0)− Λ̂n‖Y
≤ 2‖Λ(σ0)− Λ̂n‖Y → 0 as n→∞.

Then the conclusion follows by [22, Theorem 1.3].

We notice that the kind of convergence we have in Proposition 2.9 is really
weak, in several respects. First, it is only up to a change of variables, second it
is in the sense of G-convergence, only. We recall that G-convergence does not
imply convergence not even in the weak L1 sense. In fact, let us consider the
following example. Let D be an open set such that D ⊂ Q = (0, 1)N ⊂ RN ,
N ≥ 2, and let us consider, for two given constants 0 < a < b,

σ =

{
a in D
b in Q\D. (16)

We also assume that D and Q\D have positive measure. Then we have

a < mh =

(∫
Q

σ−1

)−1

<

∫
Q

σ = m < b

where mh is the so-called harmonic mean of σ on Q and m is the usual mean
of σ on Q.

We extend σ all over RN by periodicity and define, for any ε > 0,

σε(x) = σ(x/ε)IN , x ∈ RN .

Given Ω a bounded connected open set with Lipschitz boundary, it is a classical
fact in homogenisation theory that in Ω

σε G-converges to σhom as ε→ 0+

where σhom is a constant symmetric matrix satisfying

mhIN ≤ σhom < mIN .

On the other hand, σε converges to amIN in the weak∗ L∞(Ω) sense, therefore
also weakly in L1(Ω).

Moreover, if N = 2 and

D = {(x1, x2) ∈ Q : (x1 − 1/2)(x2 − 1/2) > 0}, (17)

then σhom can be computed explicitly and we have that σhom =
√
abI2.
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Instead, if N = 2 and

D = {(x1, x2) ∈ Q : (x1 − 1/2) > 0}, (18)

then also in this case σhom can be computed explicitly and we have that

σhom =

[
mh 0
0 m

]
.

These explicit formulas are the bases for the next examples. The next one
was introduced in [1] and we state it here. This and the next example show
that in the scalar case, when, at least in dimension 2, uniqueness is not an
issue, instability phenomena may occur, no matter what we choose as Y .

Example 2.10. Let Ω = B1(0) ⊂ R2. Let X = Mscal(λ0, λ1), for some 0 <

λ0 < 1 < λ1 to be fixed later. Let us assume that B1 is dense in H
1/2
∗ (∂Ω) or

B̃1 is dense in H
−1/2
∗ (∂Ω), respectively.

We fix N = 2 and two positive constants 0 < a < b. We take Q = (0, 1)2

and D as in (17). We call

σ0 =

{
I2 in B1(0)\B1/2(0)
√
ab in B1/2(0).

We define σ as in (16), we extend it by periodicity all over R2, and define, for
any ε, 0 < ε ≤ 1/2,

σε =

{
I2 in B1(0)\B1/2(0)

σ(x/ε)IN if x ∈ B1/2(0).

We have that σε G-converges to σ0 as ε→ 0+, therefore, by Proposition 2.4,
we immediately conclude that

‖Λ(σ̃ε)− Λ(σ0)‖Y → 0 as ε→ 0+.

Therefore, if σ0 is the conductivity to be determined, and our measured data
are Λ̂ε = Λ(σε), for any ε ∈ (0, 1/2], then we have that

{σε} = arg min
σ∈Mscal(λ0,λ1)

‖Λ(σ)− Λ̂ε‖Y .

On the other hand, we have that σε converges to mIN in the weak∗ L∞(Ω)
sense, therefore also weakly in L1(Ω). Since

√
ab < m, we obtain that, as

ε→ 0+, σε does not converge to σ0 even weakly in L1(Ω), but only G-converges
to σ0.
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The third and final example, inspired by the one in [1] we just presented,
shows that even G-convergence may not be guaranteed.

Example 2.11. Let Ω = B1(0) ⊂ R2. Let X = Mscal(λ0, λ1), for some 0 <

λ0 < 1 < λ1 to be fixed later. Let us assume that B1 is dense in H
1/2
∗ (∂Ω) or

B̃1 is dense in H
−1/2
∗ (∂Ω), respectively.

We set the conductivity to be determined as σ0 ≡ I2 in B1(0) ⊂ R2. Let
ϕ : B1(0)→ B1(0) be a C1 diffeomorphism such that ϕ ≡ Id in B1(0)\B1/2(0)
and ϕ(x1, x2) = (x1/2, x2) on B1/4(0). We call σ̃0 = ϕ∗(σ0). We have that

σ̃0 6= σ0. In particular, σ̃0 = I2 in B1(0)\B1/2(0) and σ̃0(y) =
[

1/2 0
0 2

]
for any

y ∈ B1/8(0).

We pick Q = (0, 1)2, D as in (18), and σ as in (16), with a = 2−
√

3 and
b = 2 +

√
3, so that σhom =

[
1/2 0
0 2

]
.

Then, again by density of scalar conductivities inside symmetric conductiv-
ity tensors, we can find 0 < λ0 < λ1 and {σ̃n}n∈N ⊂ Mscal(λ0, λ1) such that
σ̃n G-converges to σ̃0 as n → ∞ and such that, for any n ∈ N, σ̃n = I2 in
B1(0)\B1/2(0) and

σ̃n(y) = σ(ny) for any y ∈ B1/8(0),

where as usual σ is extended by periodicity all over R2.
We notice that, as n → ∞, in B1/8(0), σ̃n converges to 2IN in the weak∗

L∞ sense, hence also weakly in L1(B1/8(0)). Therefore, σn can not converge,
not even up to subsequences, to σ0, not even weakly in L1(B1(0)).

By Proposition 2.4, we immediately conclude that

‖Λ(σ̃n)− Λ(σ0)‖Y = ‖Λ(σ̃n)− Λ(σ̃0)‖Y → 0 as n→∞.

If we pick as our measured data Λ̂n = Λ(σ̃n), for any n ∈ N, then we have that

{σ̃n} = arg min
σ∈Mscal(λ0,λ1)

‖Λ(σ)− Λ̂n‖Y .

Then we have that, as n → ∞, σ̃n can not converge, not even up to subse-
quences, to the looked for scalar conductivity σ0 either in the G-convergence
sense or locally weakly in L1, hence, a fortiori, in the L1

loc sense as well.

