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Abstract. We present some existence and multiplicity results for
positive solutions to the Dirichlet problem associated with

∆u+ λa(x)g(u) = 0,

under suitable conditions on the nonlinearity g(u) and the weight func-
tion a(x). The assumptions considered are related to classical theorems
about positive solutions to a sublinear elliptic equation due to Brezis-
Oswald and Brown-Hess.
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1. Introduction

This paper deals with the study of the Dirichlet problem

(D)

{
−∆u = λa(x)g(u) in Ω,

u = 0 on ∂Ω,

depending on the positive real parameter λ. The aim of this work is twofold.
We present a partial survey and also give some new considerations about results
of existence, uniqueness and multiplicity of positive solutions for the nonlinear
eigenvalue problem (D) under suitable conditions on the weight function a(x)
and the nonlinear term g(u). By a positive solution of (D) (or any other related
equation considered in the paper) we mean a weak, strong or classical solution,
depending on the properties of a, g and the domain Ω, such that u(x) > 0
for every x ∈ Ω. For the moment, the definition given is deliberately broad in
order to include different regularity conditions, which depend also on different
approaches followed by the authors, that we are going to analyze. In the
sequel we will introduce some specific conditions ensuring that the solutions
we find are strong solutions which actually belong to C1

0 (Ω) ∩ C1,θ(Ω) (for
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each θ ∈ ]0, 1[). Furthermore, we refer to a positive solution pair for (D) as a
pair (λ, u) when we want to emphasize that u(·) is a positive solution of (D)
corresponding to the given parameter λ > 0. The set of all positive solutions
pairs will be denoted by S .

Starting with the Seventies, several authors have investigated the struc-
ture of the set of positive solutions assuming different features for the weight
function and the nonlinearity. The case of the so-called indefinite weight,
that is when a(·) changes its sign, has attracted much attention during the
past decades. In this respect we recall the pioneering works of Manes and
Micheletti [33], Hess and Kato [26], Brown and Lin [10] and López-Gómez [30]
concerning the properties related to the principal eigenvalue. The research on
the positive solutions for nonlinear indefinite weight problems has grown up at
the end of the Eighties (see, for instance, [1, 2, 4, 5, 7, 9]) and is still a very
active area of investigation. Concerning the nonlinearity, a great deal of re-
sults has been obtained when g(u) = up. In such a situation we usually refer to
superlinear or sublinear problems according to the fact that p > 1 or 0 < p < 1.

In this paper we focus our attention to the case in which g has a linear growth
at zero and a sublinear growth at infinity. Problems where the nonlinearity
presents such kind of growth naturally arise in the study of the steady states
for reaction diffusion equations occurring in various mathematical models from
population genetics or ecology. In this framework, typical assumptions require
that the following limits

g0 := lim
s→0+

g(s)

s
, g∞ := lim

s→+∞
g(s)

s

exist and are finite. The conditions of linear growth at zero and sublinear
growth at infinity are then expressed by

(Hg) g0 > 0 = g∞ .

In the present article, we will also consider more general behaviors for g at
infinity.

The outline of this paper is as follows. In Section 2 we focus our attention on
two main results of positive solutions for the sublinear elliptic Dirichlet prob-
lem, namely the theorem by Brezis and Oswald [8] and the one by Brown and
Hess [9]. In particular, we compare such theorems in the case of problem (D).
In Section 3 we restrict ourselves to the study of the one-dimensional ODE
and, for the particular case of a constant weight, we present some bifurcation
diagrams for the positive solutions by means of the analysis of the associated
time-maps. This is a very classical approach which has been exploited by many
authors (e.g. [11, 13, 29, 42, 44, 45] ). In this context we show how some time-
mapping estimates achieved by Opial (cf. [39]) turn out to be useful for our
problem. In particular, this analysis suggests that we can get the existence
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of positive solutions for every λ large if the condition (Hg) is replaced by the
more general one

g0 > 0 = lim inf
s→+∞

∫ s
0
g(ξ) dξ

s2
.

The latter assumption is required in Section 4, in order to prove a result about
existence of positive solutions for the general problem (D). Actually, we prove
much more. Indeed, in the frame of Rabinowitz’s global bifurcation theorem
we provide the existence of a bifurcation branch of positive solution pairs (λ, u)
which is unbounded both in the u and the λ components (see Theorem 4.1 and
Theorem 4.5). Our proof is inspired by some arguments developed in previous
works by Hess and Kato [26], Coelho, Corsato, Obersnel and Omari [12] and,
furthermore, Obersnel and Omari [36]. We also produce a counterexample
(see Proposition 4.6) which shows that our assumptions are, in some sense,
optimal. Section 5 is devoted to the comparison of the different uniqueness
assumptions considered by Brezis-Oswald and Brown-Hess, by means of the
analysis of an ODE equation with an indefinite weight. We give evidence (via
numerical simulations) of the possibility of multiplicity results even if the map
s → g(s)/s is decreasing on the positive real line. Finally, in Section 6 we
briefly discuss how to extend our main results to a general linear second order
strongly uniformly elliptic operator.

2. Remarks on Brezis-Oswald and Brown-Hess theorems

Let us begin by fixing some notations. Throughout the paper we denote
by R+ := [0,+∞) the set of non negative real numbers and by R+

0 := ]0,+∞)
the set of positive reals. Moreover, for N ≥ 1 we suppose that Ω ⊂ RN is a
bounded domain (i.e. open and connected) with sufficiently regular boundary.
Specific conditions on ∂Ω will be given in Section 4.

Let g : R+ → R+ be a continuous function satisfying

(g∗) g(0) = 0, g(s) > 0 for s > 0.

Let also w ∈ L∞(Ω) \ {0}. In this setting we consider the following Dirichlet
problem {

−∆u = w(x)g(u) in Ω,

u = 0 on ∂Ω.
(1)

In [9], Brown and Hess presented a theorem on the existence and uniqueness
of classical positive solutions for problem (1), assuming among other conditions
that g and w are smooth functions and g is concave with a sublinear growth
at infinity. The approach followed by the authors to prove the existence of
nontrivial solutions is based on the use of the fixed point index in the framework
of positive operators.
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Another relevant contribution to sublinear elliptic equations was given by
Brezis and Oswald in [8]. Their result applies to a more general Dirichlet
problem of the form: {

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(2)

where f : Ω× R+ → R is such that

i) s 7→ f(x, s) is continuous on R+ for a.e. x ∈ Ω;

ii) x 7→ f(x, s) belongs to L∞(Ω) for every s ≥ 0;

iii) there is a constant C > 0 such that f(x, s) ≤ C(s+ 1) for a.e. x ∈ Ω and
for every s ≥ 0;

iv) for each δ > 0 there is a constant Cδ > 0 such that f(x, s) ≥ −Cδs for
a.e. x ∈ Ω and for every s ∈ [0, δ].

The approach in [8] is variational and the (weak) solutions u of (2) belong to
H1

0 (Ω) ∩ L∞(Ω). Consequently, by regularity theory, u ∈ W 2,p(Ω) for every
p < ∞. In more recent years some extensions of [8] have been obtained, on
the one hand considering some general second order elliptic operator instead
of the Laplacian [6], and, on the other hand, relaxing the assumptions for the
uniqueness of the solutions [27].

In our setting concerning problem (1), a consequence of the main results
in [8] reads as follows.

Theorem 2.1. Let g : R+ → R+ be a continuous function satisfying (g∗) and
let w ∈ L∞(Ω) \ {0}. Let us suppose that g0 and g∞ are finite and also

λ1(−∆− w(x)g0) < 0 < λ1(−∆− w(x)g∞). (3)

Then there exists at least one positive solution u(·) to (1) with u ∈ C1
0 (Ω).

Moreover, if w(x) > 0 for a.e. x ∈ Ω and s 7→ g(s)/s is decreasing on R+
0 ,

then the positive solution is unique and condition (3) is necessary, too.

Proof. We are going to apply [8, Theorem 2] with the position

f(x, s) := w(x)g(s).

First of all, conditions i) and ii) are obviously satisfied. Using the fact that
g(s)/s is continuous and positive on R+

0 with finite limits at zero and at infinity,
we can find a positive constant K := sups>0{g(s)/s} <∞ such that |f(x, s)| ≤
‖w‖∞Ks, for all s ≥ 0 and for a.e. x ∈ Ω. In this way the growth conditions
iii) and iv) are satisfied, too.
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In order to complete the verification of the assumptions in [8, Theorem 2]
we have also to check that

λ1(−∆− a0(x)) < 0 < λ1(−∆− a∞(x)),

where

a0(x) := lim
s→0+

f(x, s)

s
, a∞(x) := lim

s→+∞
f(x, s)

s
.

This clearly follows from (3). At this point, [8, Theorem 2] applies and ensures
the existence of a nontrivial (weak) nonnegative solution u(·) to problem (1).
By elliptic regularity theory, such a solution belongs to C1

0 (Ω) and, moreover,
is strictly positive on Ω with negative outward derivative on ∂Ω (cf. also [8,
Lemma 1]). About the uniqueness of the positive solution, we just observe that
the conditions w(x) > 0 on Ω and g(s)/s decreasing on R+

0 , imply that the map
s 7→ f(x, s)/s is decreasing on R+

0 . Therefore, as a result of [8, Theorem 1],
the conclusion follows.

