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Abstract. We consider a two-phase heat conductor in RN with N ≥ 2
consisting of a core and a shell with different constant conductivities.
Suppose that, initially, the conductor has temperature 0 and, at all
times, its boundary is kept at temperature 1. It is shown that, if there
is a stationary isothermic surface in the shell near the boundary, then
the structure of the conductor must be spherical. Also, when the medium
outside the two-phase conductor has a possibly different conductivity,
we consider the Cauchy problem with N ≥ 3 and the initial condition
where the conductor has temperature 0 and the outside medium has
temperature 1. Then we show that almost the same proposition holds
true.
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1. Introduction

Let Ω be a bounded C2 domain in RN (N ≥ 2) with boundary ∂Ω, and let
D be a bounded C2 open set in RN which may have finitely many connected
components. Assume that Ω \ D is connected and D ⊂ Ω. Denote by σ =
σ(x) (x ∈ RN ) the conductivity distribution of the medium given by

σ =


σc in D,

σs in Ω \D,
σm in RN \ Ω,

where σc, σs, σm are positive constants and σc 6= σs. This kind of three-phase
electrical conductor has been dealt with in [7] in the study of neutrally coated
inclusions.
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In the present paper we consider the heat diffusion over two-phase or three-
phase heat conductors. Let u = u(x, t) be the unique bounded solution of
either the initial-boundary value problem for the diffusion equation:

ut = div(σ∇u) in Ω× (0,+∞), (1)

u = 1 on ∂Ω× (0,+∞), (2)

u = 0 on Ω× {0}, (3)

or the Cauchy problem for the diffusion equation:

ut = div(σ∇u) in RN × (0,+∞) and u = XΩc on RN × {0}, (4)

where XΩc denotes the characteristic function of the set Ωc = RN \Ω. Consider
a bounded domain G in RN satisfying

D ⊂ G ⊂ G ⊂ Ω and dist(x, ∂Ω) ≤ dist(x,D) for every x ∈ ∂G. (5)

The purpose of the present paper is to show the following theorems.

Theorem 1.1. Let u be the solution of problem (1)-(3) for N ≥ 2, and let Γ
be a connected component of ∂G satisfying

dist(Γ, ∂Ω) = dist(∂G, ∂Ω). (6)

If there exists a function a : (0,+∞)→ (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ Γ× (0,+∞), (7)

then Ω and D must be concentric balls.

Corollary 1.2. Let u be the solution of problem (1)-(3) for N ≥ 2. If there
exists a function a : (0,+∞)→ (0,+∞) satisfying

u(x, t) = a(t) for every (x, t) ∈ ∂G× (0,+∞), (8)

then Ω and D must be concentric balls.

Theorem 1.3. Let u be the solution of problem (4) for N ≥ 3. Then the
following assertions hold:

(a) If there exists a function a : (0,+∞) → (0,+∞) satisfying (8), then Ω
and D must be concentric balls.

(b) If σs = σm and there exists a function a : (0,+∞)→ (0,+∞) satisfying
(7) for a connected component Γ of ∂G with (6), then Ω and D must be
concentric balls.
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Corollary 1.2 is just an easy by-product of Theorem 1.1. Theorem 1.3
is limited to the case where N ≥ 3, which is not natural; that is required for
technical reasons in the use of the auxiliary functions U, V,W given in section 4.
We conjecture that Theorem 1.3 holds true also for N = 2.

The condition (7) means that Γ is an isothermic surface of the normalized
temperature u at every time, and hence Γ is called a stationary isothermic sur-
face of u. When D = ∅ and σ is constant on RN , a symmetry theorem similar
to Theorem 1.1 or Theorem 1.3 has been proved in [13, Theorem 1.2, p. 2024]
provided the conclusion is replaced by that ∂Ω must be either a sphere or the
union of two concentric spheres, and a symmetry theorem similar to Corol-
lary 1.2 has also been proved in [10, Theorem 1.1, p. 932]. The present paper
gives a generalization of the previous results to multi-phase heat conductors.

We note that the study of the relationship between the stationary isother-
mic surfaces and the symmetry of the problems has been initiated by Alessan-
drini [2, 3]. Indeed, when D = ∅ and σ is constant on RN , he considered the
problem where the initial data in (3) is replaced by the general data u0 in
problem (1)-(3). Then he proved that if all the spatial isothermic surfaces of u
are stationary, then either u0 − 1 is an eigenfunction of the Laplacian or Ω is
a ball where u0 is radially symmetric. See also [8, 14] for this direction.

The following sections are organized as follows. In section 2, we give four
preliminaries where the balance laws given in [9, 10] play a key role on behalf
of Varadhan’s formula (see (12)) given in [15]. Section 3 is devoted to the
proof of Theorem 1.1. Auxiliary functions U, V given in section 3 play a key
role. If D is not a ball, we use the transmission condition (35) on ∂D to
get a contradiction to Hopf’s boundary point lemma. In section 4, we prove
Theorem 1.3 by following the proof of Theorem 1.1. Auxiliary functions U, V,W
given in section 4 play a key role. We notice that almost the same arguments
work as in the proof of Theorem 1.1.

2. Preliminaries for N ≥ 2

Concerning the behavior of the solutions of problem (1)-(3) and problem (4),
we start with the following lemma.

Lemma 2.1. Let u be the solution of either problem (1)-(3) or problem (4). We
have the following assertions:

(a) For every compact set K ⊂ Ω, there exist two positive constants B and b
satisfying

0 < u(x, t) < Be−
b
t for every (x, t) ∈ K × (0, 1].