2.3. Regularisation

The issues for this inverse problem previous highlighted, in particular the ill-
posedness, lead naturally to consider a suitable regularisation of the minimisa-
tion problem (12). To fix the ideas we consider a regularisation à la Tikhonov.
For a general introduction to Tikhonov regularisation, we refer for instance
to [20]. Here we are interested in the case of nonsmooth and possibly discon-
tinuous unknown conductivity tensors, therefore we shall follow the approach
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developed in [38]. We notice that, in the smooth case, the general theory for
convergence of Tikhonov regularised solutions for nonlinear operators, as it was
developed in [21], see also [20], may be used and leads also to convergence es-
timates. For example, for the electrical impedance tomography this approach
was used in [31], see also [28].

Instead, in the nonsmooth case, our starting point is the regularisation strat-
egy proved in [38], which we recall now. The key ingredient is Γ-convergence,
see [17] for a detailed introduction. Here we just recall the definition and basic
properties of Γ-convergence.

Let (X, d) be a metric space. Then a sequence Fn : X → [−∞,+∞], n ∈ N,
Γ-converges as n→∞ to a function F : X → [−∞,+∞] if for every x ∈ X we
have

for every sequence {xn}n∈N converging to x we have (19)

F (x) ≤ lim inf
n

Fn(xn);

there exists a sequence {xn}n∈N converging to x such that (20)

F (x) = lim
n
Fn(xn).

The function F will be called the Γ-limit of the sequence {Fn}n∈N as n → ∞
with respect to the metric d and we denote it by F = Γ-limn Fn. We recall
that condition (19) above is usually called the Γ-liminf inequality, whereas
condition (20) is usually referred to as the existence of a recovery sequence.

We say that the functionals Fn, n ∈ N, are equicoercive if there exists a
compact set K ⊂ X such that infK Fn = infX Fn for any n ∈ N.

The following theorem, usually known as the Fundamental Theorem of Γ-
convergence, illustrates the motivations for the definition of such a kind of
convergence.

Theorem 2.12. Let (X, d) be a metric space and let Fn : X → [−∞,+∞],
n ∈ N, be a sequence of functions defined on X. If the functionals Fn, n ∈ N,
are equicoercive and F = Γ-limn Fn, then F admits a minimum over X and
we have

min
X

F = lim
n

inf
X
Fn.

Furthermore, if {xn}n∈N is a sequence of points in X which converges to a
point x ∈ X and satisfies limn Fn(xn) = limn infX Fn, then x is a minimum
point for F .

The definition of Γ-convergence may be extended in a natural way to fam-
ilies depending on a continuous parameter. The family of functions Fε, de-
fined for every ε > 0, Γ-converges to a function F as ε → 0+ if for every
sequence {εn}n∈N of positive numbers converging to 0 as n → ∞, we have
F = Γ-limn Fεn .
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We begin with an abstract framework. We consider two metric spaces
(X, dX) and (Y, dY ) and a continuous function Λ : X → Y . We also fix x0 ∈ X
and Λ0 = Λ(x0) ∈ Y .

For any ε > 0, we consider a perturbation of Λ0 given by Λε ∈ Y such that
dY (Λε,Λ0) ≤ ε. Here, and in the sequel, ε plays the role of the noise level.

A function R : X → R ∪ {+∞} is called a regularisation operator for the
metric space X if R 6≡ +∞ and, with respect to the metric induced by dX , R
is a lower semicontinuous function such that for any constant C > 0 the set
{x ∈ X : R(x) ≤ C} is a compact subset of X.

We consider the following regularised minimum problem, for some ε > 0,

min
x∈X

(dY (Λ(x),Λε))
α + ãR(x) (21)

where ã > 0 is the regularisation parameter and α is a positive parameter. In
order to make the regularisation meaningful, we need to choose the regular-
isation parameter in terms of the noise level ε, namely we choose ã = ã(ε).
A solution to (21) will be called a regularised solution. To fix the ideas, given
ε0 > 0, we assume that for any ε, 0 < ε ≤ ε0, ã(ε) = ãεγ , for some positive con-
stants ã and γ. By a simple rescaling argument the minimisation problem (21)
is equivalent to solve

min
x∈X

Fε(x) (22)

where Fε : X → R ∪ {+∞} is defined as follows

Fε(x) =
(dY (Λ(x),Λε))

α

εγ
+ ãR(x) for any x ∈ X. (23)

We also define F0 : X → R ∪ {+∞} as follows

F0(x) =

{
ãR(x) if Λ(x) = Λ(x0) = Λ0 in Y

+∞ otherwise
(24)

for any x ∈ X.
The following result is proved in [38], by exploiting Γ-convergence tech-

niques.

Theorem 2.13. Let Λ be continuous and R be a regularisation operator for X.
Let us also assume that R(x0) < +∞ and γ < α.

Then we have that there exists minX Fε, for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε < +∞.

Let {x̃ε}0<ε≤ε0 satisfy limε→0+ Fε(x̃ε) = limε→0+ minX Fε (for example we
may pick as {x̃ε}0<ε≤ε0 a family {xε}0<ε≤ε0 of minimisers of Fε).
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Let {εn}n∈N be a sequence of positive numbers converging to 0 as n → ∞.
Then, up to a subsequence, x̃εn converges to a point x̃ ∈ X such that x̃ is
a minimiser of F0, that is, in particular, Λ(x̃) = Λ(x0) in Y and R(x̃) =
min{R(x) : x ∈ X such that Λ(x) = Λ(x0) in Y }.

Furthermore, if F0 admits a unique minimiser x̃, then we have that

lim
ε→0+

x̃ε = x̃. (25)

Finally, if on the set {x ∈ X : R(x) < +∞} the map Λ is injective, then
we have

lim
ε→0+

x̃ε = x0,

even if we only have lim supε→0+ Fε(x̃ε) < +∞.

Following again [38] we show the applicability of this abstract result to the
inverse conductivity problem with discontinuous conductivities.

We observe that, in order to guarantee convergence of the regularised solu-
tions to the looked for solution, we need to find a metric on the space X such
that the following properties are satisfied:

1) the forward operator Λ is continuous;

2) R is a regularisation operator for X;

3) Λ is injective (uniqueness of the inverse problem).

We consider in this subsection X equal to M(λ0, λ1), or Msym(λ0, λ1), or
Mscal(λ0, λ1).

On X we consider the metric given by the L1 norm, in all cases. In fact
we wish to have a convergence in a rather strong sense, being for instance
H-convergence too weak for applications.