Now we can make a first analysis of the nonlinear eigenvalue problem:

(D)

{
−∆u = λa(x)g(u) in Ω,

u = 0 on ∂Ω,

where λ > 0. For the weight function a(x) we suppose, as in [26], that

(a∗) a ∈ C(Ω) and there exists x0 ∈ Ω such that a(x0) > 0.

Similar results can be obtained for

(a∗∗) a ∈ L∞(Ω) with |Ω+| > 0

where Ω+ := {x ∈ Ω : a(x) > 0}.
A direct application of Theorem 2.1 to the Dirichlet problem (D) leads to

the next results.

Corollary 2.2. Let a satisfy (a∗) and let g : R+ → R+ be a continuous
function satisfying (g∗) and (Hg). Then, there exists Λ∗ > 0 such that problem
(D) has a positive solution for each λ > Λ∗.

Proof. We start by observing that the second inequality in (3) is trivially satis-
fied as it refers to the positivity of the first eigenvalue of −∆ with the Dirichlet
boundary conditions. Therefore, we have only to check, for λ > 0 sufficiently
large, the negativity of the first eigenvalue µ1 of the problem

−∆u− λg0a(x)u = µu, u|∂Ω = 0. (4)
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To this aim we recall some basic facts from the weighted eigenvalue problem

−∆u = νa(x)u, u|∂Ω = 0. (5)

Under assumption (a∗), according to [10, 14, 26, 33], there exists a sequence of
real eigenvalues

0 < ν1 < ν2 ≤ ν3 ≤ . . .
to problem (5), with νn → ∞. Moreover, the principal eigenvalue ν1 is sim-
ple with an associated positive eigenfunction (see, for instance, [14, Proposi-
tion 1.11 (c) and Theorem 1.13]). In such a situation, we can prove the thesis
by taking

Λ∗ := ν1/g0 . (6)

Indeed, let us fix λ > Λ∗ and check that the principal eigenvalue µ1 of (4) is
negative. Let φ be the corresponding positive eigenfunction, so that φ satisfies

−∆φ(x)− νa(x)φ(x) = µ1φ(x) := h(x), φ|∂Ω = 0, φ(x) > 0 for x ∈ Ω,

with ν := λg0 > Λ∗g0 = ν1 . If, by contradiction, µ1 ≥ 0, then h ≥ 0 and we
enter in the setting of [26, Proposition 3] which, in turns, implies that h = 0
and ν = ν1 . The last equality clearly contradicts our choice of λ. Hence, µ1 < 0
and also the first inequality in (3) is satisfied. By Theorem 2.1 we are done.

The details of our proof are given only for completeness since the fact that
µ1 < 0 for λ > ν1/g0 is already contained in [25, Statement (1.15)], while the
existence of (ν1/g0, 0) as a bifurcation point for positive solutions, is a main
result in [26].

We observe that Corollary 2.2 is basically a subcase of a general result by Brown
and Hess (see for instance [9, Theorem 3 (ii) and Theorem 4]). Actually, in [9]
the authors obtain a result of existence and uniqueness of positive classical
solutions if and only if λ > ν1/g0 , provided that a and g are smooth functions
with g′′(s) < 0 for all s > 0. However, in absence of concavity type condition,
we cannot guarantee (in general) the uniqueness of the positive solution (see
Figure 1 (a)) or the fact that positive solutions exist only if λ > ν1/g0 (see
Figure 1 (b)). Even more complex situations may arise (see Figure 1 (c)).

Corollary 2.3. Let a satisfy (a∗) and let g : R+ → R+ be a continuous
function satisfying (g∗) and (Hg).

• If a(x) > 0 for a.e. x ∈ Ω and s 7→ g(s)/s is decreasing on R+
0 then

problem (D) has a positive solution if and only if λ > ν1/g0 and such a
positive solution is unique [8].

• If a(x) changes sign and, moreover, g(s) is smooth on R+
0 with g′′(s) < 0

for all s > 0, then problem (D) has a positive solution if and only if
λ > ν1/g0 and such a positive solution is unique [9].
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||u||∞

λΛ∗

(a) u′′ + λg(u) = 0, u(0) = 0 = u(π) with

g(s) =
2s+6 sin(s)

10+s2−6 cos(s)
.

||u||∞

λΛ∗

(b) u′′+λg(u) = 0, u(0) = 0 = u(π) with

g(s) = 2s+12s3

1+s2+3s4
.

||u||∞

λΛ∗

(c) u′′ + λg(u) = 0, u(0) = 0 = u(π) with
g(s) = 10(1− cos(s)) + s√

10(s+1)
.

Figure 1: Bifurcation diagrams for one-dimensional Dirichlet (two-point bound-
ary) problems.

Proof. The first part of the statement follows from Theorem 2.1, with the condi-
tion λ > ν1/g0 obtained in the same manner as (6) in the proof of Corollary 2.2.
The second part of the statement is precisely [9, Theorem 4].

Note that if g(s) is any strictly concave function satisfying (g∗), then the
map s 7→ g(s)/s is decreasing on R+

0 . The converse does not hold, a simple
example is given by g(s) = s/(1 + s2). In this respect, a natural question is
whether the result of uniqueness under the monotonicity request on g(s)/s is
still true also if the weight coefficient changes its sign. In general, the answer is
negative even in the one-dimensional case, as it can be seen by the numerical
analysis of some non-autonomous ODEs. A function with these features is
presented in the next example. A more detailed discussion will be delivered in
Section 5.

Example 2.4. Let

g(s) := Ase(−Bs2) +
s

1 + |s| , A,B > 0. (7)
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Observe that g0 = A + 1, g∞ = 0 and g(s)/s is strictly decreasing but not
concave on R+

0 . There exist indefinite weights a ∈ C([−T, T ]) such that for
some values of λ > 0 the problem{

u′′ + λa(x)g(u) = 0,

u(−T ) = 0 = u(T ),
(8)

has multiple positive solutions.

If we restrict ourselves to the autonomous case, i.e. the case of a constant
weight a(x) ≡ 1, problem (D) reduces to the following one{

−∆u = λg(u) in Ω,

u = 0 on ∂Ω,
(9)

where λ > 0. As already observed in [8, page 56], the next result holds.

Corollary 2.5. Let g : R+ → R+ be a continuous function satisfying (g∗)
and (Hg). Then problem (9) has a positive solution if

λ > λ∗1 :=
λ1(−∆)

g0
. (10)

Moreover, if the map s 7→ g(s)/s is decreasing on R+
0 such positive solution is

unique and (10) is also a necessary condition.

3. Phase-plane analysis in one dimension

In the one-dimensional case N = 1 we take as a domain an open interval
Ω := ]a, b[ and reduce problem (9) to the two-point boundary value problem{

u′′ + λg(u) = 0,

u(a) = 0 = u(b),
(11)

with λ > 0. As usual in this case, we indicate by x = t the independent
variable.
The set of positive solutions pairs is given by

S = {(λ, u) ∈ R+
0 × C1

0 ([a, b]) : u(·) is a positive solution of (11)}.

Without loss of generality (due to the autonomous nature of system (11)) we
also set

L := b− a
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and observe that problem (11) is equivalent to{
u′′ + λg(u) = 0,

u(−L/2) = 0 = u(L/2).

In such a simplified setting, we can provide an interpretation of Corollary 2.5
in terms of time-mappings associated with the planar autonomous system

u′ = y, y′ = −g(u), (12)

which is equivalent to the scalar equation

u′′ + g(u) = 0. (13)

Since up to now we have assumed g(s) to be defined only for s ≥ 0, for con-
venience we take an odd extension of g on R in order to have the solutions
(u(·), y(·)) of (12) globally defined in the plane.

System (12) is conservative with energy

E(u, y) :=
1

2
y2 +G(u),

where

G(s) :=

∫ s

0

g(ξ) dξ.

Observe that the map G : R+ → R+ satisfies G(0) = 0 and is strictly increasing.
For every c > 0, the solution (u(·), y(·)) of (12) satisfying the initial condition
(u(0), y(0)) = (c, 0) is unique, periodic and defined on the whole real line. We
denote such a solution with (uc, yc) only when we want to stress its dependence
on the parameter c.
The corresponding orbit/trajectory is given by the energy level set

1

2
y2 +G(u) = G(c).

From this relation we obtain that u′(t) =
√

2(G(c)−G(u(t))) for all t in the
maximal interval [α, 0] where both u(t) ≥ 0 and u′(t) = y(t) ≥ 0. Integrating
u′(t)/

√
2(G(c)−G(u(t))) on [α, 0] we can determine α as∫ c

0

ds√
2(G(c)−G(s))

= α.

This suggest to introduce the time-mapping formula

T (c) := 2

∫ c

0

ds√
2(G(c)−G(s))

. (14)
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In other words, T (c) is the distance of two consecutive zeros of the solution
u(·) of (13), where u(t) ≥ 0 for all t ∈ R and ||u||∞ = maxt∈R u(t) = c. The
time-mapping

R+
0 3 c 7→ T (c) ∈ R+

0

is a continuous function. By a rescaling in the time variable, it is straightfor-
ward to check what follows.

