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Abstract. We consider a conducting body with complex valued admit-
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1. Introduction

Let Ω ⊂ R2 be a smooth bounded domain representing the region occupied by
a conducting body and consider, at a fixed frequency ω, the complex valued
admittivity background

γ0 = σ0 + iωε0 in Ω,

where σ0 and ε0 are real valued functions representing the electrical conduc-
tivity and permittivity, respectively.

Let Σj ⊂⊂ Ω, for j = 1, . . . , N be a collection of simple, regular curves and
consider, for ε sufficiently small, a neighborhood of Σj given by

Dj
ε = {x ∈ Ω : dist(x,Σj) < ε},

representing a thin inhomogeneity of admittivity

γj = σj + iωεj .

Let ψ ∈ H1/2(∂Ω) represents a complex valued boundary current and let
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u0 be the background potential which satisfies{
div (γ0∇u0) = 0 in Ω

γ0
∂u0

∂ν = ψ on ∂Ω,

where ν is the unit outer normal to ∂Ω.
Let

γε = γ0 +

N∑
j=1

(γj − γ0)χDjε

and consider the perturbed complex-valued potential uε solution to{
div (γε∇uε) = 0 in Ω

γε
∂uε
∂ν = ψ on ∂Ω.

The main goal of the paper is to obtain an asymptotic expansion for the bound-
ary values (uε − u0)|∂Ω

as ε→ 0.
The formula we derive is analogue to the one obtained in [3] in the case of

constant real valued conductivities σ0 and σ1 (ω = 0).
More precisely, we show that for y ∈ ∂Ω and ε→ 0,

(uε − u0)(y) = εv(y) + o(ε).

where

v(y) =

N∑
j=1

2

∫
Σj

(γ0 − γj)(x)Mj(x)∇u0(x)∇xN(x, y) dσx.

Here N(x, y) is the Neumann function corresponding to the operator div (γ0∇·)
and Mj is a two by two matrix with complex valued entries.

It is well known that this type of expansion can be used in order to solve the
inverse problem of detecting the curves Σj , j = 1, . . . , N from boundary mea-
surements. In fact, in [1] the authors show that for the conductivity equation,
it is possible to detect finitely many segments from knowledge on the boundary
of the first order term v appearing in the expansion. Moreover they show the
continuous dependence of the segments from the boundary measurement v is
Lipschitz stable. A similar result has been obtained in the case of the system
of linearized elasticity, for the case N = 1, in [2].

2. Main assumptions and results

For j = 1, . . . , N , let Σj be a simple, regular C2,α curve with α ∈ (0, 1) and
assume there exists a contant K > 1 such that, in a neighborhood of radius
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K−1 of each point in Σj , the curve is the graph of a C2,α function and

‖Σj‖C2,α ≤ K, dist(Σj , ∂Ω) ≥ K−1,

K−1 ≤ L(Σj) ≤ K, dist(Σj ,Σk) ≥ K−1 if j 6= k,
(1)

where L denotes the length.
On each curve Σj we fix an continuous orthonormal system (nj(x), tj(x))

such that nj(x) is a normal direction to Σj at its point x and τj(x) is a tangent
direction.

Assume γ0, γj : Ω→ C such that γ0 ∈ C1,α(Ω), γj ∈ Cα(Ω) with

‖γ0‖C1,α(Ω), ‖γj‖Cα(Ω) ≤ K, (2)

and, furthermore, assume there exists c0 > 0 such that

σj ≥ c0, for j = 0, 1, . . . , N. (3)

Consider finally a complex valued flux ψ ∈ H−1/2(∂Ω) satisfying the compati-
bility condition ∫

∂Ω

ψ = 0. (4)

Then, under the above assumptions, there exist unique weak solutions u0

and uε in H1(Ω) to 
div (γ0∇u0) = 0 in Ω,

γ0
∂u0

∂ν = ψ on ∂Ω,∫
∂Ω
u0 = 0,

(5)

and 
div (γε∇uε) = 0 in Ω,

γε
∂uε
∂ν = ψ on ∂Ω,∫

∂Ω
uε = 0.

(6)

We also introduce the Neumann function N solution to
div (γ0∇N(·, y)) = δy in Ω,

γ0
∂N(·,y)
∂ν = 1

L(∂Ω) on ∂Ω,∫
∂Ω
N(·, y) = 0,

(7)

It is well known that under assumptions (2) and (3) there exists a unique
solution to (7) (see [5]).

We are now ready to state our main result.