Therefore, we take as Y the usual space where we assume that, for some
p > 2, in the Dirichlet-to-Neumann case, B1 ⊂ W 1−1/p,p(∂Ω), with con-
tinuous immersion, and, in the Neumann-to-Dirichlet case, we assume that
B̃1 ⊂ (W 1−1/p′,p′(∂Ω))′∗, with continuous immersion.

As a regularisation operator, there are several possibilities. One is to con-
sider a kind of total variation regularisation. For instance, we define, for any
σ ∈ X, TV (σ) as the matrix such that TV (σ)ij = TV (σij) = |Dσij |(Ω) and
set |σ|BV (Ω) = ‖TV (σ)‖ for any σ ∈ X. For any σ ∈ X we define

‖σ‖BV (Ω) = ‖σ‖L1(Ω) + |σ|BV (Ω).

Then we may pick as R either | · |BV (Ω) or ‖ · ‖BV (Ω).
The total variation regularisation has been widely used in the literature for

solving numerically the inverse conductivity problem, for example in [19], with
a discretisation method, and in [13, 15], with level set methods.
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Another option is the so-called Mumford-Shah operator. In this case we
limit ourselves to scalar conductivities, that is, to X = Mscal(λ0, λ1), and
define, for any σ ∈Mscal(λ0, λ1),

R(σ) =


b

∫
Ω

‖∇σ‖2 +HN−1(J(σ)) if σ ∈ SBV (Ω)

+∞ otherwise.
(26)

Here b is a positive constant, HN−1 denotes the (N −1)-dimensional Hausdorff
measure, J(σ) is the jump set of σ, and SBV denotes the space of special func-
tions of bounded variations. The functional R here defined is referred to as the
Mumford-Shah functional and was introduced in the context of image segmen-
tation in [32]. We refer, for instance, to [5] for a detailed discussion on these
topics. The compactness and semicontinuity theorem for special functions of
bounded variation due to Ambrosio, see for instance [5, Theorem 4.7 and The-
orem 4.8], guarantees that also in this case R is a regularisation operator for
X. In the context of inverse problems, and in particular for the inverse conduc-
tivity problem, the Mumford-Shah functional has been used as regularisation
for the first time in [40], with an implementation exploiting the approximation
of the Mumford-Shah functional by functionals defined on smoother functions
due to Ambrosio and Tortorelli, [6, 7].

We now recall the results in [38], that immediately follows from the previous
abstract results.

Theorem 2.14. Under the previous notation and assumptions, let Λ : X → Y
be the forward operator. Let R be either | · |BV (Ω) or ‖ · ‖BV (Ω). If X =
Mscal(λ0, λ1), R may be also chosen as in (26).

Let σ0 ∈ X be such that R(σ0) < +∞ and Λ̂0 = Λ(σ0). For any ε, 0 < ε ≤
ε0, let Λ̂ε ∈ Y be such that ‖Λ̂ε − Λ̂0‖ ≤ ε.

Let us fix positive constants α, γ, and ã, such that 0 < γ < α. For any ε,
0 < ε ≤ ε0, let Fε be defined as in (23) and F0 be defined as in (24).

Then we have that there exists minX Fε, for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε < +∞.

Let {εn}n∈N be a sequence of positive numbers converging to 0 as n→∞.
Let {σ̃n}n∈N be such that lim supn Fεn(σ̃n) < +∞. Then, up to a subse-

quence, σ̃n converges in the L1 norm to σ̃ ∈ X such that σ̃ satisfies ‖Λ(σ̃) −
Λ(σ0)‖Y = 0.

Let {σ̃n}n∈N be such that limFεn(σ̃n) = limn minX Fεn . Then, up to a
subsequence, σ̃n converges in the L1 norm to σ̃ ∈ X such that σ̃ is a minimizer
of F0, that is, in particular, ‖Λ(σ̃)−Λ(σ0)‖Y = 0 and R(σ̃) = min{R(σ) : σ ∈
X such that ‖Λ(σ)− Λ(σ0)‖Y = 0}.
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In dimension 2 and for scalar conductivities we have the following.

Theorem 2.15. Under the notation and assumptions of Theorem 2.14, let us
further assume that the space dimension is 2, that is N = 2. We pick X =

Mscal(λ0, λ1) and we assume that either B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is

dense in H
−1/2
∗ (∂Ω), respectively.

Let {σ̃ε}0<ε≤ε0 satisfy lim supε→0+ Fε(σ̃ε) < +∞. Then we have that

lim
ε→0+

∫
Ω

|σ̃ε − σ0| = 0.

We notice that, when N ≥ 3, even if, recently, a great improvement has
been achieved in the uniqueness issue, still we do not have a uniqueness result
for scalar BV or SBV functions. To prove uniqueness, or nonuniqueness, in
this case is an extremely interesting and challenging open problem.

We recall that the approach to regularisation developed in [38] has been
followed in other works. In [27] the Mumford-Shah approach has been made
slightly more precise, for instance it was proved convergence of the jump sets,
and it has been applied to other inverse problems, such as image deblurring
or X-ray tomography. In [28], instead, other regularisation strategies for the
inverse conductivity problem have been considered, for example the sparsity
or smoothness penalty was used. In this case the theory for convergence of
Tikhonov regularised solutions for nonlinear operators may be used and, in
fact, in [28] some convergence estimates were derived.

3. Numerical approximation and regularisation for the
inverse conductivity problem

After the regularisation strategy has been decided, and it has been proved
to be effective, the second step is to proceed in finding a suitable numerical
approach to solve the regularised minimum problem. For example, in [40],
the Ambrosio and Tortorelli approximation of the Mumford-Shah functional
was used to tackle numerically the minimisation problem. For total variation
regularisation, besides the early paper where a discretisation method, [19], or
level set methods, [13, 15], were used, an interesting analysis of a finite element
approximation has been developed in [23].

However, the approximations in [40] and in [23] have been performed just for
the regularised minimum problem, that is, for a fixed regularisation parameter.
Instead, we believe that it is very important to study how the approximation
parameter (for example the size of the mesh in the finite element approxima-
tion) and the regularisation parameter interact. In other words, we wish to
find, for a corresponding noise level ε, what are the right regularisation and
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approximation parameters that allow to prove that the solutions to the ap-
proximated regularised minimum problems converge, in a suitable sense, to the
looked for solution of the inverse problem. Therefore we wish to include in the
convergence analysis developed in [38], and here recalled in Subsection 2.3, the
approximation of the regularised minimum problem, simultaneously.