Proposition 3.1. Let g : R+ → R+ be a continuous function satisfying (g∗)
and let R > 0 be a fixed constant. For each c > 0, let us define

vc,R(t) := uc

(
T (c)
R

(
t− a+b

2

))
.

Then, vc,R(t) is a solution of the equation

v′′ +
(
T (c)
R

)2

g(v) = 0

with

v
(
a+b

2

)
= c, v′

(
a+b

2

)
= 0

and, moreover, the following cases occur:

• vc,R(t) > 0 ∀ t ∈ [a, b] if and only if R > L,

• vc,R(t) > 0 ∀ t ∈ ]a, b[ with vc,R(a) = 0 = vc,R(b) if and only if R = L,

• vc,R(t) vanishes in ]a, b[ if and only if R < L.

Considering the second instance in the above proposition, we get immedi-
ately what follows.

Proposition 3.2. Let g : R+ → R+ be a continuous function satisfying (g∗).
Then, problem (11) has a positive solution u(·) for some λ > 0 if and only if

λ = τ(c) :=

(
T (c)

L

)2

, for c = ||uc||∞ . (15)

Moreover, the set S of positive solution pairs is the Cartesian graph of a con-
tinuous curve

c 7→ (τ(c), vc(·)),

where

vc(t) := uc

(
T (c)
L

(
t− a+b

2

))
.
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Proposition 3.2 permits to study the global bifurcation branches for positive
solutions of (11) by analyzing the behavior of the time-mapping T (·). This
approach has been already widely exploited by many authors under several
different conditions on the nonlinearity (see, for instance, the classical works
[29, 42, 45]). The behavior of T (c) as c → 0+ or c → +∞, as well as other
qualitative properties, like monotonicity, has been analyzed by Opial in [39].
In particular, according to [39], if the limits g0 and g∞ exist, then

lim
c→0+

T (c) =
π√
g0

and lim
c→+∞

T (c) =
π√
g∞

.

Moreover, T (·) is increasing (respectively, decreasing) on R+
0 provided that the

map s 7→ g(s)/s is decreasing (respectively, increasing) on R+
0 .

If both g0 and g∞ are positive real numbers, then, by Proposition 3.2 we
can recover a bifurcation result of Ambrosetti and Hess [3, Theorem A (iii)].
In fact, in this case, the set S turns out to be a Cartesian graph joining the
bifurcation point (π/L)2/g0 from the trivial solution to the bifurcation point
(π/L)2/g∞ from infinity.

On the other hand, from (Hg) we obtain

lim
c→0+

T (c) =
π√
g0

and lim
c→+∞

T (c) = +∞.

Moreover, under the assumptions of Corollary 2.5, the map

R+
0 3 c 7→ τ(c) ∈ R+

0

is monotone with

inf τ =
(π
L

)2

/g0 = λ∗1 and sup τ = +∞.

From this point of view, one could say that Opial’s monotonicity condition for
the time-mapping is a dynamical interpretation of the uniqueness condition of
Brezis-Oswald.

The inversion of τ(·) complements Corollary 2.5 with a global bifurcation
result in the sense that it ensures also the continuity of the map

]λ∗1,+∞) 3 λ 7→ uλ(·),

where uλ is the unique positive solution of (9) for a given λ (compare with
[25, 26]).

The time-mapping approach based on Proposition 3.2 suggests the pos-
sibility of improving condition (Hg). More precisely, if we are looking for
positive solution pairs (λ, u) of (11) for all λ in an unbounded interval, we
can replace the hypothesis g∞ = 0 with appropriate assumptions which yet
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ensure that sup τ = +∞. For example, if we are interested in proving that
T (+∞) = +∞, it will be sufficient to suppose that G(s)/s2 → 0 as s → +∞
(cf. [39, Théorème 11]), which is a more general condition than g∞ = 0. With
this purpose, we introduce the following constants

G∞ := lim inf
s→+∞

2G(s)

s2
, G∞ := lim sup

s→+∞

2G(s)

s2
.

By the generalized L’Hôpital’s rule, we know that

lim inf
s→+∞

g(s)

s
≤ G∞ ≤ G∞ ≤ lim sup

s→+∞

g(s)

s
.

Using [39, Corollaire 11], we find that

G∞ = 0 =⇒ lim sup
c→+∞

τ(c) = +∞. (16)

Moreover, from [39, Théorème 16], we also know that

lim sup
c→+∞

τ(c) = +∞ =⇒ lim inf
s→+∞

g(s)

s
= 0.

In this setting, we obtain the following result which improves Corollary 2.5
in the one-dimensional case.

Proposition 3.3. Let g : R+ → R+ be a continuous function satisfying (g∗)
and suppose that the following hypothesis

(HG) g0 > 0 = G∞

holds. Then, the set S of positive solutions pairs (λ, u) to problem (11) is
a continuous curve which bifurcates from (λ∗1, 0) and such that for each λ >
λ∗1 there exists at least one positive solution u(·) of (11) with (λ, u) ∈ S .
Furthermore, if G∞ > 0, then, for each

λ > η∗ := λ1(−∆)/G∞

there is an unbounded set of positive solutions u(·) of (11) with (λ, u) ∈ S .

Proof. From (16) we know that assumption (HG) implies

lim
c→0+

τ(c) = λ∗1 and lim sup
c→+∞

τ(c) = +∞.

Thus, the continuity of the map τ(·) on R+
0 implies that the range of τ contains

the interval ]λ∗1,+∞). Then the first part of the claim follows from Proposi-
tion 3.2. On the other hand, since G(·) is monotone increasing, if we also



SUBLINEAR PROBLEMS AT INFINITY 279

suppose that G∞ > 0, then necessarily G(s) → +∞ as s → +∞. In this
manner, we enter in the setting of [39, Corollaire 12] and so we have

lim inf
c→+∞

T (c) ≤ π/
√
G∞.

Hence

lim inf
c→+∞

τ(c) ≤
(π
L

)2

/G∞ = η∗.

We conclude that for each λ ∈ ]η∗,+∞) the equation τ(c) = λ has infinitely
many solutions. In fact,

lim inf
c→+∞

τ(c) < λ < lim sup
c→+∞

τ(c)

and, by the intermediate value theorem, there is a sequence cn → +∞ of
solutions of the equation τ(c) = λ. To each such a solution cn > 0 there
corresponds a unique positive solution un(·) of (11) with ||u||∞ = cn . Then
also the second part of the claim follows from Proposition 3.2.

The consequence about the existence of infinitely many positive solutions
is not related to the condition g0 > 0 as it involves only the behavior of the
time-mapping at infinity. In particular, infinitely many solutions can occur
also when G∞ > 0 as one can see in [17, 32, 35, 36, 38]. In this context, the
following result can be given for problem (11) using Opial’s estimates, where
we use the convection 1/0+ = +∞ and 1/∞ = 0.

Proposition 3.4. Let g : R+ → R+ be a continuous function satisfying (g∗)
and suppose also that

0 ≤ G∞ < G∞ ≤ +∞. (17)

Then, for each

λ ∈
](π
L

)2

/G∞,
(π
L

)2

/G∞

[
there is an unbounded set of positive solutions u(·) of (11).

Proof. We define

η∗ :=
(π
L

)2

/G∞ and η∗ :=
(π
L

)2

/G∞ .

As in the preceding proof, we also note that G(s) → +∞ as s → +∞. From
[39, Corollaire 12] we find

lim inf
c→+∞

T (c) ≤ π/
√
G∞ < π/

√
G∞ ≤ lim inf

c→+∞
T (c).



280 E. SOVRANO AND F. ZANOLIN

Hence
lim inf
c→+∞

τ(c) ≤ η∗ < η∗ ≤ lim sup
c→+∞

τ(c).

By the intermediate value theorem, for each λ ∈ ]η∗, η∗[ there is a sequence
cn → +∞ of solutions of the equation τ(c) = λ. Now we conclude with the
same argument as above. For an alternative proof see also [17, Theorem 3]
(where the supplementary condition g(s) → +∞ as s → +∞ is assumed, due
to the fact that the more general perturbed equation −u′′ = g(u) + h(x) is
therein considered) or [35, Theorem 4].

The next example provides a class of nonlinearities consistent with Propo-
sition 3.4.

Example 3.5. Let k, θ, A,B be given constants with k,A > 0, θ ∈ [0, 2π[ and

|B| < 2A√
k2 + 4

. (18)

Define, for every s ≥ 0,

G(s) := As2 +Bs2 cos(k log(1 + s) + θ) and g(s) := G′(s).

Then g : R+ → R+ is a C∞-function and, by (18), one can easily check that
(g∗) holds. Moreover

G∞ = 2(A−B) < 2(A+B) = G∞ and g0 = 2(A+B cos θ) > 0.