(b) There exists a constant M > 0 satisfying

0 ≤ 1− u(x, t) ≤ min{1,Mt−
N
2 |Ω|}



170 SHIGERU SAKAGUCHI

for every (x, t) ∈ Ω × (0,+∞) or ∈ RN × (0,∞), where |Ω| denotes the
Lebesgue measure of the set Ω.

(c) For the solution u of problem (1)-(3), there exist two positive constants
C and λ satisfying

0 ≤ 1− u(x, t) ≤ Ce−λt for every (x, t) ∈ Ω× (0,+∞).

(d) For the solution u of problem (4) where N ≥ 3, there exist two positive
constants β and L satisfying

β−1|x|2−N ≤
∫ ∞

0

(1− u(x, t)) dt ≤ β|x|2−N if |x| ≥ L,

where Ω ⊂ BL(0) = {x ∈ RN : |x| < L}.

Proof. We make use of the Gaussian bounds for the fundamental solutions of
parabolic equations due to Aronson [4, Theorem 1, p. 891] (see also [5, p. 328]).
Let g = g(x, t; ξ, τ) be the fundamental solution of ut = div(σ∇u). Then there
exist two positive constants α and M such that

M−1(t− τ)−
N
2 e−

α|x−ξ|2
t−τ ≤ g(x, t; ξ, τ) ≤M(t− τ)−

N
2 e−

|x−ξ|2
α(t−τ) (9)

for all (x, t), (ξ, τ) ∈ RN × (0,+∞) with t > τ .
For the solution u of problem (4), 1− u is regarded as the unique bounded

solution of the Cauchy problem for the diffusion equation with initial data
XΩ which is greater than or equal to the corresponding solution of the initial-
boundary value problem for the diffusion equation under the homogeneous
Dirichlet boundary condition by the comparison principle. Hence we have
from (9)

1− u(x, t) =

∫
RN

g(x, t; ξ, 0)XΩ(ξ) dξ ≤Mt−
N
2 |Ω|.

The inequalities 0 ≤ 1 − u ≤ 1 follow from the comparison principle. This
completes the proof of (b). Moreover, (d) follows from (9) as is noted in [4, 5.
Remark, pp. 895–896].

For (a), let K be a compact set contained in Ω. We set

Nρ = {x ∈ RN : dist(x, ∂Ω) < ρ}

where ρ = 1
2 dist(K, ∂Ω) (> 0). Define v = v(x, t) by

v(x, t) = λ

∫
Nρ
g(x, t; ξ, 0) dξ for every (x, t) ∈ RN × (0,+∞),
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where a number λ > 0 will be determined later. Then it follows from (9) that

v(x, t) ≥ λM−1t−
N
2

∫
Nρ
e−

α|x−ξ|2
t dξ for (x, t) ∈ RN × (0,+∞)

and hence we can choose λ > 0 satisfying

v ≥ 1 on ∂Ω× (0, 1].

Thus the comparison principle yields that

u ≤ v in Ω× (0, 1]. (10)

On the other hand, it follows from (9) that

v(x, t) ≤ λMt−
N
2

∫
Nρ
e−
|x−ξ|2
αt dξ for (x, t) ∈ RN × (0,+∞).

Since |x− ξ| ≥ ρ for every x ∈ K and ξ ∈ Nρ, we observe that

v(x, t) ≤ λMt−
N
2 e−

ρ2

αt |Nρ| for every (x, t) ∈ K × (0,+∞),

where |Nρ| denotes the Lebesgue measure of the setNρ. Therefore (10) gives (a).
For (c), for instance choose a large ball B with Ω ⊂ B and let ϕ = ϕ(x) be

the first positive eigenfunction of the problem

− div(σ∇ϕ) = λϕ in B and ϕ = 0 on ∂B

with sup
B
ϕ = 1. Choose C > 0 sufficiently large to have

1 ≤ Cϕ in Ω.

Then it follows from the comparison principle that

1− u(x, t) ≤ Ce−λtϕ(x) for every (x, t) ∈ Ω× (0,+∞),

which gives (c).

The following asymptotic formula of the heat content of a ball touching at
∂Ω at only one point tells us about the interaction between the initial behavior
of solutions and geometry of domain.

Proposition 2.2. Let u be the solution of either problem (1)-(3) or prob-
lem (4). Let x ∈ Ω and assume that the open ball Br(x) with radius r > 0
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centered at x is contained in Ω and such that Br(x) ∩ ∂Ω = {y} for some
y ∈ ∂Ω. Then we have:

lim
t→+0

t−
N+1

4

∫
Br(x)

u(z, t) dz = C(N, σ)


N−1∏
j=1

(
1

r
− κj(y)

)
− 1

2

. (11)

Here, κ1(y), . . . , κN−1(y) denote the principal curvatures of ∂Ω at y with respect
to the inward normal direction to ∂Ω and C(N, σ) is a positive constant given
by

C(N, σ) =

 2σ
N+1

4
s c(N) for problem (1)-(3) ,

2
√
σm√

σs+
√
σm
σ
N+1

4
s c(N) for problem (4) ,

where c(N) is a positive constant depending only on N . (Notice that if σs = σm

then C(N, σ) = σ
N+1

4
s c(N) for problem (4), that is, just half of the constant for

problem (1)-(3).)
When κj(y) = 1/r for some j ∈ {1, · · · , N − 1}, (11) holds by setting the

right-hand side to +∞ (notice that κj(y) ≤ 1/r always holds for all j’s).