Such an approach has been developed for the Ambrosio-Tortorelli approx-
imation of the Mumford-Shah functional in [14]. For the convenience of the
reader we recall the result of [14] in Subsection 3.2.

In the next Subsection 3.1, we consider the approximation by finite element
discretisation and we investigate how the discretisation parameter should be
linked to the noise level and the regularisation parameter. We present here a
very simple setting, in future work we will consider a much more general and
complete discretisation of the inverse conductivity problem.

Let us begin by introducing the common setting for the whole section.
Throughout this section we fix Ω, a bounded connected open set with Lip-

schitz boundary, contained in RN , N ≥ 2, and two constants λ0, λ1, with
0 < λ0 ≤ λ1.

We consider only the case of scalar conductivities, namely we call X =
Mscal(λ0, λ1).

We fix a real number p > 2. In the Dirichlet-to-Neumann case, we assume

that B1 ⊂ W
1−1/p,p
∗ (∂Ω) and H

−1/2
∗ (∂Ω) ⊂ B2, with continuous immersions.

In the Neumann-to-Dirichlet case, we assume that B̃1 ⊂ (W 1−1/p′,p′(∂Ω))′∗ and

H
1/2
∗ (∂Ω) ⊂ B̃2, with continuous immersions.

In the Dirichlet-to-Neumann case, we call Y = L(B1, B2) and define Λ :
X → Y as follows

Λ(σ) = DN(σ)|B1
: B1 → B2.

In the Neumann-to-Dirichlet case, we call Y = L(B̃1, B̃2) and define Λ :
X → Y as follows

Λ(σ) = ND(σ)|B̃1
: B̃1 → B̃2.

The important fact is the following. We know that Λ : X → Y is Hölder
continuous, that is, there exists constant C0 > 0 and β, 0 < β < 1, such that,
for any σ, σ̃ ∈ X, we have

‖Λ(σ)− Λ(σ̃)‖Y ≤ C0‖σ − σ̃‖βL1(Ω). (27)

Here β depends on p only and it will play a crucial role in the next analysis.
We consider σ0 ∈ X to be the scalar conductivity in Ω that we wish to

determine and call Λ̂0 = Λ(σ0) ∈ Y .
Fixed a positive constant ε0, for any ε, 0 < ε ≤ ε0, let us assume that there

exists Λ̂ε ∈ Y such that

‖Λ̂ε − Λ̂0‖Y ≤ ε. (28)
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Here ε plays the role of the noise level and Λ̂ε plays the role of the measured
Dirichlet-to-Neumann, or Neumann-to-Dirichlet respectively, map.

3.1. Discrete approximation and regularisation of the
inverse conductivity problem

Since we wish to consider a discretisation of the problem, we shall make the
following assumptions on Ω. We further assume that Ω is polygonal, that is, Ω
is a polyhedron in RN .

We use standard conforming piecewise linear finite elements, for which we
refer for instance to [16]. We shall keep fixed a positive parameter s and a
positive constant h0. We consider, for a fixed parameter h, 0 < h ≤ h0, a
triangulation Th of Ω, that is, Ω =

⋃
K∈Th K, where each K ∈ Th is a nonde-

generate N -simplex, and Th satisfies assumption (FEM 1) in [16, Chapter 2]
We then define the finite element space Xh as follows

Xh = {vh ∈ C(Ω) : vh|K ∈ P1(K) for any K ∈ Th}

where P1(K) is the space of polynomials of order at most 1 restricted to K,
that is, Xh is the finite element space associated to N -simplices of type (1).
By [16, Theorem 2.2.3] we have that Xh ⊂ C(Ω) ∩ H1(Ω). It is also clear
that X0h = {vh ∈ Xh : vh|∂Ω = 0} is contained in H1

0 (Ω). We call Πh the
associated interpolation operator defined on C(Ω).

We assume that Th is regular in the following classical sense. For anyK ∈ Th
we call hK = diam(K) and ρK = sup{diam(B) : B is a ball contained in K}.
Then we assume that

hK ≤ h and hK ≤ sρK for any K ∈ Th. (29)

The following estimate is an immediate consequence of [16, Theorem 3.1.6].

Theorem 3.1. Let us consider q ≥ 2 such that q > N/2. Then there exists a
constant C such that for any u ∈W 2,q(Ω) we have

‖u−Πhu‖W 1,q(Ω) ≤ Ch‖D2u‖Lq(Ω). (30)

Our approach to discretisation is the following. As a regularisation operator
we consider a total variation penalisation, that is R is given by, for any σ ∈ X,

R(σ) = |σ|BV (Ω) = TV (σ) = |Dσ|(Ω) or R(σ) = ‖σ‖BV (Ω). (31)

Furthermore we shall assume that R(σ0) < +∞, that is, σ0 ∈ BV (Ω).
For fixed ã, 0 < γ < α, let us define, for any ε, 0 < ε ≤ ε0, and h,

0 < h ≤ h0, the functional Fε,h : X → R ∪ {+∞} such that for any σ ∈ X

Fε,h(σ) =

 ‖Λ(σ)− Λ̂ε‖αY
εγ

+ ãR(σ) if σ ∈ Xh

+∞ otherwise.

(32)
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Let us immediately notice that any of these functionals Fε,h admits a min-
imum over X.

We also define F0 : X → R ∪ {+∞} as before

F0(σ) =

{
ãR(σ) if ‖Λ(σ)− Λ(σ0)‖Y = 0

+∞ otherwise
(33)

for any σ ∈ X.
Our aim is to choose h = h(ε) such that Fε,h are equicoercive and Γ-

converge, as ε→ 0+, to F0.
Therefore, let us consider two sequences {εn}n∈N ⊂ (0, ε0] and {hn}n∈N ⊂

(0, h0] and we assume that limn εn = 0. We define Fn = Fεn,hn .
The Γ-liminf inequality is easy to prove. In fact we have the following.

Proposition 3.2. Let {σn}n∈N ⊂ X be such that limn σn = σ in X, that is,
limn ‖σn − σ‖L1(Ω) = 0.

Then

F0(σ) ≤ lim inf
n

Fn(σn).

Proof. If lim infn Fn(σn) = +∞, then there is nothing to prove. We therefore
assume, without loss of generality, that lim infn Fn(σn) = limn Fn(σn) < +∞.
In particular, for some constant C, we have Fn(σn) ≤ C for any n ∈ N.
Therefore, σn ∈ Xhn for any n ∈ N.