By virtue of this result, given any pair of positive constants α < β we
can easily find a function G(·) within the class introduced in Example 3.5
such that G∞ = α and G∞ = β. Indeed, it is sufficient to take A = α + β,
B = β−α and choose k > 0 sufficiently small. In this case, as a consequence of
Proposition 3.4, Proposition 3.2 and the fact that limc→0+ τ(c) = λ∗1 , we can
describe some features of the set of positive solution pairs associated with{

u′′ + λG′(u) = 0,

u(a) = 0 = u(b).
(19)

More in detail, this set is a Cartesian graph bounded in the λ-component
and unbounded in the u-component, that bifurcates from (λ∗1, 0) and oscillates
infinitely many times between the following values

λ∗1 = η∗ =

(
π

b− a

)2
1

2(A+B)
and η∗ =

(
π

b− a

)2
1

2(A−B)
.

This situation can be represented in Figure 2 for a particular function G(·) of
this class.
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||u||∞

λΛ∗

Figure 2: Bifurcation diagram in logarithmic scale for problem (19) withG(s) =
2s2 + s2 cos(2 log(1 + s)).

To give a general overview, we also discuss the other bifurcation diagrams
which we can obtain in the dual situation, when the conditions at zero and at
infinity are interchanged. To this aim, we introduce the constants

G0 := lim inf
s→0+

2G(s)

s2
, G0 := lim sup

s→0+

2G(s)

s2

as well as

ρ∗ :=
(π
L

)2

/G0 and ρ∗ :=
(π
L

)2

/G0 .

With these positions, we state the following result where we summarize all the
possible combinations involving the lower and upper limits for G. The proof is
omitted as it can be derived from Proposition 3.2 by some analogous arguments
to those exposed above.

Proposition 3.6. Let g : R+ → R+ be a continuous function satisfying (g∗)
and let S be the set of positive solutions pairs for (11). Then the following
statements hold.

• If G0 > G∞, then for each λ ∈ ]ρ∗, η∗[ there exists at least one positive
solution u(·) of (11) with (λ, u) ∈ S .

• If G0 < G∞, then for each λ ∈ ]η∗, ρ∗[ there exists at least one positive
solution u(·) of (11) with (λ, u) ∈ S .

• If G0 < G0, then for each λ ∈ ]ρ∗, ρ∗[ there is a sequence of positive
solutions u(·) of (11) which converges uniformly to zero.

• If G∞ < G∞, then for each λ ∈ ]η∗, η∗[ there is a sequence of positive
solutions uλ,n(·) of (11) with ||uλ,n||∞ → +∞ for n→∞.

Suitably modifying the function in Example 3.5, we can find a class of
functions such that G0 < G0.
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||u||∞

λ

Figure 3: Bifurcation diagram in logarithmic scale for problem (19) withG(s) =
2s2 + s2 cos(2 log( s

1+s )).

Example 3.7. Let k, θ, A,B be given constants with k,A > 0, θ ∈ [0, 2π[ and
B as in (18). Define, for every s > 0,

G(s) := As2 +Bs2 cos(k log( s
s+1 ) + θ), g(s) := G′(s) and g(0) = 0.

Then g : R+ → R+ is a C∞-function satisfying (g∗) and such that

G0 = 2(A−B) < 2(A+B) = G0 and g∞ = 2(A+B cos θ) > 0.

In Figure 3 is represented a bifurcation diagram related to a function G(·)
with nonlinear features described above. Moreover, we notice that it is not
difficult to combine Example 3.5 and Example 3.7 in order to produce a class
of functions such that both G0 > G0 and G∞ > G∞ are valid.

To conclude, the analysis performed in this section by the use of the time-
mapping shows some possibilities to improve Corollary 2.2 (at least to the
one-dimensional case). With this in mind, now we come back to the study of
the original Dirichlet problem (D) to achieve a more general result.

4. Revisiting the sublinear case

In this section we consider a bounded domain Ω ⊂ RN with boundary of
class C1,1. Let X be the Banach space C1

0 (Ω) = {u ∈ C1(Ω) : u = 0 on ∂Ω}
with its standard norm. We denote by

PX := {u ∈ X : u(x) ≥ 0, ∀x ∈ Ω}

the positive cone in X.
This section is also developed under the following technical condition on

the weight function.

(a#) Suppose that there exist an open set Ω1 ⊂ Ω and a constant η > 0 such
that a(x) ≥ η for a.e. x ∈ Ω1 .
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Condition (a#) is always satisfied when (a∗) holds. Although it is slightly
more restrictive than (a∗∗), nevertheless it is a key hypothesis for the study of
indefinite problems also considered by several authors. For a discussion about
this topic we refer to [31, Ch. 9].

Our goal is still the generalization of Proposition 3.3 to problem (D). In
view of the presence of the parameter λ in the equation, it seems natural to
enter in a bifurcation setting, in order to obtain both the existence of solutions
for each λ in a certain range and the existence of a continuum of solution pairs
with the desired properties. With this respect, the following result holds.

Theorem 4.1. Let a ∈ L∞(Ω) satisfy (a#) and let g : R+ → R+ be a con-
tinuous function satisfying (g∗) and such that g0 is finite. Then the following
conclusions hold:

I) If g0 > 0, there exists an unbounded continuum C ⊂ R+
0 ×X containing

(Λ∗, 0) and such that C \{(Λ∗, 0)} is made of positive solution pairs (λ, u)
to problem (D).

II) If g0 > 0 and, moreover, G∞ = 0, then for each λ > Λ∗ there is at least
one positive solution u(·) with (λ, u) ∈ C .

III) If g0 > 0 and also G∞ > G∞ = 0, then there is M∗ such that for each
λ > M∗ there is an unbounded set of positive solutions.

Proof of I). The first part closely follows the schemes proposed in [26, The-
orem 2] and [12, Theorem 2.2] which involve the global bifurcation theorem
of Rabinowitz [40, Theorem 1.3]. In [26] the theory was developed for a con-
tinuous weight function, but it can be suitably adapted to cover the case in
(a#).

First of all, we extend g(s) by oddness to the whole real line (such extension
will be still denoted by g). We fix a constant p > N and consider the Nemytskii
operator F : X → Lp(Ω) associated with f(x, u) := a(x)g(u), namely

F : X → L∞(Ω) ↪→ Lp(Ω), u(·) 7→ f(·, u(·)).

For each v(·) ∈ Lp(Ω) the Dirichlet problem{
−∆u = v(x)

u ∈W 1,p
0 (Ω)

(20)

has a unique solution which belongs to W 2,p(Ω). Since p > N, this latter space
is compactly embedded in C1,β(Ω) for 0 ≤ β < 1−(N/p). We denote the inverse
of the Laplacian operator by L−1, which associates to each v(·) ∈ Lp(Ω) the
solution u(·) ∈ X of (20), via the following compositions

L−1 : Lp(Ω)→W 1,p
0 (Ω) ∩W 2,p(Ω) ↪→ X.
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In this way, problem (D) can be settled like a fixed point problem in the
space X, as follows

u = λKu, (21)

where K : X → X is the completely continuous operator defined as

K(u) := L−1F (u).

Following [31] we define C1,1−(Ω) :=
⋂

0<θ<1 C
1,θ(Ω). Observe that a solution

of (21) belongs to C1
0 (Ω)∩C1,1−(Ω) and is twice classically differentiable almost

everywhere in Ω (see [22] and also [31, Theorem 5.8] to justify our assertions
on the regularity results).

The existence of a finite g0 allows to express the nonlinearity f as

f(x, s) = g0a(x)s+ a(x)γ(s), with γ(s)/s→ 0 as s→ 0.

Therefore K admits a linearization at u = 0 of the form L−1A, where A is the
multiplication operator induced by the function g0a(·). We denote by W the
closure in R×X of the set of nontrivial solution pairs (λ, u) of (21).

Let Λ∗ be defined as in (6). According to Hess and Kato [26], as already
observed in the proof of Corollary 2.2, the point (Λ∗, 0) is a bifurcation point
of the nonlinear problem (21). An application in this setting of Rabinowitz’s
global bifurcation theorem [40, 41] ensures that the set W contains a maximal
subcontinuum F such that F 3 (Λ∗, 0) and F is either unbounded or contains

a point (λ̂, 0) where λ̂ is a characteristic value of L−1A with λ̂ 6= Λ∗. On account
of the fact that (0, 0) is not a bifurcation point, F is connected and Λ∗ > 0,
we firstly observe that

F ⊂ R+
0 ×X.

We are going to prove that F contains an unbounded sub-continuum C
starting from (Λ∗, 0), satisfying C \

(
R× {0}

)
⊂ R+

0 × intPX , which does not

contain any point (λ̂, 0) with λ̂ 6= Λ∗. To this aim, we will show that

F \
(
R× {0}

)
⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)

(22)

and
F ∩

(
R× {0}

)
= {(Λ∗, 0)}. (23)

In fact, condition (23) implies that the second alternative of Rabinowitz bi-
furcation theorem does not occur and therefore F is unbounded. Then, the
continuum we are looking for can be defined as

C := {(λ, |u|) : (λ, u) ∈ F} ⊂
(
R+

0 × intPX
)
∪ {(Λ∗, 0)}. (24)

In this manner, assertion I) follows because it is obvious that C is a closed
connected unbounded set of solution pairs to (21) which contains (Λ∗, 0) and
moreover for each (λ, u) ∈ C \ {(Λ∗, 0)} we have λ > 0 and u > 0.
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Our task is now to check conditions in (22) and (23). To do this we divide
the proof into some steps.