212 E. BERETTA AND E. FRANCINI

Theorem 2.1. Let Ω ⊂ R2 be bounded smooth domain and {Σ}Nj=1 ⊂⊂ Ω a
set of curves satisfying (1), let γ0 and γj (for j = 1, . . . , N) be admittivities
satisfying (2) and (3) and let u0 and uε be solutions to (5) and (6), respectively.
Then, for y ∈ ∂Ω and ε→ 0,

(uε − u0)(y) = 2ε

N∑
j=1

∫
Σj

(γ0(x)− γj(x))Mj(x)∇u0(x) · ∇N(x, y) dσx + o(ε),

where

Mj(x) =
γ0(x)

γj(x)
nj(x)⊗ nj(x) + τj(x)⊗ τj(x).

3. Proof of Theorem 2.1

We will perform the proof in the case N = 1. Since the curves are well separated
one from each other, the same argument will work for the case of multiple
inclusions.

A complex valued equation as

div (γ∇u) = 0

can be interpreted as a two by two system for real valued functions. In fact,
denoting by

u1 = <u and u2 = =u,
we have that the function u = (u1, u2) : Ω→ R2 satisfies the system

∂

∂xk

(
ahkij

∂uj

∂xk

)
= 0 for i = 1, 2

where, for i, j, h, k = 1, 2,

ahkij = δhkδij<γ − δhk(δi1δj2 − δi2δj1)=γ.

If
<γ ≥ c0 > 0,

then
ahkij ξ

i
hξ
j
k ≥ c0|ξ|

2

which corresponds to strong ellipticity. For this reason we can apply to our
equations the results that hold for strongly elliptic systems.

We first establish some key energy estimates.

Lemma 3.1. There exists a constant C = C(K, co,Ω) such that

‖uε − u0‖H1(Ω) ≤ C|D1
ε |1/2‖ψ‖H−1/2(∂Ω).
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Proof. Since u0 and uε are solutions to (5) and (6), then wε = uε − u0 is weak
solution to 

div (γε∇wε) = div
(
(γ0 − γ1)χD1

ε
∇u0

)
in Ω,

γε
∂wε
∂ν = 0 on ∂Ω,∫

∂Ω
uε = 0.

Hence, for every φ ∈ H1(Ω),∫
Ω

γε∇wε · ∇φ =

∫
Ω

(γ0 − γ1)χD1
ε
∇u0 · ∇φ. (8)

By choosing φ = wε ∈ H1(Ω), we get∫
Ω

γε|∇wε|2 =

∫
Ω

(γ0 − γ1)χD1
ε
∇u0 · ∇wε.

Now, by (3), we have

‖∇wε‖L2(Ω) ≤ C|D1
ε |1/2 ‖γ0 − γ1‖L∞(Ω) sup

D1
ε

|∇u0|.

By interior regularity results (see [4, Theorem2.1, Chapter 2]),

sup
D1
ε

|∇u0| ≤ C‖ψ‖H−1/2(∂Ω),

so that
‖∇wε‖L2(Ω) ≤ C|D1

ε |1/2‖ψ‖H−1/2(∂Ω)

where C = C(K, c0).
Finally, since ∫

∂Ω

wε = 0,

by Poincaré inequality we have

‖wε‖L2(Ω) ≤ C‖∇wε‖L2(Ω)

with C = C(Ω) and we obtain

‖uε − u0‖H1(Ω) ≤ |D1
ε |1/2‖ψ‖H1/2(∂Ω),

which ends the proof.

We will also make use of some key regularity results for elliptic systems with
discontinuous coefficients due to [6] (that extend the one established in [7] for



214 E. BERETTA AND E. FRANCINI

scalar elliptic equations). We state here a simplified version of Proposition 5.1
of [6].

Let c and M be two positive constants with M > 2K and denote by Qc,M
the set of points x ∈ Ω such that dist(x, ∂Ω) > M−1 and such that there is a
square of size c centered at x that intersects ∂D1

ε in at most two cartesian curves
whose C1,α norms are bounded by M , i.e. there exists a coordinate system at x
such that ∂D1

ε ∩ [−c, c]2 consists in graphs of at most two functions h− < h+

with ‖h±‖C1,α ≤M . Let us denote by ΩM = {x ∈ Ω : dist(x, ∂Ω) > 1
2M }.

Lemma 3.2. Let β ∈ (0, 1/4) and M > 2K. there exists a constant C depending
on α, K, c0 and M such that if ε ∈ (0, 1

3K ), 0 < c < 1
6K and uε ∈ H1(Ω) is a

solution of
div (γε∇u) = 0 in Ω,

then

‖uε‖C1,β(Qc,M∩D
1
ε)
≤ C

c1+β
‖uε‖L2(Ω) (9)

and

‖uε‖C1,β(Qc,M\D1
ε ) ≤

C

c1+β
‖uε‖L2(Ω). (10)

Lemma 3.3. There exists η > 0 such that, if u ∈ H1(Ω) is a solution to the
complex valued equation

div (γ∇u) = f in Ω,

where γ : Ω→ C, γ ∈ L∞(Ω) such that

<γ ≥ c0 > 0

and f ∈ H−1,2+η(Ω), then u ∈ H1,2+η
loc (Ω) and, given Bρ and B2ρ concentric

disks contained in Ω,

‖∇u‖L2+η(Bρ) ≤ C
(
‖f‖H−1,2+η(B2ρ) + ρ

2
2+η−1‖∇u‖L2(B2ρ)

)
.