By semicontinuity of the total variation, it is easy to see that

ãR(σ) ≤ lim inf
n

(ãR(σn)) ≤ lim inf
n

Fn(σn).

It remains to prove that ‖Λ(σ)− Λ(σ0)‖Y = 0. But, by continuity of Λ, it
is easy to see that

‖Λ(σ)− Λ(σ0)‖Y = lim
n
‖Λ(σn)− Λ(σ0)‖Y

≤ lim inf
n

[
‖Λ(σn)− Λ̂εn‖Y + ‖Λ̂εn−Λ(σ0)‖Y

]
≤ lim inf

n

[
(Cεγn)1/α + εn

]
which is obviously equal to 0.

The difficult part is to find a recovery sequence. Clearly the existence of
the recovery sequence is trivial, by the Γ-liminf inequality, if F0(σ) = +∞.
Therefore, it is enough to prove the existence of a recovery sequence when
F0(σ) is finite.

Proposition 3.3. We define h(ε) = ε3/β, for any ε, 0 < ε ≤ ε0, and recall
that γ < α.
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Let σ ∈ X be such that F0(σ) < +∞, that is, σ ∈ BV (Ω)∩X and it satisfies
‖Λ(σ)− Λ(σ0)‖Y = 0.

Then there exists σε ∈ X, for any ε, 0 < ε ≤ ε0, such that

F0(σ) = lim
ε→0+

Fε,h(ε)(σε).

Before proving this proposition, let us observe that it implies the following
corollary.

Corollary 3.4. Under the notation and assumptions of Proposition 3.3, we
have that Fε,h(ε) Γ-converges to F0 as ε→ 0+.

Moreover, the family of functionals {Fε,h(ε)}0<ε≤ε0 is equicoercive.

Proof. The Γ-convergence result follows immediately from Propositions 3.2
and 3.3.

About equicoerciveness, we start with the following remark. By Proposi-
tion 3.3, we can find a constant C such that

min
X

Fε,h(ε) ≤ C for any 0 < ε ≤ ε0. (34)

Then we define K = {σε}0<ε≤ε0 , where σε is a minimiser for Fε,h(ε), for
any 0 < ε ≤ ε0. We prove that K is relatively compact in X. In fact, by (34),
we obtain that, for some constant C1, R(σε) ≤ C1 for any 0 < ε ≤ ε0. Then
the fact that K is relatively compact follows immediately by the properties of
the regularisation operator R.

We now complete the proof of the existence of the recovery sequence.

Proof of Proposition 3.3. The difficult part is that we need to build the func-
tion σε in such a way that it belongs to the discrete space Xh(ε), for any
0 < ε ≤ ε0.

The construction is the following. First of all we use the fact that Ω is
an extension domain, since it has Lipschitz boundary. Therefore, for any u ∈
BV (Ω)∩X, we can find a function ũ ∈ L∞(RN ) such that ũ|Ω = u, λ0 ≤ ũ ≤ λ1

almost everywhere in RN , and, for a constant C depending on Ω only,

|Dũ|(RN ) ≤ C|Du|(Ω),

and, moreover, |Dũ|(∂Ω) = 0. This follows immediately by using [5, Defini-
tion 3.20], for instance.

We consider our function σ and, by a slight abuse of notation, we still call
σ its extension σ̃ to the whole RN . We fix a positive symmetric mollifier η,
that is, η ∈ C∞0 (B1(0)), η ≥ 0,

∫
B1(0)

η = 1, and such that η(x) depends only
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on ‖x‖ for any x ∈ B1(0). Clearly η ∈ C∞0 (RN ) by extending it to 0 oustide
B1(0). For any δ > 0, we call

ηδ(x) = δ−Nη(x/δ), x ∈ RN ,

and, for any u ∈ L1
loc(RN ), we call

uδ = ηδ ∗ u,

where as usual ∗ denotes the convolution.
We immediately obtain that, for any δ > 0, σδ ∈ C∞(RN ) and λ0 ≤ σδ ≤ λ1

almost everywhere in RN . We also have that, locally, σδ converges to σ as
δ → 0+ in the L1 norm. By [24, Proposition 1.15], we conclude that

lim
δ→0+

‖σδ − σ‖L1(Ω) = 0 and lim
δ→0+

|Dσδ|(Ω) = |Dσ|(Ω). (35)

Actually, by [5, Lemma 3.24], the L1 convergence may be made much more
precise. In fact, for a constant C1 depending on Ω only, we have, for any δ,
0 < δ ≤ 1,

‖σ − σδ‖L1(Ω) ≤ C1|Dσ|(Ω)δ. (36)

We choose q as in Theorem 3.1. Since σδ ∈ C∞(RN ), we obviously have
that σδ ∈ W 2,q(Ω), for any δ > 0. We need to control its norm in dependence
of δ. We notice that, for any multiindex α, we have Dασδ = (Dαηδ) ∗ σ.
Therefore, for any δ, 0 < δ ≤ 1, and any p, 1 ≤ p ≤ +∞,

‖Dασδ‖Lp(Ω) ≤ C2δ
−|α|,

where C2 depends on Ω, p, |α|, η, and λ1 only. We conclude that, for a constant
C3 depending on Ω, q, η, and λ1 only, we have, for any 0 < δ ≤ 1,

‖σδ‖W 2,q(Ω) ≤ C3δ
−2. (37)

By Theorem 3.1, we obtain that

‖σδ −Πh(σδ)‖W 1,q(Ω) ≤ C4hδ
−2 (38)

where C4 = C3C, with C as in (30). We have that Πh(σδ) ∈ Xh. Furthermore,

‖σ −Πh(σδ)‖L1(Ω) ≤ ‖σ − σδ‖L1(Ω) + ‖σδ −Πh(σδ)‖L1(Ω)

≤ C1|Dσ|(Ω)δ + C5C4hδ
−2,

with C5 depending on Ω and q only. By picking δ = h1/3, we conclude that,
for the constant C6 = C1|Dσ|(Ω) + C5C4,

‖σ −Πh(σδ)‖L1(Ω) ≤ C6h
1/3. (39)
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Furthermore,

|D(Πh(σδ))|(Ω) =

∫
Ω

‖∇(Πh(σδ))‖

=

(∫
Ω

‖∇(Πh(σδ))‖ −
∫

Ω

‖∇σδ‖
)

+

∫
Ω

‖∇σδ‖.