Proof. For the one-phase problem, that is, for the heat equation ut = ∆u, this
lemma has been proved in [12, Theorem 1.1, p. 238] or in [13, Theorem B, pp.
2024–2025 and Appendix, pp. 2029–2032]. The proof in [13] was carried out
by constructing appropriate super- and subsolutions in a neighborhood of ∂Ω
in a short time with the aid of the initial behavior [13, Lemma B.2, p. 2030]
obtained by Varadhan’s formula [15] for the heat equation ut = ∆u

−4t log u(x, t)→ dist(x, ∂Ω)2 as t→ +0 (12)

uniformly on every compact set in Ω. (See also [13, Theorem A, p. 2024] for
the formula.) Here, with no need of Varadhan’s formula, (a) of Lemma 2.1
gives sufficient information on the initial behavior [13, Lemma B.2, p. 2030].
We remark that since problem (1)-(3) is one-phase with conductivity σs near
∂Ω, we can obtain formula (11) for problem (1)-(3) only by scaling in t. On
the other hand, problem (4) is two-phase with conductivities σm, σs near ∂Ω if
σm 6= σs. Therefore, it is enough for us to prove formula (11) for problem (4)
where σm 6= σs.

Let u be the solution of problem (4) where σm 6= σs, and let us prove this
lemma by modifying the proof of Theorem B in [13, Appendix, pp. 2029–2032].

Let us consider the signed distance function d∗ = d∗(x) of x ∈ RN to the
boundary ∂Ω defined by

d∗(x) =

{
dist(x, ∂Ω) if x ∈ Ω,

− dist(x, ∂Ω) if x 6∈ Ω.
(13)
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Since ∂Ω is bounded and of class C2, there exists a number ρ0 > 0 such that
d∗(x) is C2-smooth on a compact neighborhood N of the boundary ∂Ω given
by

N = {x ∈ RN : −ρ0 ≤ d∗(x) ≤ ρ0}. (14)

We make N satisfy N ∩D = ∅. Introduce a function F = F (ξ) for ξ ∈ R by

F (ξ) =
1

2
√
π

∫ ∞
ξ

e−s
2/4ds.

Then F satisfies

F ′′ +
1

2
ξF ′ = 0 and F ′ < 0 in R,

F (−∞) = 1, F (0) =
1

2
, and F (+∞) = 0.

For each ε ∈ (0, 1/4), we define two functions F± = F±(ξ) for ξ ∈ R by

F±(ξ) = F (ξ ∓ 2ε).

Then F± satisfies

F ′′± +
1

2
ξF ′± = ±εF ′±, F ′± < 0 and F− < F < F+ in R,

F±(−∞) = 1, F±(0) ≷
1

2
, and F±(+∞) = 0.

By setting η = t−
1
2 d∗(x), µ =

√
σm/
√
σs and θ± = 1 + (µ− 1)F±(0) (> 0),

we introduce two functions v± = v±(x, t) by

v±(x, t) =


µ
θ±
F±

(
σ
− 1

2
s η

)
for (x, t) ∈ Ω× (0,+∞),

1
θ±

[
F±

(
σ
− 1

2
m η

)
+ θ± − 1

]
for (x, t) ∈ Ωc × (0,+∞).

(15)

Then v± satisfies the transmission conditions

v±
∣∣
+

= v±
∣∣
− and σm

∂v±
∂ν

∣∣∣
+

= σs
∂v±
∂ν

∣∣∣
−

on ∂Ω× (0,+∞), (16)

where + denotes the limit from outside and − that from inside of Ω and ν =
ν(x) denotes the outward unit normal vector to ∂Ω at x ∈ ∂Ω, since ν = −∇d∗
on ∂Ω. Moreover we observe that for each ε ∈ (0, 1/4), there exists t1,ε ∈ (0, 1]
satisfying

(±1) {(v±)t − σ∆v±} > 0 in (N \ ∂Ω)× (0, t1,ε]. (17)
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In fact, a straightforward computation gives

(v±)t − σ∆v± =

{
− µ
tθ±

(
±ε+

√
σst∆d

∗) F ′± in (N ∩ Ω)× (0,+∞),

− 1
tθ±

(
±ε+

√
σmt∆d

∗) F ′± in
(
N \ Ω

)
× (0,+∞).

Then, for each ε ∈ (0, 1/4), by setting t1,ε = 1
max{σs,σm}

(
ε

2M

)2
, where M =

max
x∈N
|∆d∗(x)|, we obtain (17).

Then, in view of (a) of Lemma 2.1 and the definition (15) of v±, we see that
there exist two positive constants E1 and E2 satisfying

max{|v+|, |v−|, |u|} ≤ E1e
−E2

t in Ω \ N × (0, 1]. (18)

By setting, for (x, t) ∈ RN × (0,+∞),

w±(x, t) = (1± ε)v±(x, t)± 2E1e
−E2

t , (19)

since v± and u are all nonnegative, we obtain from (18) that

w− ≤ u ≤ w+ in Ω \ N × (0, 1]. (20)

Moreover, in view of the facts that F±(−∞) = 1 and F±(+∞) = 0, we see that
there exists tε ∈ (0, t1,ε] satisfying

w− ≤ u ≤ w+ on ((∂N \ Ω)× (0, tε]) ∪ (N × {0}) . (21)

Then, in view of (16), (17), (20), (21) and the definition (19) of w±, we have
from the comparison principle over N that

w− ≤ u ≤ w+ in
(
N ∪ Ω

)
× (0, tε]. (22)

By writing
Γs = {x ∈ Ω : d∗(x) = s} for s > 0,

let us quote a geometric lemma from [11] adjusted to our situation.