For the proof see [4, Chapter 2, Section 10].

Proof of Theorem 2.1. Take y ∈ ∂Ω. Then, by the definition of the Neumann
function, it is easy to see that

(uε − u0)(y) =

∫
D1
ε

(γ0 − γ1)∇uε · ∇N(·, y).

We prove the theorem in the more interesting and complicated case when Σ1

is an open curve. In fact, in this case, ∂D1
ε has derivatives (near the endpoints

of Σ1) that degenerate as ε tends to zero. This implies that the regularity
estimates of Lemma 3.2 cannot be applied near the endpoints of Σ1.
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Let P1 and Q1 be the endpoints of Σ1, let θ ∈ (0, 1) to be chosen later, and
define

D1,θ
ε =

{
x+ µn(x) : x ∈ Σ1, dist(x, P1 ∪Q1) > εθ, µ ∈ (ε, ε)

}
.

It is easy to see that there exists a constant M > 2K and depending only on K,
such that

D1,θ
ε ⊂ Q εβ

4 ,M
∩D1

ε .

An application of Lemma 3.2 thus gives

‖∇uε‖
Cβ(D1,θ

ε )
≤ Cε−θ(1+β)‖uε‖L2(Ω) ≤ Cε−θ(1+β)‖ψ‖H−1/2(∂Ω) (11)

where C does not depend on ε.
Then,∫

D1
ε

(γ0 − γ1)(x)∇uε(x) · ∇N(x, y) dx

=

∫
D1,θ
ε

(γ0 − γ1)(x)∇uε(x) · ∇N(x, y) dx

+

∫
D1
ε\D

1,θ
ε

(γ0 − γ1)(x)∇uε(x) · ∇N(x, y) dx := I1 + I2.

Let us estimate I2 first.

|I2| ≤

∣∣∣∣∣
∫
D1
ε\D

1,θ
ε

(γ0 − γ1)∇(uε − u0) · ∇N(·, y)

∣∣∣∣∣
+

∣∣∣∣∣
∫
D1
ε\D

1,θ
ε

(γ0 − γ1)∇u0 · ∇N(·, y)

∣∣∣∣∣ .
Observe that, since γ0 ∈ C1,α(Ω), by interior regularity results ([4, Theorem
2.1, Chapter 2], by [5] and by (2) we get

‖∇u0‖L∞(D1
ε ) ≤ C‖ψ‖H−1/2(∂Ω), (12)

|∇N(x, y)| ≤ C

|x− y|
,

and, since y ∈ ∂Ω
‖∇N(·, y)‖L∞(D1

ε ) ≤ C. (13)

Hence, by (12), (13) and Lemma 3.1,

|I2| ≤ C
∣∣D1

ε \D1,θ
ε

∣∣ ‖ψ‖H−1/2(∂Ω) ≤ Cε1+θ‖ψ‖H−1/2(∂Ω).
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We now define

Σθη =
{
x+ ηn1(x) : x ∈ Σ1, dist(x, P1 ∪Q1) > εθ

}
.

Due to the regularity of Σ1, if we denote by dσηx the arclength measure on Σθη
and by dσx the arclength measure on Σ1, we have

dσηx = (1 +O(η))dσx.

For every point x+ ηn(x) ∈ D1,θ
ε , let xε = x+ εn(x). By (11),

|∇uε(x+ ηn(x))−∇uε(xε)| ≤ C|x+ ηn(x)− xε|βε−θ(1+β)‖ψ‖H−1/2(∂Ω)

≤ Cεβ−θ(1+β)‖ψ‖H−1/2(∂Ω)

and, also,
|(γ1 − γ0)(x+ ηn(x))− (γ1 − γ0)(xε)| ≤ Cεα

so that ∫
D1,θ
ε

(γ0 − γ1)∇uε∇xN = 2ε

∫
Σθε

(γ0 − γ1)∇uiε∇xN + o(ε),

where we set
uiε = uε|D1

ε

, ueε = uε|
Ω\D1

ε

.

We now use the transmission conditions

uiε = ueε ,

γ1
∂uiε
∂n

= γ0
∂ueε
∂n

,

that are satisfied on ∂D1,θ
ε pointwise, in order to obtain, finally,∫

D1,θ
ε

(γ0 − γ1)∇uiε∇N

= 2ε

∫
Σθε

(γ0 − γ1)

{
γ0

γ1

∂ueε
∂n

∂N

∂nx
+
∂ueε
∂τ

∂N

∂τx

}
+ o(ε).