The first term of the right hand side goes to 0, as h, and thus δ, goes to 0,
by (38). The second term of the right hand side is exactly |Dσδ|(Ω), therefore
it goes to |Dσ|(Ω), as h goes to 0, by (35).

We have therefore constructed, for any 0 < h ≤ h0, σh ∈ Xh such that

‖σ − σh‖L1(Ω) ≤ C6h
1/3 and lim

h→0+
|Dσh|(Ω) = |Dσ|(Ω). (40)

By (27), we conclude that

‖Λ(σ)− Λ(σh)‖Y ≤ C0C
β
6 h

β/3 and lim
h→0+

R(σh) = R(σ). (41)

Then we easily compute, since ‖Λ(σ)− Λ(σ0)‖Y = 0,

‖Λ(σh)− Λ̂ε‖αY ≤
(
‖Λ(σh)− Λ(σ)‖Y + ‖Λ(σ)− Λ̂ε‖Y

)α
≤
(
C0C

β
6 h

β/3 + ε
)α

.

If we choose γ < α and h(ε) such that h(ε) = ε3/β , then we obtain that

lim
ε→0+

Fε,h(ε)(σh(ε)) = F0(σ).

The proof is concluded.

By Corollary 3.4 and the Fundamental Theorem of Γ-convergence, Theo-
rem 2.12, the next theorems, which are the main results of the paper, immedi-
ately follow.

Theorem 3.5. Under the previous notation and assumptions, we consider X =
Mscal(λ0, λ1) and let Λ : X → Y be the forward operator. Let R be either
| · |BV (Ω) or ‖ · ‖BV (Ω).

Let σ0 ∈ X be such that R(σ0) < +∞ and Λ̂0 = Λ(σ0). For any ε, 0 < ε ≤
ε0, let Λ̂ε ∈ Y be such that ‖Λ̂ε − Λ̂0‖ ≤ ε.

Let us fix positive constants α, γ, and ã, such that 0 < γ < α. For any
ε, 0 < ε ≤ ε0, let h = h(ε) be given by h(ε) = ε3/β, and Fε,h(ε) be defined as
in (32) and F0 be defined as in (33).
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Then we have that there exists minX Fε,h(ε), for any ε, 0 ≤ ε ≤ ε0, and

min
X

F0 = lim
ε→0+

min
X

Fε,h(ε) < +∞.

Let {εn}n∈N be a sequence of positive numbers converging to 0 as n→∞.

Let {σ̃n}n∈N be such that lim supn Fεn,h(εn)(σ̃n) < +∞. Then, up to a
subsequence, σ̃n converges in the L1 norm to σ̃ ∈ X such that σ̃ satisfies
‖Λ(σ̃)− Λ(σ0)‖Y = 0.

Let {σ̃n}n∈N be such that limn Fεn,h(εn)(σ̃n) = limn minX Fεn,h(ε). Then,
up to a subsequence, σ̃n converges in the L1 norm to σ̃ ∈ X such that σ̃ is
a minimiser of F0, that is, in particular, ‖Λ(σ̃) − Λ(σ0)‖Y = 0 and R(σ̃) =
min{R(σ) : σ ∈ X such that ‖Λ(σ)− Λ(σ0)‖Y = 0}.

In the two dimensional case, as before, the result may be made more precise.

Theorem 3.6. Under the notation and assumptions of Theorem 3.5, let us
further assume that the space dimension is 2, that is N = 2. We assume that

either B1 is dense in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω), respectively.

Let {σ̃ε}0<ε≤ε0 satisfy lim supε→0+ Fε,h(ε)(σ̃ε) < +∞. Then we have that

lim
ε→0+

∫
Ω

|σ̃ε − σ0| = 0.

3.2. Regularisation by the Ambrosio-Tortorelli functionals

In this subsection we present the approach to regularisation by using the so-
called Ambrosio-Tortorelli functionals that was developed in [14]. These func-
tionals were introduced in [6, 7] in order to solve numerically the difficult task of
minimising the Mumford-Shah functional. In fact the Ambrosio-Tortorelli func-
tionals are a good approximation, in the Γ-convergence sense, of the Mumford-
Shah functional and they are much easier to compute with.

We recall that Ω is a fixed bounded connected open set with Lipschitz
boundary, contained in RN , N ≥ 2. We consider only the case of scalar con-
ductivities, namely we call X =Mscal(λ0, λ1), for two constants λ0, λ1, with
0 < λ0 ≤ λ1.

Let us begin with the following definition. We fix a continuous function
V : R → R such that V ≥ 0 everywhere in R and V (t) = 0 if and only if

t = 1. We call cV =
∫ 1

0

√
V (t)dt. Let ψ : R → R be a lower semicontinuous,

nondecreasing function such that ψ(0) = 0, ψ(1) = 1, and ψ(t) > 0 for any
t > 0. For any η > 0, we fix oη ≥ 0 such that limη→0+ oη/η = 0, and
we call ψη = ψ + oη. Given a positive parameter b, and for any η > 0,
we define the functional ATη : L1(Ω) × L1(Ω) → [0,+∞] as follows, for any



REGULARISATION FOR INVERSE CONDUCTIVITY PROBLEM 345

(u, v) ∈ L1(Ω)× L1(Ω),

ATη(u, v) =

=


∫

Ω

(
bψη(v)‖∇u‖2 +

1

η
V (v) + η‖∇v‖2

)
if u ∈ H1(Ω) ∩X
and v ∈ H1(Ω, [0, 1])

+∞ otherwise.

(42)

Here H1(Ω, [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1 a.e. in Ω}.
We define a new version of the Mumford-Shah functional as follow. We

call MS : L1(Ω)× L1(Ω) → [0,+∞] the functional such that, for any (u, v) ∈
L1(Ω)× L1(Ω),

MS(u, v) =


b

∫
Ω

‖∇u‖2 + 4cVHN−1(J(u))
if u ∈ SBV (Ω) ∩X
and v = 1 a.e. in Ω

+∞ otherwise.

(43)

Notice that here v just plays the role of a formal variable.

We have the following result.

Theorem 3.7. We have that, as η → 0+, ATη Γ-converges to MS in the
L1(Ω)× L1(Ω) distance.