Lemma 2.3. ([11, Lemma 2.1, p. 376]) If max
1≤j≤N−1

κj(y) <
1

r
, then we have:

lim
s→0+

s−
N−1

2 HN−1(Γs ∩Br(x)) = 2
N−1

2 ωN−1


N−1∏
j=1

(
1

r
− κj(y)

)
− 1

2

,

where HN−1 is the standard (N−1)-dimensional Hausdorff measure, and ωN−1

is the volume of the unit ball in RN−1.
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Let us consider the case where max
1≤j≤N−1

κj(y) <
1

r
. Then it follows from (22)

that for every t ∈ (0, tε]

t−
N+1

4

∫
Br(x)

w− dz ≤ t−
N+1

4

∫
Br(x)

u dz ≤ t−
N+1

4

∫
Br(x)

w+ dz. (23)

On the other hand, with the aid of the co-area formula, we have∫
Br(x)

v± dz =

µ

θ±
(σst)

N+1
4

∫ 2r(σst)
− 1

2

0

F±(ξ)ξ
N−1

2

(
(σst)

1
2 ξ
)−N−1

2 HN−1
(

Γ
(σst)

1
2 ξ
∩Br(x)

)
dξ,

where v± is defined by (15). Thus, by Lebesgue’s dominated convergence the-
orem and Lemma 2.3, we get

lim
t→+0

t−
N+1

4

∫
Br(x)

w± dx =

µ

θ±
(σs)

N+1
4 2

N−1
2 ωN−1


N−1∏
j=1

(
1

r
− κj(y)

)
− 1

2 ∫ ∞
0

F±(ξ)ξ
N−1

2 dξ.

Moreover, again by Lebesgue’s dominated convergence theorem, since

lim
ε→0

θ± = 1 + (µ− 1)F (0) =
µ+ 1

2
and µ =

√
σm/
√
σs ,

we see that

lim
t→+0

t−
N+1

4

∫
Br(x)

w± dx =

2
√
σm√

σs +
√
σm

(σs)
N+1

4 2
N−1

2 ωN−1


N−1∏
j=1

(
1

r
− κj(y)

)
− 1

2 ∫ ∞
0

F (ξ)ξ
N−1

2 dξ.

Therefore (23) gives formula (11) provided max
1≤j≤N−1

κj(y) <
1

r
.

Once this is proved, the case where κj(y) = 1/r for some j ∈ {1, · · · , N−1}
can be dealt with as in [12, p. 248] by choosing a sequence of balls {Brk(xk)}∞k=1

satisfying:

rk < r, y ∈ ∂Brk(xk), andBrk(xk) ⊂ Br(x) for every k ≥ 1, and lim
k→∞

rk = r.
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Then, because of max
1≤j≤N−1

κj(y) ≤ 1

r
<

1

rk
, applying formula (11) to each ball

Brk(xk) yields that

lim inf
t→+0

t−
N+1

4

∫
Br(x)

u(z, t) dz = +∞.

This completes the proof of Proposition 2.2.

In order to determine the symmetry of Ω, we employ the following lemma.

Lemma 2.4. Let u be the solution of either problem (1)-(3) or problem (4).
Under the assumption (7) of Theorem 1.1 and Theorem 1.3, the following as-
sertions hold:

(a) There exists a number R > 0 such that

dist(x, ∂Ω) = R for every x ∈ Γ;

(b) Γ is a real analytic hypersurface;

(c) there exists a connected component γ of ∂Ω, that is also a real analytic
hypersurface, such that the mapping γ 3 y 7→ x(y) ≡ y−Rν(y) ∈ Γ, where
ν(y) is the outward unit normal vector to ∂Ω at y ∈ γ, is a diffeomorphism;
in particular γ and Γ are parallel hypersurfaces at distance R;

(d) it holds that

max
1≤j≤N−1

κj(y) <
1

R
for every y ∈ γ, (24)

where κ1(y), · · · , κN−1(y) are the principal curvatures of ∂Ω at y ∈ γ with
respect to the inward unit normal vector −ν(y) to ∂Ω;

(e) there exists a number c > 0 such that

N−1∏
j=1

(
1

R
− κj(y)

)
= c for every y ∈ γ. (25)

Proof. First it follows from the assumption (5) that

Br(x) ⊂ Ω \D for every x ∈ ∂G with 0 < r ≤ dist(x, ∂Ω).

Therefore, since σ = σs in Ω\D, we can use a balance law (see [10, Theorem 2.1,
pp. 934–935] or [9, Theorem 4, p. 704]) to obtain from (7) that∫

Br(p)

u(z, t) dz =

∫
Br(q)

u(z, t) dz for every p, q ∈ Γ and t > 0, (26)
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provided 0 < r ≤ min{ dist(p, ∂Ω), dist(q, ∂Ω)}. Let us show assertion (a).
Suppose that there exist a pair of points p and q satisfying

dist(p, ∂Ω) < dist(q, ∂Ω).