Step 1. There is a neighborhood U of (Λ∗, 0) such that

U ∩F ⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)
∪ {(Λ∗, 0)}. (25)

Indeed, if by contradiction there is no neighborhood U of (Λ∗, 0) as above,
then one could find a sequence (λn, un) of solutions to (21) with λn → Λ∗ and
un 6∈ −intPX ∪ intPX , such that 0 < ||un|| → 0. Normalizing, we have

vn = λn
K(||un||vn)

||un||
, where vn :=

un
||un||

.

By compactness, we can assume that vn → v (up to a subsequence). Moreover,

v 6∈ −intPX ∪ intPX .

Using the linearization of K at zero we obtain

v = Λ∗L−1Av, with ||v|| = 1.

This means that v is an eigenfunction corresponding to the positive principal
eigenvalue Λ∗ and therefore

v ∈ −intPX ∪ intPX .

A contradiction is thus achieved. For what follows, it is useful to note that
U ∩

(
F \

(
R× {0}

) )
is nonempty.

Step 2. It holds that

F ∩
(
R+

0 ×
(
− ∂PX ∪ ∂PX

) )
= {(Λ∗, 0)}. (26)

Suppose that (ζ, u0) ∈ F ∩
(
R+

0 ×
(
− ∂PX ∪ ∂PX

) )
. The odd extension of

g(s) implies that also the operator K is odd. Therefore, when u is a solution
of (21), −u is a solution, too. Accordingly, without loss of generality, we can
suppose that (ζ, u0) ∈ F ∩

(
R+

0 × ∂PX
)
.

We claim that u0 = 0. If, by contradiction, u0 6= 0, then u0(·) is a nontrivial
nonnegative solution to the problem

−∆u = ζa(x)g(u), u|∂Ω = 0,

which is equivalent to

−∆u+ cu = (c+ ζa(x)φ(u))u, u|∂Ω = 0,
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where we have introduced the auxiliary continuous function

φ(s) :=

{
g(s)/s for s 6= 0,

g0 for s = 0.
(27)

Now, if we take
c ≥ ζ||a||∞ sup

0≤s≤||u||∞
φ(s),

we obtain that
−∆u0(x) + cu0(x) ≥ 0, u0|∂Ω = 0,

with u0(x) ≥ 0 for all x ∈ Ω and u0 6≡ 0. By the strong maximum principle
u0 ∈ intPX follows and this leads to a contradiction.

Since u0 = 0, now we have (ζ, 0) ∈ F ∩
(
R+

0 × ∂PX
)
. So that, there exists

a sequence (λn, un) of solutions to (21) with λn → ζ > 0 and un ∈ intPX such
that 0 < ||un|| → 0. Normalizing as in Step 1 and passing up to a subsequence
for vn := un/||un||, we obtain

v = ζL−1Av, with ||v|| = 1 and v > 0.

This means that v is a positive eigenfunction associated with the eigenvalue
ζ > 0. Therefore ζ = Λ∗, as there is a unique positive eigenvalue having a
positive eigenfunction.

Step 3. It holds that

F ⊂
(
R+

0 × intPX
)
∪
(
R+

0 ×−intPX
)
∪ {(Λ∗, 0)}. (28)

Indeed, let us consider the set

F ′ := {(λ, u) ∈ F : λ > 0,±u ∈ intPX} ∪ {(Λ∗, 0)}.

By Step 1, the set F ′ is open relatively to F . We claim that F ′ is closed
in F . To do this, we consider a sequence (λn, un) → (ζ, u) with ζ > 0 and
un ∈ intPX ∪ −intPX . If u ∈ intPX ∪ −intPX , we are done. Otherwise, if
u ∈ −∂PX ∪ ∂PX , from Step 2 we have (ζ, u) = (Λ∗, 0). The claim is thus
proved. The connectedness of F implies that F ′ = F and (28) is verified.

Finally, the proof of I) is concluded because (22) and (23) directly follow
from (28).

Proof of II). Having already produced the continuum C , we will prove that it
is unbounded in the λ-component if G∞ = 0. To this aim, we introduce the
projection

p1 : R×X → R, (λ, u) 7→ λ

and we show that p1(C ) ⊃ [Λ∗,+∞).
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Suppose, by contradiction, that the inclusion does not hold. So that there
exists λ̂ > Λ∗ such that λ < λ̂ for each (λ, u) ∈ C .

Let a1, b1 be such that Ω ⊂ ]a1, b1[×RN−1. As already observed in Section 3,
the hypothesis G∞ = 0 implies that T∞ = +∞, where

T∞ := lim sup
c→+∞

T (c). (29)

Let us fix a constant R > b1 − a1 and let d > 0 be such that

T (d)2 > R2λ̂||a||∞. (30)

According to Proposition 3.1 the function vd,R(t) is a solution of

v′′ +
(T (d)

R

)2
g(v) = 0

such that vd,R(t) > 0 for all t ∈ [a1, b1]. Finally, from vd,R we define a function
on RN as

β(x) := vd,R(x1), ∀x = (x1, . . . , xN ) ∈ Ω.

By construction, for each λ ∈ ]0, λ̂[ , the function β(x) is an upper solution
which is not a solution for problem (D). Indeed, there exists a constant ρ > 0
such that

−∆β(x) ≥ λ̂||a||∞g(β(x)) + ρ, ∀x ∈ Ω (31)

and, moreover,
inf
x∈Ω

β(x) = η > 0. (32)

Now, we claim that
u(x) < β(x),∀x ∈ Ω, (33)

for each positive solution u(·) such that (λ, u) ∈ C . To prove this inequality we
follow an argument close to the one in [36, Step 4] (for another possible proof,
but involving a locally Lipschitz condition, we refer to [20, Theorem 2.2]).

Let us consider the set

C ′ := {(λ, u) ∈ C : u(x) < β(x), ∀x ∈ Ω},

which is nonempty and open relatively to C . In order to prove (33) we will
show that C ′ is also closed relatively to C , so then we can conclude by the
connectedness of C .

Let U(x) ≤ β(x), for all x ∈ Ω, be a solution of (D) for some λ such that
(λ,U) ∈ C . We notice that U(x) < β(x), ∀x ∈ ∂Ω. We are going to prove that
U(x) < β(x), ∀x ∈ Ω. Let us fix ε > 0 such that

4ελ̂||a||∞ < ρ.
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By the uniform continuity of g(s) on the interval [0, ||β||∞], there exists δ > 0
such that |g(s′) − g(s′′)| < ε for each s′, s′′ ∈ [0, ||β||∞] with |s′ − s′′| < δ. If
there exists a point x0 ∈ Ω such that U(x0) = β(x0), then we can take a (small)
open ball B(x0, r) ⊂ Ω such that |U(x) − U(x0)| < δ and |β(x) − β(x0)| < δ
for all x ∈ B[x0, r]. As a consequence, we have

|g(β(x))− g(U(x))| < 2ε, ∀x ∈ B[x0, r].

A comparison between (31) and −∆U(x) = λa(x)g(U(x)) for a.e. x ∈ B(x0, r)

(for 0 < λ < λ̂) shows that the function W (x) := β(x) − U(x) satisfies
−∆W (x) ≥ ρ/2 for a.e. x ∈ B(x0, r) with W ≥ 0 on ∂B(x0, r) and W (x0) = 0.
This contradicts the strong maximum principle on the ball B(x0, r) (cf. [24,
Lemma 3.2 (interior form)]). Therefore we conclude that C ′ is closed relatively
to C .

Therefore, from (33) we have that

C ⊂ ]0, λ̂[×[0, β(·)].

Hence, C is bounded in the product space and this contradicts the alternatives
of Rabinowitz’s global bifurcation theorem. Assertion II) is thus proved.

Proof of III). For the latter assertion, concerning the case G∞ > G∞ = 0, we
rely to [36, Theorem 2.2] applied to the problem{

−∆u = f(x, u) in Ω,

u = 0 on ∂Ω,
(34)

where

f(x, s) :=

{
λa(x)g(s) if s ≥ 0,

0 if s < 0.

With this respect, we observe that f(x, s) ≥ ληg(s) for every s ≥ 0 and
a.e. x ∈ Ω1 and, moreover, f(x, s) ≤ h(s) := λ||a||∞g(s) for every s ≥ 0
and a.e. x ∈ Ω. By our special form of f(x, s) (which, in particular, implies
f(x, 0) ≡ 0), one can see that the assumptions (h3) and g(s)→∞ as s→ +∞
required in [36, Theorem 2.2] can be ignored. The condition G∞ = 0 implies
lim infs→+∞(

∫ s
0
h(ξ) dξ)/s2 = 0 as in (h5) of [36, Theorem 2.2] and thus the

existence of a sequence of upper solutions βn tending to infinity uniformly in
Ω is guaranteed. On the other hand, given ρN = NN/(N − 1)(N−1) for N ≥ 2
otherwise ρ1 = 1 and let R > 0 be the radius of the largest ball contained in
Ω1, according to [36, Remark 1] if

λ > M∗ :=
ρ

N

ηG∞

( π

2R

)2

,
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then there exists a sequence of lower solutions αn with max(αn) = maxΩ1
(αn)

tending to infinity. The rest of the proof is similar to [36, Theorem 2.2]. It
leads to the existence of an unbounded sequence of solutions un for (34) and
the strong maximum principle (cf. [24, Lemma 3.2 (global form)]) guarantees
that un(x) > 0 for all x ∈ Ω.