Moreover, we assume that, for a positive constant C0, we have ψ(t) ≥ C0t
2

for any t ∈ [0, 1]. We consider two sequences {ηn}n∈N ⊂ (0, 1], such that
limn ηn = 0, and {(un, vn)}n∈N ⊂ L1(Ω)× L1(Ω). If there exists a constant C
such that ATηn(un, vn) ≤ C for any n ∈ N, then, as n → ∞, vn converges to
v ≡ 1 in L1(Ω) and, up to a subsequence, un converges to u ∈ X in L1(Ω).

Proof. The Γ-convergence follows from [6, 7], see also [10].

For the compactness result of the second part, the argument is the following.
The fact that limn vn = v ≡ 1 in L1(Ω) is trivial. For the compactness of the
sequence {un}n∈N, first of all we notice that λ0 ≤ un ≤ λ1 for any n ∈ N. We

call Ṽ (t) =
∫ t

0

√
V (s)ds, for any t ∈ [0, 1]. We notice that, for any t ∈ [0, 1],

we have c1t ≤ Ṽ (t) ≤ C1t, for some constants 0 < c1 < C1. Therefore, for any
t ∈ (0, 1], we have

Ṽ (t)√
ψ(t)

≤ C2.

For any n ∈ N, we define the auxiliary function wn = Ṽ (vn)un and no-
tice that ‖wn‖L∞(Ω) is uniformly bounded. Then ∇wn =

√
V (vn)un∇vn +
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Ṽ (vn)∇un. We obtain that

∫
Ω

‖∇wn‖ ≤ ‖un‖L∞(Ω)

(∫
Ω

1

ηn
V (vn)

)1/2(∫
Ω

ηn‖∇vn‖2
)1/2

+

∫
{x∈Ω: vn(x)>0}

(
Ṽ (vn)√
ψ(vn)

)

)2
1/2(∫

Ω

ψ(vn)‖∇un‖2
)1/2

.

We easily conclude that {wn}n∈N is bounded in W 1,1(Ω), therefore, up to
a subsequence that we do not relabel, we have that wn → w ∈ L1(Ω) and
vn → v ≡ 1, in both cases in L1(Ω) and almost everywhere in Ω. For al-
most any x ∈ Ω, we have that, as n → ∞, wn(x) → w(x) and vn(x) → 1,
thus Ṽ (vn(x)) → Ṽ (1) > 0. Therefore, for any of these x ∈ Ω, we have
limn un(x) = w(x)/Ṽ (1) = u(x). We conclude that u ∈ X and that, up to the
same subsequence, as n→∞, un converges to u almost everywhere in Ω, thus,
by the uniform L∞ bound and the Lebesgue theorem, in L1(Ω) as well.

We now consider the following definition. For fixed ã, 0 < γ < α, let
us define, for any ε, 0 < ε ≤ ε0, and η, 0 < η ≤ η0, the functional Fε,η :
X × L1(Ω)→ R ∪ {+∞} such that, for any (σ, v) ∈ X × L1(Ω), we have

Fε,η(σ, v) =
‖Λ(σ)− Λ̂ε‖αY

εγ
+ ãATη(σ, v). (44)

We also define F0 : X × L1(Ω) → R ∪ {+∞} as follows, for any (σ, v) ∈
X × L1(Ω),

F0(σ, v) =

{
ãMS(σ, v) if ‖Λ(σ)− Λ(σ0)‖Y = 0
+∞ otherwise

(45)

where MS is defined in (43). We notice that, equivalently, we can consider
F̃0 : X → R ∪ {+∞} such that, for any σ ∈ X,

F̃0(σ) =

=


ã

(
b

∫
Ω

‖∇σ‖2 + 4cVHN−1(J(σ))

)
if σ ∈ SBV (Ω) ∩X
and ‖Λ(σ)−Λ(σ0)‖Y =0

+∞ otherwise.

(46)

Remark 3.8. We notice that F0, or equivalently F̃0, admits a minimum over
X × L1(Ω), or X respectively. Notice that (σ̃, ṽ) is a minimiser for F0 if and
only if σ̃ is a minimiser for F̃0 and ṽ ≡ 1. Moreover, any of these functionals
Fε,η admits a minimum over X × L1(Ω) provided oη > 0.
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We shall need the following definition.

Definition 3.9. For any Borel set E ⊂ RN , we define its (N −1)-dimensional
Minkowski content as

MN−1(E) = lim
δ→0+

1

2δ
|{x ∈ RN : dist(x,E) < δ}|,

provided the limit exists.
We say that a conductivity σ ∈ X is admissible if σ ∈ SBV (Ω), and it

satisfies∫
Ω

‖∇σ‖2 +HN−1(J(σ)) < +∞ and MN−1(J(σ)) = HN−1(J(σ)).

With this definition at hand, we consider the following lemma.

Lemma 3.10. Let σ ∈ X be admissible in the sense of Definition 3.9. Then we
can find (ση, vη) ∈ L1(Ω)×L1(Ω), 0 < η ≤ η0, such that, for some constant C,

‖ση − σ‖L1(Ω) ≤ Cη and lim
η→0+

‖vη − 1‖L1(Ω) = 0, (47)

and
lim
η→0+

ATη(ση, vη) = MS(σ, 1). (48)

Proof. Let φ : R → R be a C∞ function that is nondecreasing and such that
φ(t) = 0 for any t ≤ 1/8 and φ(t) = 1 for any t ≥ 7/8.

For the time being, we consider the case in which oη > 0 and we define
ξη =

√
ηoη.

We define, for any η, 0 < η ≤ η0, and any x ∈ Ω,

φη(x) = φ

(
dist(x, J(σ))

ξη

)
.

Then we define
ση = φησ + (1− φη)λ0

and, for any x ∈ Ω, and any δ > 0,

vδη(x) =


0 if dist(x, J(σ)) < ξη

vδ
(

dist(x, J(σ))− ξη
η

)
if ξη ≤ dist(x, J(σ)) < ξη + Tη

1 if dist(x, J(σ)) ≥ ξη + Tη.

Here the function v = vδ, and the constant T > 0, are chosen in such a way
v ∈ C1([0, T ]), v(0) = 0, v(T ) = 1, and∫ T

0

(V (v) + |v′|2) ≤ 2cV + δ.
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We call, for any positive r > 0, Sr = {x ∈ RN : dist(x, J(σ)) < r}. First
of all we notice that, for some constant C,

‖ση − σ‖L1(Ω) ≤ (λ1 − λ0)|Sξη ∩ Ω| ≤ Cξη ≤ Cη for any 0 < η ≤ η0.