Set r = dist(p, ∂Ω). Then there exists a point y ∈ ∂Ω such that y ∈ Br(p)∩∂Ω.
Choose a smaller ball Br̂(x) ⊂ Br(p) with 0 < r̂ < r and Br̂(x)∩∂Br(p) = {y}.
Since max

1≤j≤N−1
κj(y) ≤ 1

r
<

1

r̂
, by applying Proposition 2.2 to the ball Br̂(x),

we get

lim inf
t→+0

t−
N+1

4

∫
Br(p)

u(z, t) dz ≥ lim
t→+0

t−
N+1

4

∫
Br̂(x)

u(z, t) dz > 0.

On the other hand, since Br(q) ⊂ Ω, it follows from (a) of Lemma 2.1 that

lim
t→+0

t−
N+1

4

∫
Br(q)

u(z, t) dz = 0,

which contradicts (26), and hence assertion (a) holds true.
We can find a point x∗ ∈ Γ and a ball Bρ(z∗) such that Bρ(z∗) ⊂ G and

x∗ ∈ ∂Bρ(z∗). Since Γ satisfies (6), assertion (a) yields that there exists a point
y∗ ∈ ∂Ω satisfying

BR+ρ(z∗) ⊂ Ω, y∗ ∈ BR+ρ(z∗) ∩ ∂Ω, and BR(x∗) ∩ ∂Ω = {y∗}.

Observe that

max
1≤j≤N−1

κj(y∗) ≤
1

R+ ρ
<

1

R
and x∗ = y∗ −Rν(y∗) ≡ x(y∗).

Define γ ⊂ ∂Ω by

γ =
{
y ∈ ∂Ω : BR(x) ∩ ∂Ω = {y} for x = y −Rν(y) ∈ Γ

and max
1≤j≤N−1

κj(y) <
1

R

}
.

Hence y∗ ∈ γ and γ 6= ∅. By Proposition 2.2 we have that for every y ∈ γ and
x = x(y)(= y −Rν(y))

lim
t→+0

t−
N+1

4

∫
BR(x)

u(z, t) dz = C(N, σ)


N−1∏
j=1

(
1

R
− κj(y)

)
− 1

2

. (27)

Here let us show that, if y ∈ γ and x = x(y), then ∇u(x, t) 6= 0 for some t > 0,
which guarantees that in a neighborhood of x, Γ is a part of a real analytic
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hypersurface properly embedded in RN because of (7), real analyticity of u with
respect to the space variables, and the implicit function theorem. Moreover,
this together with the implicit function theorem guarantees that γ is open in
∂Ω and the mapping γ 3 y 7→ x(y) ∈ Γ is a local diffeomorphism, which is
also real analytic. If we can prove additionally that γ is closed in ∂Ω, then
the mapping γ 3 y 7→ x(y) ∈ Γ is a diffeomorphism and γ is a connected
component of ∂Ω since Γ is a connected component of ∂G, and hence all the
remaining assertions (b) – (e) follow from (26), (27) and the definition of γ.
We shall prove this later in the end of the proof of Lemma 2.4.

Before this we show that, if y ∈ γ and x = x(y), then ∇u(x, t) 6= 0 for some
t > 0. Suppose that ∇u(x, t) = 0 for every t > 0. Then we use another balance
law (see [10, Corollary 2.2, pp. 935–936]) to obtain that∫

BR(x)

(z − x)u(z, t) dz = 0 for every t > 0. (28)

On the other hand, (a) of Lemma 2.1 yields that

lim
t→+0

t−
N+1

4

∫
K

u(z, t) dz = 0 for every compact set K ⊂ Ω, (29)

and hence by (27) it follows that for every ε > 0

lim
t→+0

t−
N+1

4

∫
BR(x)∩Bε(y)

u(z, t) dz = C(N, σ)


N−1∏
j=1

(
1

R
− κj(y)

)
− 1

2

. (30)

This implies that

lim
t→+0

t−
N+1

4

∫
BR(x)

(z − x)u(z, t) dz =

C(N, σ)


N−1∏
j=1

(
1

R
− κj(y)

)
− 1

2

(y − x) 6= 0,

which contradicts (28).
It remains to show that γ is closed in ∂Ω. Let {yn} be a sequence of points

in γ with lim
n→∞

yn = y∞ ∈ ∂Ω, and let us prove that y∞ ∈ γ. By combining (26)

with (27), we see that there exists a positive number c satisfying assertion (e)
and hence by continuity

N−1∏
j=1

(
1

R
− κj(y∞)

)
= c > 0 and max

1≤j≤N−1
κj(y

∞) ≤ 1

R
, (31)
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since yj ∈ γ for every j. Thus max
1≤j≤N−1

κj(y
∞) <

1

R
. Let x∞ = y∞ −

Rν(y∞)(= x(y∞)). It suffices to show that BR(x∞) ∩ ∂Ω = {y∞}. Suppose
that there exists another point y ∈ BR(x∞) ∩ ∂Ω. Then for every R̂ ∈ (0, R)
we can find two points p∞ and p in BR(x∞) such that

BR̂(p∞) ∪BR̂(p) ⊂ BR(x∞), BR̂(p∞) ∩ ∂Ω = {y∞}, and BR̂(p) ∩ ∂Ω = {y}.

Hence by Proposition 2.2 we have

lim
t→+0

t−
N+1

4

∫
BR̂(p∞)

u(z, t) dz = C(N, σ)


N−1∏
j=1

(
1

R̂
− κj(y∞)

)
− 1

2

,

lim
t→+0

t−
N+1

4

∫
BR̂(p)

u(z, t) dz = C(N, σ)


N−1∏
j=1

(
1

R̂
− κj(y)

)
− 1

2

.