The construction of an upper solution using conditions on the lower limit
at infinity of G(s)/s2 has been already exploited in [18, 36, 38].

One could argue that functions satisfying (HG) and not (Hg) seem really
artificial. Our opinion is that such kind of functions may look slightly unusual
but not too weird. One can easily provide examples of functions in the class
(g∗) and satisfying

0 = lim inf
s→+∞

2G(s)

s2
< lim sup

s→+∞

2G(s)

s2
. (35)

This can be done in different manners. For example, by selecting an increasing
sequence of positive reals (an)n such that

lim
n→+∞

n−2a2n = ` ∈ ]0,+∞] and lim
n→+∞

n−2a2n+1 = 0.

Then G(s) can be constructed as a smooth function satisfying G(0) = G′(0) =
0 < G′′(0), G′(s) > 0 for all s > 0 and such that its graph interpolates the
points (n, an). This procedure, even if it permits to define functions satisfying
our requests, still may look somehow artificial. For this reason, we show below
how to define in an analytical manner suitable maps satisfying (g∗) and (HG)
by the use of elementary functions. Such nonlinearities are obtained by a
modification of the ones considered in Example 3.5, as follows.

Example 4.2. Let ρ, θ, A, k1, k2, p, q, be positive constants, with θ ∈ [0, 2π],
A ≥ e, and 0 < q < 1− p < 1. Define, for every s ≥ 0,

G(s) := ρs2
(

1 + cos
(
k1 logp(A+ s) + θ

)
+ k2 log−q(A+ s)

)
.

If
k1p+ k2q < 2k2 ,

then g : R+ → R+, defined as g(s) := G′(s), is a C∞-function satisfying (g∗).
Moreover,

G∞ = 0 < 4ρ = G∞ and g0 ∈ ]0,+∞[.

Indeed, to check that g(s) > 0 for all s > 0, we just observe that

G′(s) ≥ ρs
(

2k2ξ
−q − k1pξ

p−1 − k2qξ
−q−1

)
, for ξ := log(A+ s) > 1.

By the choice of the coefficients, we see that the term in parenthesis is strictly
positive. All the other verifications are straightforward.
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Under our assumptions, it is natural to ask wether there are further proper-
ties of the Rabinowitz’s bifurcation continuum C . Indeed, the following result
holds.

Proposition 4.3. Let a ∈ L∞(Ω) satisfy (a#) and let g : R+ → R+ be a
continuous function satisfying (g∗) and such that g0 is finite. If g0 > 0, then
the continuum C defined in (24) is unbounded in the u-component.

Proof. Let C be the continuum obtained in I) of Theorem 4.1 and defined
in (24). Suppose, by contradiction, that there exists M > 0 such that

||u|| ≤M for all (λ, u) ∈ C ⊂ R+
0 ×X. (36)

This, in turn, implies that 0 < u(x) ≤M for all x ∈ Ω. Then, as a consequence
of (g∗) and g0 > 0, we find that g(u(x)) ≥ CMu(x) for all x ∈ Ω, for

CM := inf
0<s≤M

g(s)

s
> 0.

In other words, for φ defined as in (27), we have that φ(u(x)) ≥ CM for every
(λ, u) ∈ C and problem (D) can be written as{

−∆u = λa(x)φ(u)u in Ω,

u = 0 on ∂Ω.
(37)

Now, let z ∈ Ω1 and r > 0 be such that the open ball B = B(z, r) satisfies
B ⊂ Ω+ and, moreover, let ρ1 > 0 be the first (positive) eigenvalue of the
eigenvalue problem with positive weight

−∆u = ρa(x)u, u|∂B = 0.

We denote by ψ the associated positive eigenfunction with maxB ψ(x) = 1.

We fix a constant λ̂ > ρ1/CM such that there exists a (positive) solution û

of (37) with (λ̂, û) ∈ C . We know that such a pair always exists because C is
unbounded in the product space and we are assuming (36). Let v(x) = ϑψ(x)
(with ϑ > 0) be the maximal eigenfunction of

−∆u = ρ1a(x)u, u|∂B = 0

such that v(x) ≤ û(x), ∀x ∈ B. By definition, we have 0 = v(x) < û(x) on
∂B and v(x0) = û(x0) for some x0 ∈ B. The function W (x) := û(x) − v(x)
satisfies −∆W (x) > 0 for a.e. x ∈ B with W (x) > 0 on ∂B and minBW (x) =
W (x0) = 0, thus contradicting the maximum principle. Therefore, our asser-
tion is proved.
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As a consequence of Theorem 4.1 and Proposition 4.3, we can say that
Proposition 3.3 for the one-dimensional case is now extended to any sufficiently
regular domain in RN . In particular, also Corollary 2.5 extends as follows
(where the constant λ∗1 := λ1(−∆)/g0 is the one defined in (10)).

Corollary 4.4. Let a ∈ L∞(Ω) satisfy (a#) and let g : R+ → R+ be a
continuous function satisfying (g∗) and (HG). Then there exists a continuum
C containing (λ∗1, 0) and such that C \ {(λ∗1, 0)} is made of positive solution
pairs (λ, u) to problem (9). The continuum C is unbounded both in the u-
component and the λ-component.
Moreover, if the map s 7→ g(s)/s is decreasing on R+

0 since the conditions (Hg)
and (HG) are equivalent, then the set of positive solution pairs S coincides with
C \{(λ∗1, 0)} and is the graph of a continuous map ]λ∗1,+∞[3 λ 7→ uλ ∈ intPX .

From the proof of Theorem 4.1 it is also clear that a more general version of
Theorem 4.1 can be given as follows.

Theorem 4.5. Let a ∈ L∞(Ω) satisfy (a#) and let g : R+ → R+ be a con-
tinuous function satisfying (g∗) and such that g0 is finite. Then the following
conclusions hold:

• If g0 > 0, there exists an unbounded continuum C ⊂ R+
0 ×X containing

(Λ∗, 0) and such that C \ {(Λ∗, 0)} is made of positive solution pairs
(λ, u) to problem (D). The continuum C is always unbounded in the u-
component.

• If g0 > 0 and, moreover, T∞ = +∞, then the continuum C is also
unbounded in the λ-component and, therefore, for each λ > Λ∗ there is
at least one positive solution u(·) with (λ, u) ∈ C .

The method of producing bounds for a PDEs using the ODE u′′+ g(u) = 0
has been also considered in [36] and [28]. Sufficient conditions for validity of
the time-mapping hypothesis have been presented in previous papers (see, for
instance [19]).

Theorem 4.5 is useful to produce other existence results where explicit
hypotheses on g(s) or G(s) at infinity can be employed in order to obtain
T∞ = +∞. From [15], one could require that g is such that

lim inf
s→+∞

g(s)

s
= 0, sg′(s) ≤Mg(s) for s > d, (38)

for some positive constant M. This hypothesis, according to Omari and Ye [37],
is said to be a “desultorily sublinear condition”. For the PDE setting, it has
been recently used for the Neumann problem in [43]. Condition (38) is inde-
pendent on G∞ = 0 as shown in an example of [15].
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Finally, we notice that the assumption lim infs→+∞ g(s)/s = 0 alone is
not enough to guarantee the existence of positive solutions to problem (D) for
λ ≥ Λ∗ = ν1/k. Indeed, we are able to provide a counterexample at least for a
constant weight and in one-dimension case. Namely the following results holds.

Proposition 4.6. Let Ω ⊂ R be a bounded open interval of length |Ω| = L.
For each positive constant k, there exists a continuous function g : R+ → R+

satisfying (g∗), with

g0 = k and lim inf
s→+∞

g(s)

s
= 0, (39)

such that there is no positive solution pair for (11) when λ ≥ λ∗1 = ( πL )2/k.
The function g can be defined so that

lim
s→+∞

2G(s)

s2
= lim sup

s→+∞

g(s)

s
= K, (40)

for any prescribed value K ∈]k,+∞].

Proof. Our example is inspired by some analogous considerations in [16, 34],
however the proof here is completely different. We adopt a time-mapping
technique as in Section 3. We discuss in detail the situation when K is a real
number. The case K = +∞ is can be treated in the same way with simple
modifications.

We start by giving the general structure of the example. Let k,K be two
given constants with 0 < k < K. We consider a strictly increasing continuous
function q1 : R+ → R+

0 with q1(0) = k and q1(+∞) = K. Then, let T1 be the
time-mapping associated with the autonomous scalar equation

u′′ + g1(u) = 0, for g1(s) := s q1(s).