Assume that
‖∇ueε −∇ue0‖L∞(Σθε ) ≤ Cεθ1‖ψ‖H−1/2(∂Ω) (14)

for some θ1 > 0. Then∫
D1,θ
ε

(γ0 − γ1)(x)∇uiε(x)∇N(x, y)dx

= 2ε

∫
Σθε

(γ0 − γ1)

{
γ0

γ1

∂ue0
∂n1

∂N

∂n1
+
∂ue0
∂τ1

∂N

∂τ1

}
dσεx + o(ε)

= 2ε

∫
Σ1

(γ0 − γ1)M1(x)∇u0(x)∇xN(x, y)dσx + o(ε),
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which concludes the proof.
So, we are left with the proof of (14). Let 2ε < d < 1

2K and let

Ωεd =
{
x ∈ Ω : dist(x, ∂(Ω \D1

ε )) > d
}
.

Since uε − u0 is solution of

div(γ0∇(uε − u0)) = 0 in Ω \D1
ε ,

the regularity assumption on γ0 implies that uε − u0 ∈ H2
loc(Ω \ D1

ε ) (see [4,
Theorem 2.1, Chapter 2]).

Consider Φkε = ∂
∂xk

(uε − u0) for k = 1, 2.

The function Φkε satisfies in Ω \D1
ε

div
(
γ0∇Φkε

)
= −div

(
∂γ0

∂xk
∇(uε − u0)

)
=: F.

By Caccioppoli inequality and by Lemma 8 we have that

‖∇Φkε ‖2L2(Ωε
d/2

) ≤ C

d2
‖Φkε ‖2L2(Ωε

d/4
) + ‖F‖2H−1(Ωε

d/4
)

≤ C

(
1

d2
‖Φkε ‖2L2(Ωε

d/4
) + ‖∇(uε − u0)‖2L2(Ω)

)
≤ C

(
1

d2
+ 1

)
‖∇(uε − u0)‖2L2(Ω)

≤ C

(
1

d2
+ 1

)
ε‖ψ‖2H−1/2(∂Ω).

Hence

‖Φkε ‖H1(Ωε
d/2

) ≤ C
√
εd−1‖ψ‖H−1/2(∂Ω).

Applying Lemma 3.3 to Φkε gives

‖∇Φkε ‖L2+η(Ωεd) ≤ C
(
‖F‖H−1,2+η(Ωε

d/2
) + d

2
2+η−1‖∇Φkε ‖2L2(Ωε

d/2
)

)
.

Now, by

‖F‖H−1,2+η(Ωε
d/2

) ≤ C‖∇(uε − u0)‖L2+η(Ωε
d/2

)

and by the interior regularity estimates and Sobolev Immersion Theorem

‖∇(uε − u0)‖L2+η(Ωε
d/2

) ≤ C‖uε − u0‖H2(Ωε
d/2

)

≤ C‖uε − u0‖H1(Ωε
d/4

) ≤ ‖uε − u0‖H1(Ω)
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and hence

‖∇Φkε ‖L2+η(Ωεd) ≤ C
(
‖uε − u0‖H1(Ω) + d

2
2+η−1‖∇Φkε ‖2L2(Ωε

d/2
)

)
≤ C

(
1 + d

2
2+η−2

)√
ε ‖ψ‖H−1/2(∂Ω).

Finally, since 2
2+η − 2 < 0 and d < 1, from last inequality, we derive

‖∇Φkε ‖L2+η(Ωεd) ≤ Cd
2

2+η−2√ε ‖ψ‖H−1/2(∂Ω).

On the other hand, applying Lemma 3.3 to uε − u0 we have

‖Φkε ‖L2+η(Ωεd) ≤ Cd
2

2+η−1√ε‖ψ‖H−1/2(∂Ω).

By Sobolev Imbedding Theorem we than have∥∥∥∥ ∂

∂xk
(uε − u0)

∥∥∥∥
L∞(Ωεd)

≤ Cd
2

2+η−2√ε ‖ψ‖H−1/2(∂Ω). (15)

Now let y ∈ Σ′ε and yd be the closest point to y in Ωεd. By (11) we have

|∇uε(y)−∇uε(yd)| ≤ C
dβ

εθ(β+1)
‖ψ‖H−1/2(∂Ω). (16)

Hence, by (15) and (16) we have

|∇(ueε − u0)(y)| ≤ C
(
dβε−θ(β+1) + d−2+ 2

2+η
√
ε
)
‖ψ‖H−1/2(∂Ω).

Choosing θ < β
2(2− 2

2+η )(β+1)
we get

|∇(ueε − u0)(y)| ≤ Cεθ1

with θ1 > 0.
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