Thus, with the same reasoning as in (30) by choosing small ε > 0, we have
from (31), (26), (27) and assertion (e) that for every x ∈ γ

C(N, σ)


N−1∏
j=1

(
1

R
− κj(y∞)

)
− 1

2

= C(N, σ)c−
1
2

= lim
t→+0

t−
N+1

4

∫
BR(x)

u(z, t) dz = lim
t→+0

t−
N+1

4

∫
BR(x∞)

u(z, t) dz

≥ lim
t→+0

t−
N+1

4

[∫
BR̂(p∞)∩Bε(y∞)

u(z, t) dz +

∫
BR̂(p)∩Bε(y)

u(z, t) dz

]

= C(N, σ)



N−1∏
j=1

(
1

R̂
− κj(y∞)

)
− 1

2

+


N−1∏
j=1

(
1

R̂
− κj(y)

)
− 1

2

 .
Since R̂ ∈ (0, R) is arbitrarily chosen, this gives a contradiction, and hence γ
is closed in ∂Ω.

Lemma 2.5. Let u be the solution of problem (4). Under the assumption (8)
of Theorem 1.3, the same assertions (a)–(e) as in Lemma 2.4 hold provided Γ
and γ are replaced by ∂G and ∂Ω, respectively.

Proof. By the same reasoning as in assertion (a) of Lemma 2.4 we have asser-
tion (a) from the assumption (8). Since every component Γ of ∂G has the same
distance R to ∂Ω, every component Γ satisfies the assumption (6). Therefore,
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we can use the same arguments as in the proof of Lemma 2.4 to prove this
lemma. Here we must have

∂Ω = {x ∈ RN : dist(x,G) = R}.

3. Proof of Theorem 1.1

Let u be the solution of problem (1)-(3) for N ≥ 2. With the aid of Aleksan-
drov’s sphere theorem [1, p. 412], Lemma 2.4 yields that γ and Γ are concentric
spheres. Denote by x0 ∈ RN the common center of γ and Γ. By combining the
initial and boundary conditions of problem (1)-(3) and the assumption (7) with
the real analyticity in x of u over Ω \ D, we see that u is radially symmetric
with respect to x0 in x on

(
Ω \D

)
× (0,∞). Here we used the assumption that

Ω \D is connected. Moreover, in view of the Dirichlet boundary condition (2),
we can distinguish the following two cases:

(I) Ω is a ball; (II) Ω is a spherical shell.

By virtue of (c) of Lemma 2.1, we can introduce the following two auxiliary
functions U = U(x), V = V (x) by

U(x) =

∫ ∞
0

(1− u(x, t)) dt for x ∈ Ω \D, (32)

V (x) =

∫ ∞
0

(1− u(x, t)) dt for x ∈ D. (33)

Then we observe that

−∆U =
1

σs
in Ω \D, −∆V =

1

σc
in D, (34)

U = V and σs
∂U

∂ν
= σc

∂V

∂ν
on ∂D, (35)

U = 0 on ∂Ω, (36)

where ν = ν(x) denotes the outward unit normal vector to ∂D at x ∈ ∂D
and (35) is the transmission condition. Since U is radially symmetric with
respect to x0, by setting r = |x− x0| for x ∈ Ω \D we have

− ∂2

∂r2
U − N − 1

r

∂

∂r
U =

1

σs
in Ω \D. (37)

Solving this ordinary differential equation yields that

U =

{
c1r

2−N − 1
2Nσs

r2 + c2 if N ≥ 3,

−c1 log r − 1
4σs

r2 + c2 if N = 2,
(38)
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where c1, c2 are some constants depending on N . Remark that U can be ex-
tended as a radially symmetric function of r in RN \ {x0}.

Let us first show that case (II) does not occur. Set Ω = Bρ+(x0) \Bρ−(x0)

for some numbers ρ+ > ρ− > 0. Since Ω \ D is connected, (36) yields that
U(ρ+) = U(ρ−) = 0 and hence c1 < 0. Moreover we observe that

U ′′ < 0 on [ρ−, ρ+]. (39)

Recall that D may have finitely many connected components. Let us take a
connected component D∗ ⊂ D. Then, since D∗ ⊂ Ω, we see that there exist
ρ∗ ∈ (ρ−, ρ+) and x∗ ∈ ∂D∗ which satisfy

U(ρ∗) = min{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗ = |x∗ − x0|. (40)

Notice that ν(x∗) equals either x∗−x0

ρ∗
or −x∗−x0

ρ∗
. For r > 0, set

Û(r) = U(ρ∗) +
σs
σc

(U(r)− U(ρ∗)). (41)

Since

Û(r)− U(r) =

(
σs
σc
− 1

)
(U(r)− U(ρ∗)), (42)

it follows that

Û

{
≥ U if σs > σc

≤ U if σs < σc
on ∂D∗. (43)

Moreover, we remark that Û never equals U identically on ∂D∗ since Ω \D∗ is
connected and Ω is a spherical shell. Observe that

−∆Û =
1

σc
and

∂Û

∂r
=
σs
σc

∂U

∂r
in D∗. (44)

On the other hand, we have

−∆V =
1

σc
in D∗ and V = U on ∂D∗. (45)

Then it follows from (43) and the strong comparison principle that

Û

{
> V if σs > σc

< V if σs < σc
in D∗, (46)

since Û never equals U identically on ∂D∗. The transmission condition (35)
with the definition of Û tells us that

Û = V and
∂Û

∂ν
=
∂V

∂ν
at x = x∗ ∈ ∂D∗, (47)



182 SHIGERU SAKAGUCHI

since ν(x∗) equals either x∗−x0

ρ∗
or −x∗−x0

ρ∗
. Therefore applying Hopf’s bound-

ary point lemma to the harmonic function Û −V gives a contradiction to (47),
and hence case (II) never occurs. (See [6, Lemma 3.4, p. 34] for Hopf’s bound-
ary point lemma.)