As usual, we set

G1(s) :=

∫ s

0

g1(ξ) dξ.

By the properties recalled in Section 3 we know that T1 : R+
0 → R+

0 is a strictly
decreasing function with

lim
c→0+

T1(c) =
π√
k

and lim
c→+∞

T1(c) =
π√
K
.

Next, we consider a strictly monotone increasing function g2 : R+ → R+ with
g2(+∞) = +∞ and such that

lim
s→+∞

g2(s)

s
= 0.
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By the properties of g1(·) and g2(·) and since g1(s)/s → K > 0 as s → +∞,
there exists a constant d > 0 such that

0 < g2(s) < g1(s), ∀ s ≥ d.

Let ε > 0 be a fixed constant such that

3ε <
π√
k
− π√

K
(41)

and, subsequently, let us fix a constant θ ∈ ]0, 1[ such that

√
θ ≥

( π√
K

+ ε
)
/
( π√

k
− ε
)
. (42)

At this moment, we can determine a constant d∗ ≥ d such that

g1(s) >
1

1− θ , (43a)

T1(s) <
π√
K

+ ε, (43b)√
8/g2(s) < ε, (43c)

hold for all s ≥ d∗.
Finally, we take two sequences (dn)n and (rn)n of positive real numbers

with dn ↗ +∞ and rn ↘ 0+ and d1 − r1 > d∗ + 2.
We also define In := [dn − rn, dn + rn]. The function g : R+ → R+ of our
example will be defined as

g(s) := g1(s)− φ(s),

where φ : R+ → R+ is a continuous function with

φ(s) = 0, ∀ s ∈ R+ \
( ∞⋃
n=1

In
)
;

max
s∈In

φ(s) = φ(dn) := g1(dn)− g2(dn).

If we denote by,

Φ(s) :=

∫ s

0

φ(ξ) dξ ,

we also impose
Φ(+∞) ≤ 1.

We notice that
g1(s) ≥ g(s) ≥ g2(s), ∀ s ≥ d∗ ≥ d.
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Moreover, g(s) = g1(s) for all 0 ≤ s ≤ d∗+2 and g(dn) = g2(dn). By definition
of g, we have also that G(s) = G1(s) − Φ(s). Hence (39) and (40) follow
immediately.
If we denote by T the time-mapping associated with u′′ + g(u) = 0, from the
definition of g it is easy to check that

lim
c→+∞

T (c) = lim
c→+∞

T1(c) =
π√
K
.

However, we want to prove more. Indeed, we claim that

T (c) <
π√
k

=
π√
g0
, ∀ c > 0. (44)

By construction, we have that T (c) = T1(c) < π/
√
k, for all c ∈ ]0, d∗ + 2]. So,

we consider now c > d∗ + 2 and prove that T (c) < π/
√
k.

In fact, recalling the time-mapping formula given in (14) and using the fact
that c− 1 > d∗, we have

T (c) = 2

∫ c−1

0

ds√
2(G(c)−G(s))

+ 2

∫ c

c−1

ds√
2(G(c)−G(s))

= 2

∫ c−1

0

ds√
2(G1(c)−G1(s)− (Φ(c)− Φ(s)))

+ 2

∫ c

c−1

ds√
2(
∫ c
ξ
g(ξ) dξ)

≤ 2

∫ c−1

0

ds√
2(G1(c)−G1(s)− 1)

+ 2

∫ c

c−1

ds√
2(
∫ c
ξ
g2(ξ) dξ)

≤ 2√
θ

∫ c−1

0

ds√
2(G1(c)−G1(s))︸ ︷︷ ︸

G1(c)−G1(s)− 1 ≥ θ(G1(c)−G1(s)),
by condition (43a)

+2

∫ c

c−1

ds√
2(
∫ c
ξ
g2(c− 1) dξ)

<
2√
θ

∫ c

0

ds√
2(G1(c)−G1(s))

+

√
2

g2(c− 1)

∫ c

c−1

ds√
c− s

=
T1(c)√
θ

+

√
8

g2(c− 1)
<

1√
θ

( π√
K

+ ε
)

︸ ︷︷ ︸
by (43b)

+ ε︸︷︷︸
by (43c)

≤ π√
k
− ε︸ ︷︷ ︸

by (42)

+ε =
π√
k
.

We have thus verified (44), so that by Proposition 3.2 we know that a positive
solution to (11) can exist only for λ < λ∗1. In other words, with our choice of the
function g, there is no positive solution pair for problem (11) when λ ≥ λ∗1.
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Following the instructions given in the proof, it is easy now to provide a
concrete function g.

Example 4.7. As a model example, let us consider the following functions:

q1(s) =

{
k + 2(K−k)

π arctan(s) for K < +∞,
k + s arctan(s) for K = +∞,

and

g2(s) =
√
s.

The parameters involved in the construction can be explicitly computed once k
and K are given.

For instance, let us take k = 1 and K = 25. In this case, we can choose
d = 1. Next, we fix ε = π/4 and θ = 9/25, in order to satisfy (41) and (42).
With such a choice of the constants, simple computations show that d∗ = 170
is more than adequate to have all the three conditions in (43) fulfilled. At this
point, we take, for any positive integer n,

dn = 180 + n and rn =
2−n

25dn
.

We define the function φ(s) as a piecewise linear function, namely

φ(s) =

{
g1(dn)− g2(dn)− g1(dn)−g2(dn)

rn
|s− dn| for s ∈ In,

0 for s 6∈ In .

As a last step, we observe that∫ +∞

0

φ(ξ) dξ =

∞∑
n=1

rnφ(dn) <

∞∑
n=1

rng1(dn) <

∞∑
n=1

Krndn =

∞∑
n=1

2−n = 1.

Therefore, all the required conditions are satisfied.

Remark 4.8. The function g, whose existence is asserted in Proposition 4.6,
can be more than continuous. Indeed, it can be smooth as we like (it is just a
matter of choosing q1, g2 and φ smooth functions). In particular, in Example
4.7 we can easily modify the choice of φ, taking a piecewise polynomial function
instead of a piecewise linear function. Hence, when K is finite and g is C1(R+),
we have g(s)/s bounded but sups>0 g

′(s) = +∞. In this way our example shows
that the second condition in (38) cannot be avoided.
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5. Concavity of g(s) versus monotonicity of g(s)/s

In Corollary 2.3 we have recalled the uniqueness results to problem (D) due
to Brezis-Oswald [8] and the ones of Brown-Hess [9]. As already observed, when
the weight function is positive, the hypothesis of Brezis-Oswald, concerning the
monotonicity of g(s)/s, is more general than the requirement of Brown-Hess
about the concavity of g(s). On the other hand, the monotonicity of g(s)/s is
not enough to guarantee the uniqueness of positive solutions for an indefinite
weight. Here we present an illustrative example in this direction, with the aid
of some numerical computations.

Our example deals with the one-dimensional case

u′′ + λa(t)g(u) = 0, (45)

where g : R+ → R+ is defined by

g(s) := 10se−3s2 +
s

|s|+ 1
(46)

and a : R→ R is such that

a(t) := (1− |t|)5 cos
(9π

2
|t|1.2

)
. (47)

It is straightforward to check that g satisfies (g∗) and (Hg). Moreover,
the map s 7→ g(s)/s is strictly decreasing on R+

0 ; however, the function g
is not concave. According to Section 3, the time-mapping associated with
the autonomous system (12) is strictly increasing (see Figure 4) and therefore
problem (11) has at most one positive solution for each λ > 0 and, in fact,
there exists a unique positive solution if and only if λ > λ∗1 . This is precisely
what Brezis and Oswald theorem asserts when applied to (11).

Figure 4: Time-mapping diagram for u′′ + g(u) = 0 where the function g is
defined as in (46).
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We show now the effect of an indefinite weight on the number of positive
solutions. The function a(t) that we have selected for our simulations (see
Figure 5) has been chosen just to give more evidence to the presence of multiple
(positive) solutions. Multiple solutions can be obtained also for different sign-
changing weights.

−1 1

Figure 5: Graph of the function a(t) as defined in (47) in the interval Ω =]−1, 1[.

In our case, we give numerical evidence of at least five positive solutions for
the Dirichlet problem associated with (45) on the domain Ω =]−1, 1[ . We start
our analysis, for a fixed value of λ = 80, by shooting solutions from t = −1 with
initial slope between r0 = 0.38 and r1 = 10. More in detail, for each r ∈ [r0, r1],
let (u(·, r), y(·, r)) be the solution of{

u′ = y

y′ = −λa(t)g(u)

satisfying the initial condition (u(−1, r), y(−1, r)) = (0, r). Then, in the phase-
plane (u, y) = (u, u′), we consider the arc

Γ := {(u(1, r), y(1, r)) : r ∈ [r0, r1]}
and look for points p ∈ Γ∩ {(0, y) : y < 0}. In the discretization of the interval
[r0, r1] we have taken a non-uniform distribution of nodes. The features of the
function

f(t, u) = λa(t)g(u), t ∈ [−1, 1]

have required an increased number of nodes in the subinterval [0.391, 0.393],
in order to obtain a more accurate evaluation of the intersection points. The
resulting curve Γ is shown in Figure 6 where we have also put in evidence the
five intersection points.