Since |Sξη+Tη| → 0, as η → 0+, we also deduce that vδη → 1 almost every-
where in Ω and in L1(Ω) as well, in a completely independent way from the
constant δ that may be chosen as depending from η.

Then we can compute, since obviously we have that ση ∈ H1(Ω) ∩X and
vη ∈ H1(Ω, [0, 1]),

ATη(ση, v
δ
η) =

∫
Ω

(
bψη(vδη)‖∇ση‖2 +

1

η
V (vδη) + η‖∇vδη‖2

)
= b

∫
Ω\Sξη

ψη(vδη)‖∇σ‖2 + boη

∫
Sξη

‖∇ση‖2 +
1

η
V (0)|Sξη ∩ Ω|

+

∫
(Sξη+Tη\Sξη )∩Ω

(
1

η
V (vδη) + η‖∇vδη‖2

)
.

Since vδη converges to 1 almost everywhere in Ω, it is straightforward to see
that the first three terms converge, as η → 0+, to

∫
Ω
b‖∇σ‖2, in a completely

independent way from the constant δ that may be chosen as depending from η.
By the coarea formula, the definition of the Minkowski content, and the

properties of σ, we can prove that

lim
η→0+

∫
Sξη+Tη\Sξη

(
1

η
V (vδη) + η‖∇vδη‖2

)

= 2

(∫ T

0

V (vδ) + |(vδ)′|2
)
MN−1(J(σ)).

Since MN−1(J(σ)) = HN−1(J(σ)), we easily deduce that, even if oη = 0,

lim sup
η→0+

ATη(ση, v
δ
η) ≤

∫
Ω

b‖∇σ‖2 + (4cV + 2δ)HN−1(J(σ)).

It is then easy to choose δ = δ(η) and define vη = v
δ(η)
η , 0 < η ≤ η0, in such a

way that

lim sup
η→0+

ATη(ση, vη) ≤
∫

Ω

b‖∇σ‖2 + 4cVHN−1(J(σ)).

Clearly limη→0+ ‖vη − 1‖L1(Ω) = 0. Hence, by the corresponding Γ-liminf
inequality proved in [10, Proposition 4.5], we conclude that

lim
η→0+

ATη(ση, vη) =

∫
Ω

b‖∇σ‖2 + 4cVHN−1(J(σ)) = MS(σ, 1).
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Thus the proof is complete.

We are ready to state the final convergence result.

Theorem 3.11. Under the previous assumptions, let us assume that σ0 is ad-
missible in the sense of Definition 3.9. Let us also assume that, for a positive
constant C0, we have ψ(t) ≥ C0t

2 for any t ∈ [0, 1].
If we pick η = η(ε) = ε1/β, and we call Fε = Fε,η(ε) as in (44), then we

obtain that

min
X

F̃0 ≤ lim inf
ε→0+

(
inf

X×L1(Ω)
Fε

)
≤ lim sup

ε→0+

(
inf

X×L1(Ω)
Fε

)
< +∞.

Furthermore, let us consider two sequences {εn}n∈N ⊂ (0, ε0], such that
limn εn = 0, and {(σn, vn)}n∈N ⊂ X × L1(Ω).

If there exists a constant C such that Fεn(σn, vn) ≤ C for any n ∈ N, then,
as n → ∞, vn converges to v ≡ 1 in L1(Ω) and, up to a subsequence, σn
converges to σ̃ ∈ X in L1(Ω). Moreover, σ̃ ∈ SBV (Ω), MS(σ̃, 1) is finite, and
‖Λ(σ̃)−Λ(σ0)‖Y = 0. Finally, if N = 2 and we assume that either B1 is dense

in H
1/2
∗ (∂Ω) or B̃1 is dense in H

−1/2
∗ (∂Ω), respectively, the whole sequence σn

converges, as n→∞, to σ0 in L1(Ω).

Proof. First of all, by applying Lemma 3.10 to σ = σ0, we conclude that

lim sup
ε→0+

(
inf

X×L1(Ω)
Fε

)
< +∞.

In fact, for any 0 < ε ≤ ε0, we have

‖Λ(ση(ε))−Λ̂ε‖Y ≤ ‖Λ(ση(ε))−Λ(σ0)‖Y +‖Λ(σ0)−Λ̂ε‖Y ≤ C(η(ε))β+ε ≤ C1ε,

for some constants C and C1.
By the Γ-limif inequality, [10, Proposition 4.5], and the compactness stated

in the second part of Theorem 3.7, we can immediately prove that

min
X

F̃0 ≤ lim inf
ε→0+

(
inf

X×L1(Ω)
Fε

)
.

The second part of the theorem follows immediately, again by exploiting
the compactness result in Theorem 3.7.
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[18] A. Dessenibus, Continuità della mappa Dirichlet-a-Neumann rispetto alla con-

duttività, Master’s thesis, Università degli Studi di Trieste, academic year
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Boston, 1997, pp. 21–43.

[35] A.I. Nachman, Global uniqueness for a two-dimensional inverse boundary value
problem, Ann. of Math. (2) 143 (1996), 71–96.

[36] C. Rivas, P. Barbone, and A. Oberai, Divergence of finite element formula-
tions for inverse problems treated as optimization problems, J. Phys.: Conf. Ser.
135 (6th International Conference on Inverse Problems in Engineering: Theory
and Practice) (2008), 012088 (8 pp).

[37] L. Rondi, A remark on a paper by Alessandrini and Vessella, Adv. in Appl.
Math. 36 (2006), 67–69.



352 LUCA RONDI

[38] L. Rondi, On the regularization of the inverse conductivity problem with discon-
tinuous conductivities, Inverse Probl. Imaging 2 (2008), 397–409.

[39] L. Rondi, Continuity properties of Neumann-to-Dirichlet maps with respect
to the H-convergence of the coefficient matrices, Inverse Problems 31 (2015),
045002 (24 pp).

[40] L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the
Mumford-Shah functional, ESAIM Control Optim. Calc. Var. 6 (2001), 517–538.

[41] J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure
Appl. Math. 43 (1990), 201–232.

[42] J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse
boundary value problem, Ann. of Math. (2) 125 (1987), 153–169.

Author’s address:

Luca Rondi
Dipartimento di Matematica e Geoscienze
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