Let us consider case (I). Set Ω = Bρ(x0) for some number ρ > 0. We
distinguish the following three cases:

(i) c1 = 0; (ii) c1 > 0; (iii) c1 < 0.

We shall show that only case (i) occurs. Let us consider case (i) first. Note
that

U ′(r) < 0 if r > 0, and U ′(0) = 0. (48)

Take an arbitrary component D∗ ⊂ D. Then, since D∗ ⊂ Ω = Bρ(x0), we see
that there exist ρ∗ ∈ (0, ρ) and x∗ ∈ ∂D∗ which also satisfy (40). Notice that
ν(x∗) equals x∗−x0

ρ∗
. For r ≥ 0, define Û = Û(r) by (41). Then, by (42) we

also have (43). Observe that both (44) and (45) also hold true. Then it follows
from (43) and the comparison principle that

Û

{
≥ V if σs > σc

≤ V if σs < σc
in D∗. (49)

The transmission condition (35) with the definition of Û also yields (47) since
ν(x∗) equals x∗−x0

ρ∗
. Therefore, by applying Hopf’s boundary point lemma to

the harmonic function Û − V , we conclude from (47) that

Û ≡ V in D∗

and hence D∗ must be a ball centered at x0. In conclusion, D itself is connected
and must be a ball centered at x0, since D∗ is an arbitrary component of D.

Next, let us show that case (ii) does not occur. In case (ii) we have

U ′(r) < 0 if r > 0, lim
r→0

U(r) = +∞, and x0 ∈ D. (50)

Let us choose the connected component D∗ of D satisfying x0 ∈ D∗. Then,
since D∗ ⊂ Ω = Bρ(x0), we see that there exist ρ∗1, ρ∗2 ∈ (0, ρ) and x∗1, x∗2 ∈
∂D∗ which satisfy that ρ∗1 ≤ ρ∗2 and

U(ρ∗1) = max{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗1 = |x∗1 − x0|, (51)

U(ρ∗2) = min{U(r) : r = |x− x0|, x ∈ ∂D∗} and ρ∗2 = |x∗2 − x0|. (52)

Notice that ν(x∗i) equals x∗i−x0

ρ∗i
for i = 1, 2. Also, the case where ρ∗1 = ρ∗2

may occur for instance if D∗ is a ball centered at x0. For r > 0, we set

Û(r) =

{
U(ρ∗2) + σs

σc
(U(r)− U(ρ∗2)) if σs > σc ,

U(ρ∗1) + σs
σc

(U(r)− U(ρ∗1)) if σs < σc .
(53)
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Then, as in (43), it follows that

Û ≥ U on ∂D∗. (54)

Observe that

−∆Û =
1

σc
and

∂Û

∂r
=
σs
σc

∂U

∂r
in D∗ \ {x0}, and lim

x→x0

Û = +∞. (55)

Therefore, since we also have (45), it follows from (54) and the strong compar-
ison principle that

Û > V in D∗ \ {x0}. (56)

The transmission condition (35) with the definition of Û tells us that

Û = V and
∂Û

∂ν
=
∂V

∂ν
at x = x∗i ∈ ∂D∗, (57)

since ν(x∗i) equals x∗i−x0

ρ∗i
for i = 1, 2. Therefore applying Hopf’s boundary

point lemma to the harmonic function Û −V gives a contradiction to (57), and
hence case (ii) never occurs.

It remains to show that case (iii) does not occur. In case (iii), since c1 < 0,
there exists a unique critical point r = ρc of U(r) such that

U(ρc) = max{U(r) : r > 0} > 0 and 0 < ρc < ρ ; (58)

U ′(r) < 0 if r > ρc and U ′(r) > 0 if 0 < r < ρc ; (59)

lim
r→0

U(r) = −∞ and x0 ∈ D. (60)

Let us choose the connected component D∗ of D satisfying x0 ∈ D∗. Then,
since D∗ ⊂ Ω = Bρ(x0), as in case (ii), we see that there exist ρ∗1, ρ∗2 ∈ (0, ρ)
and x∗1, x∗2 ∈ ∂D∗ which satisfy (51) and (52). In view of the shape of the
graph of U , we have from the transmission condition (35) that at x∗i ∈ ∂D∗, i =
1, 2,

∂V

∂ν
=
σs
σc

∂U

∂ν
=

{
0 if ρ∗i = ρc ,

σs
σc
U ′ if ρ∗i 6= ρc ,

(61)

where, in order to see that ν(x∗i) equals x∗i−x0

ρ∗i
if ρ∗i 6= ρc, we used the fact

that both D∗ and Bρ(x0)\D∗ are connected and x0 ∈ D∗. Also, the case where
ρ∗1 = ρ∗2 may occur for instance if D∗ is a ball centered at x0. For r > 0, we
define Û = Û(r) by

Û(r) =

{
U(ρ∗1) + σs

σc
(U(r)− U(ρ∗1)) if σs > σc ,

U(ρ∗2) + σs
σc

(U(r)− U(ρ∗2)) if σs < σc .
(62)
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Remark that (62) is opposite to (53). Then, as in (54), it follows that

Û ≤ U on ∂D∗. (63)

Hence, by proceeding with the strong comparison principle as in case (ii), we
conclude that

Û < V in D∗ \ {x0}. (64)

Then, it follows from the definition of Û and (61) that (57) also holds true. In
conclusion, applying Hopf’s boundary point lemma to the harmonic function
Û − V gives a contradiction to (57), and hence case (iii) never occurs.