For each intersection point p = (0, ρ) ∈ Γ ∩ {(0, y) : y < 0}, we then solve
the initial value problem

u′′ + λa(t)g(u) = 0, u(−1) = 0, u′(−1) = −ρ.
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Figure 6: The curve Γ in the phase-plane.

The symmetry of the weight function (i.e. a(−t) = a(t)) guarantees that
the solution u(·,−ρ) is a positive solution of the Dirichlet problem associated
with (45) on ]− 1, 1[ . The corresponding five solutions are represented in Fig-
ure 7. Notice that, three of these solutions are even functions, while the other
two (called u1 and u2) are symmetric each other, that is u2(−t) = u1(t).

−1 1

Figure 7: The five positive solutions of (D).

Our example may have some interest also with respect to the result of Gidas,
Ni and Nirenberg [21] on the symmetry of positive solutions. Notice that [21,
Theorem 1’] does not applies because the function [0, 1] 3 ξ 7→ f(ξ, u) is not
decreasing.

Another point of view in order to distinguish between symmetric and asym-
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metric solutions is to consider the intersections between the curves

Γ+ := {(u(0, r), y(0, r)) : r ∈ [r0, r1]},
Γ− := {(u(0, r),−y(0, r)) : r ∈ [r0, r1]}.

The curve Γ− can be equivalently described as the locus of the points at the
time t = 0, shooting back from the negative y-axis with slope r ∈ [−r1,−r0]
at the time t = 1. In this way the set of intersection points p ∈ Γ+ ∩ {(x, 0) :
x > 0} = Γ− ∩{(x, 0) : x > 0} are in bijection with the even positive solutions,
while the set of intersection points q ∈ Γ+ ∩ Γ− \ {(x, 0) : x > 0} correspond
to the positive solutions symmetric to each other but not even. This point of
view is illustrated in Figure 8.

ææ

ææ

ææ

ææ

ææ

Γ+

Γ−

−0.38

−10

0.38

10

Figure 8: The curves Γ+ and Γ− in the phase-plane.

6. Final remarks

Our main results in Section 4 (namely Theorem 4.1 and Theorem 4.5) con-
cern the existence of unbounded connected branches of positive solution pairs
with regard to a nonlinear Dirichlet problem for the Laplace differential opera-
tor. Here we wish to sketch how to obtain the same kind of results in the case
of a more general linear differential operator of the second order. Therefore we
consider the problem {

Lu = λa(x)g(u) in Ω,

u = 0 on ∂Ω,
(48)
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where L is a linear operator of the form

L := −
N∑

j,k=1

αjk(x)DjDk +

N∑
j=1

αj(x)Dj + α0(x).

In order to obtain the statement I) in Theorem 4.1 for this operator, we suppose
that

αjk = αkj ∈ C(Ω) and αj , α0 ∈ L∞(Ω), with α0 ≥ 0.

Moreover, we also assume that L is strictly elliptic in Ω, indeed there exists
a constant κ > 0 such that

∑
j,k ajk(x)ξjξk ≥ κ||ξ||2 for all x ∈ Ω and ξ =

(ξ1, . . . , ξN ) ∈ RN . Taking into account these assumptions and following [26],
we can reproduce the same proof.

In order to obtain the statement II) in Theorem 4.1 we have to prove the
existence of an upper solution β satisfying a condition analogous to (31). To this
purpose, we first give the following lemma which is presented in a general form
so that it can be applied in principle also in other contexts. We note also that
our lemma presents some overlapping with a preceding result by Grossinho and
Omari in [23, Lemma 2.1]. For the sequel, we recall the notation T∞ introduced
in (29), where T (·) is the time-mapping associated with the second order ODE
u′′ + g(u) = 0 (see Section 3).

Lemma 6.1. Let g : R+ → R+ be a continuous function satisfying (g∗) and
such that T∞ = +∞. Let I := [t0, t1] and B,M > 0 be fixed real constants.
Then for every measurable function b : I → R with |b(t)| ≤ B for a.e. t ∈ I
and for every constant K > 0, there exists k > K, such that any solution u(·)
of the initial value problem{

u′′ + b(t)u′ +Mg(u) = 0,

u(t0) = k, u′(t0) = 0,
(49)

is such that u(t) > 0 for all t ∈ I and u′(t) < 0 for all t ∈ ]t0, t1] .

Proof. Let u(·) : J → R+ be a solution of (49) defined on a right maximal
interval of existence contained in I. For a.e. t ∈ J we have that

d

dt

(
u′(t)eB(t)

)
+MeB(t)g(u(t)) = 0, (50)

where we have set B(t) :=
∫ t
t0
b(ξ) dξ. Integrating on [t0, t], for t ∈ J with

t > t0 , it follows that

u′(t) = −M
∫ t

t0

e
∫ s
t
b(ξ) dξg(u(s)) ds
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holds. This proves that u′(t) < 0 for all t > t0 with t ∈ J.
We claim now that J = I and u(t) > 0 for all t ∈ I. Suppose, by contra-

diction, that there exist a function b : I → R satisfying |b(t)| ≤ B and a first
point t∗ ∈ J such that u(t∗) = 0. We multiply equation (50) by u′(t)eB(t) and
so we obtain the relation

1

2

d

dt

(
u′(t)eB(t)

)2

+Me2B(t) d

dt
G(u(t)) = 0, ∀ t ∈ [t0, t

∗], (51)

where, as usual, G(s) :=
∫ s

0
g(ξ) dξ. Notice that d

dtG(u(t)) = g(u(t))u′(t) < 0
for all t ∈ ]t0, t

∗[ . Integrating equation (51) on [t0, t] ⊂ [t0, t
∗[ and after simple

manipulations, we obtain

|u′(t)|2 = 2M

∫ t

t0

e2
∫ s
t
b(ξ) dξ d

ds
(−G(u(s))) ds

≤ 2Me2B|I|(G(u(t0))−G(u(t))) = 2Me2B|I|(G(k)−G(u(t))).

Then, recalling that u′(t) < 0 on ]t0, t
∗], it follows that

−u′(t) ≤ eB|I|M 1
2

√
2(G(k)−G(u(t))), ∀ t ∈ ]t0, t

∗[ .

From the previous inequality we have∫ u(t0)=k

u(t)

ds√
2(G(k)−G(u(s)))

≤ eB|I|M 1
2 (t− t0), ∀ t ∈ ]t0, t

∗[

and then, letting t→ t∗, we find

T (k)

2
=

∫ k

0

ds√
2(G(k)−G(u(s)))

≤ eB|I|M 1
2 (t∗ − t0) ≤M 1

2 eB|I||I|.

Thus, using the fact that lim supc→+∞ T (c) = +∞, a contradiction is achieved.
As a consequence, we conclude that J = I and, moreover, u(t) > 0 for all
t ∈ I.

Now we use the preceding result to give an upper solution β as in the proof
of II) in Theorem 4.1. By the use of the same notation, let a1 and b1 be such
that Ω ⊂ ]a1, b1[×RN−1. We proceed, by introducing the following constants:

M0 > λ̂||a||∞

and

M :=
M0

κ
, b := sup

x∈Ω

∣∣∣∣ α1(x)

α11(x)

∣∣∣∣ ≤ ||α1||∞
κ

.
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Then, according to Lemma 6.1, let u(·) ∈ C2([a1, b1]) be such that

u′′(t)− bu′(t) +Mg(u(t)) = 0, ∀ t ∈ [a1, b1],

u(t) > 0, ∀ t ∈ [a1, b1]

u′(t) < 0, ∀ t ∈]a1, b1].

(52)

We define

β(x) := u(x1), ∀x = (x1, . . . , xN ) ∈ Ω.

By the positivity of u(·) on [a1, b1] we have that (32) holds for a suitable
constant η.
The choice of β(x) implies that

Lβ(x) = −
N∑

j,k=1

αjk(x)DjDkβ(x) +

N∑
j=1

αj(x)Djβ(x) + α0(x)β(x)

= −α11(x)u′′(x1) + α1(x)u′(x1) + α0(x)u(x1)

≥ α11(x)
(
− u′′(x1) +

α1(x)

α11(x)
u′(x1)︸ ︷︷ ︸

using u′ < 0

)

≥ α11(x)(−u′′(x1) + bu′(x1))

= α11(x)Mg(u(x1)) ≥ κMg(u(x1)) = M0g(u(x1))

= λ̂||a||∞g(u(x1)) + (M − λ̂||a||∞)g(u(x1))

≥ λ̂||a||∞g(β(x)) + ρ,

where ρ is a suitable positive constant such that (M − λ̂||a||∞)g(u(t)) ≥ ρ for
all t ∈ [a1, b1]. Thus (31) is proved for L instead of −∆ and the rest of the
proof of II) follows in the same manner. In conclusion, Theorem 4.1- I)- II)
and Theorem 4.5 hold also for problem (48).
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[31] J. López-Gómez, Linear second order elliptic operators, World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2013.
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