4. Proof of Theorem 1.3

Let u be the solution of problem (4) for N ≥ 3. For assertion (b) of Theo-
rem 1.3, with the aid of Aleksandrov’s sphere theorem [1, p. 412], Lemma 2.4
yields that γ and Γ are concentric spheres. Denote by x0 ∈ RN the common
center of γ and Γ. By combining the initial condition of problem (4) and
the assumption (7) with the real analyticity in x of u over RN \ D coming
from σs = σm, we see that u is radially symmetric with respect to x0 in x
on
(
RN \D

)
× (0,∞). Here we used the assumption that Ω \D is connected.

Moreover, in view of the initial condition of problem (4), we can distinguish
the following two cases as in section 3:

(I) Ω is a ball; (II) Ω is a spherical shell.

For assertion (a) of Theorem 1.3, with the aid of Aleksandrov’s sphere theorem
[1, p. 412], Lemma 2.5 yields that ∂G and ∂Ω are concentric spheres, since
every component of ∂Ω is a sphere with the same curvature. Therefore, only the
case (I) remains for assertion (a) of Theorem 1.3. Also, denoting by x0 ∈ RN the
common center of ∂G and ∂Ω and combining the initial condition of problem (4)
and the assumption (8) with the real analyticity in x of u over Ω\D yield that
u is radially symmetric with respect to x0 in x on

(
RN \D

)
× (0,∞).

By virtue of (b) of Lemma 2.1, since N ≥ 3, we can introduce the following
three auxiliary functions U = U(x), V = V (x) and W = W (x) by

U(x) =

∫ ∞
0

(1− u(x, t)) dt for x ∈ Ω \D, (65)

V (x) =

∫ ∞
0

(1− u(x, t)) dt for x ∈ D, (66)

W (x) =

∫ ∞
0

(1− u(x, t)) dt for x ∈ RN \ Ω. (67)
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Then we observe that

−∆U =
1

σs
in Ω \D, −∆V =

1

σc
in D, −∆W = 0 in RN \ Ω, (68)

U = V and σs
∂U

∂ν
= σc

∂V

∂ν
on ∂D, (69)

U = W and σs
∂U

∂ν
= σm

∂W

∂ν
on ∂Ω, (70)

lim
|x|→∞

W (x) = 0, (71)

where ν = ν(x) denotes the outward unit normal vector to ∂D at x ∈ ∂D or to
∂Ω at x ∈ ∂Ω and (69) - (70) are the transmission conditions. Here we used (d)
of Lemma 2.1 to obtain (71).

Let us follow the proof of Theorem 1.1. We first show that case (II) for
assertion (b) of Theorem 1.3 does not occur. Set Ω = Bρ+(x0) \ Bρ−(x0) for
some numbers ρ+ > ρ− > 0. Since u is radially symmetric with respect to x0 in
x on

(
RN \D

)
× (0,∞), we can obtain from (68)-(71) that for r = |x−x0| ≥ 0

U = c1r
2−N − 1

2Nσs
r2 + c2 for ρ− ≤ r ≤ ρ+,

W = c3r
2−N for r ≥ ρ+,

W = c4 for 0 ≤ r ≤ ρ−,

where c1, . . . , c4 are some constants, since Ω \ D is connected. Remark that
U can be extended as a radially symmetric function of r in RN \ {x0}. We
observe that c4 > 0 and c3 > 0. Also it follows from (70) that U ′(ρ−) = 0 and
U ′(ρ+) < 0, and hence

c1 < 0 and U ′ < 0 on (ρ−, ρ+].

Then the same argument as in the corresponding case in the proof of Theo-
rem 1.1 works and a contradiction to the transmission condition (69) can be
obtained. Thus case (II) for assertion (b) of Theorem 1.3 never occurs.

Let us proceed to case (I). Set Ω = Bρ(x0) for some number ρ > 0. Since
u is radially symmetric with respect to x0 in x on

(
RN \D

)
× (0,∞), we can

obtain from (68)-(71) that for r = |x− x0| ≥ 0

U = c1r
2−N − 1

2Nσs
r2 + c2 for x ∈ Ω \D,

W = c3r
2−N for r ≥ ρ,

where c1, c2, c3 are some constants, since Ω \D is connected. Remark that U
can be extended as a radially symmetric function of r in RN \ {x0}. Therefore
it follows from (70) that U ′(ρ) < 0. As in the proof of Theorem 1.1, We
distinguish the following three cases:

(i) c1 = 0; (ii) c1 > 0; (iii) c1 < 0.
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Because of the fact that U ′(ρ) < 0, the same arguments as in the proof of
Theorem 1.1 works to conclude that only case (i) occurs and D must be a ball
centered at x0.
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