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1. Introduction

We recall here some concepts of convexity that are well known in the literature.
Let I be an interval in R.

Definition 1.1 ([38]). We say that f : I → R is a Godunova-Levin function
or that f belongs to the class Q (I) if f is non-negative and for all x, y ∈ I and
t ∈ (0, 1) we have

f (tx+ (1− t) y) ≤ 1

t
f (x) +

1

1− t
f (y) . (1)

Some further properties of this class of functions can be found in [28, 29, 31,
44, 47, 48]. Among others, its has been noted that non-negative monotone and
non-negative convex functions belong to this class of functions.

The above concept can be extended for functions f : C ⊆ X → [0,∞)
where C is a convex subset of the real or complex linear space X and the
inequality (1) is satisfied for any vectors x, y ∈ C and t ∈ (0, 1) . If the function
f : C ⊆ X → R is non-negative and convex, then is of Godunova-Levin type.

Definition 1.2 ([31]). We say that a function f : I → R belongs to the class
P (I) if it is nonnegative and for all x, y ∈ I and t ∈ [0, 1] we have

f (tx+ (1− t) y) ≤ f (x) + f (y) . (2)

Obviously Q (I) contains P (I) and for applications it is important to note
that also P (I) contains all nonnegative monotone, convex and quasi convex
functions, i. e. nonnegative functions satisfying
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f (tx+ (1− t) y) ≤ max {f (x) , f (y)} (3)

for all x, y ∈ I and t ∈ [0, 1] .
For some results on P -functions see [31, 45] while for quasi convex functions,

the reader can consult [30].
If f : C ⊆ X → [0,∞), where C is a convex subset of the real or com-

plex linear space X, then we say that it is of P -type (or quasi-convex) if the
inequality (2) (or (3)) holds true for x, y ∈ C and t ∈ [0, 1] .

Definition 1.3 ([7]). Let s be a real number, s ∈ (0, 1]. A function f : [0,∞)→
[0,∞) is said to be s-convex (in the second sense) or Breckner s-convex if

f (tx+ (1− t) y) ≤ tsf (x) + (1− t)s f (y)

for all x, y ∈ [0,∞) and t ∈ [0, 1] .

For some properties of this class of functions see [1, 2, 7, 8, 26, 27, 39, 41, 50].
The concept of Breckner s-convexity can be similarly extended for functions

defined on convex subsets of linear spaces.
It is well known that if (X, ‖·‖) is a normed linear space, then the func-

tion f (x) = ‖x‖p , p ≥ 1 is convex on X. Utilising the elementary inequality
(a+ b)

s ≤ as + bs that holds for any a, b ≥ 0 and s ∈ (0, 1], we have for the
function g (x) = ‖x‖s that

g (tx+ (1− t) y) = ‖tx+ (1− t) y‖s ≤ (t ‖x‖+ (1− t) ‖y‖)s

≤ (t ‖x‖)s + [(1− t) ‖y‖]s

= tsg (x) + (1− t)s g (y)

for any x, y ∈ X and t ∈ [0, 1] , which shows that g is Breckner s-convex on X.
In order to unify the above concepts for functions of real variable, S. Varošanec

introduced the concept of h-convex functions as follows.
Assume that I and J are intervals in R, (0, 1) ⊆ J and functions h and f

are real non-negative functions defined in J and I, respectively.

Definition 1.4 ([53]). Let h : J → [0,∞) with h not identical to 0. We say
that f : I → [0,∞) is an h-convex function if for all x, y ∈ I we have

f (tx+ (1− t) y) ≤ h (t) f (x) + h (1− t) f (y) (4)

for all t ∈ (0, 1) .

For some results concerning this class of functions see [53, 6, 42, 51, 49, 52].
This concept can be extended for functions defined on convex subsets of

linear spaces in the same way as above replacing the interval I be the corre-
sponding convex subset C of the linear space X.

We can introduce now another class of functions.
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Definition 1.5. We say that the function f : C ⊆ X → [0,∞) is of s-
Godunova-Levin type, with s ∈ [0, 1] , if

f (tx+ (1− t) y) ≤ 1

ts
f (x) +

1

(1− t)s
f (y) , (5)

for all t ∈ (0, 1) and x, y ∈ C.

We observe that for s = 0 we obtain the class of P -functions while for s = 1
we obtain the class of Godunova-Levin. If we denote by Qs (C) the class of
s-Godunova-Levin functions defined on C, then we obviously have

P (C) = Q0 (C) ⊆ Qs1 (C) ⊆ Qs2 (C) ⊆ Q1 (C) = Q (C)

for 0 ≤ s1 ≤ s2 ≤ 1.
For different inequalities related to these classes of functions, see [1]-[4], [6],

[9]-[37], [40]-[42] and [45]-[52].
A function h : J → R is said to be supermultiplicative if

h (ts) ≥ h (t)h (s) for any t, s ∈ J. (6)

If the inequality (6) is reversed, then h is said to be submultiplicative. If the
equality holds in (6) then h is said to be a multiplicative function on J .

In [53] it has been noted that if h : [0,∞)→ [0,∞) with h (t) = (x+ c)
p−1

,
then for c = 0 the function h is multiplicative. If c ≥ 1, then for p ∈ (0, 1) the
function h is supermultiplicative and for p > 1 the function is submultiplicative.
We observe that, if h, g are nonnegative and supermultiplicative, the same is
their product. In particular, if h is supermultiplicative then its product with
a power function `r (t) = tr is also supermultiplicative. The case of h-convex
function with h supermultiplicative is of interest due to several Jensen type
inequalities one can derive.

The following results were obtained in [53] for functions of a real variable.
However, with similar proofs they can be extended to h-convex function defined
on convex subsets in linear spaces.

Theorem 1.6. Let h : J → [0,∞) be a supermultiplicative function on J. If the
function f : C ⊆ X → [0,∞) is h-convex on the convex subset C of the linear
space X, then for any wi ≥ 0, i ∈ {1, ..., n} , n ≥ 2 with Wn :=

∑n
i=1 wi > 0

we have

f

(
1

Wn

n∑
i=1

wixi

)
≤

n∑
i=1

h

(
wi
Wn

)
f (xi) . (7)

In particular, we have the unweighted inequality

f

(
1

n

n∑
i=1

xi

)
≤ h

(
1

n

) n∑
i=1

f (xi) . (8)
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Corollary 1.7 ([27]). If the function f : C ⊆ X → [0,∞) is Breckner s-
convex on the convex subset C of the linear space X with s ∈ (0, 1) , then for
any xi ∈ C, wi ≥ 0, i ∈ {1, ..., n} , n ≥ 2 with Wn :=

∑n
i=1 wi > 0 we have

f

(
1

Wn

n∑
i=1

wixi

)
≤ 1

W s
n

n∑
i=1

wsi f (xi) . (9)

If (X, ‖·‖) is a normed linear space, then for s ∈ (0, 1), xi ∈ X, wi ≥ 0,
i ∈ {1, ..., n} , n ≥ 2 with Wn :=

∑n
i=1 wi > 0 we have the norm inequality∥∥∥∥∥

n∑
i=1

wixi

∥∥∥∥∥
s

≤
n∑
i=1

wsi ‖xi‖
s
. (10)

Corollary 1.8. If the function f : C ⊆ X → [0,∞) is of s-Godunova-Levin
type, with s ∈ [0, 1] , on the convex subset C of the linear space X, then for any
xi ∈ C, wi > 0, i ∈ {1, ..., n} , n ≥ 2 we have

f

(
1

Wn

n∑
i=1

wixi

)
≤W s

n

n∑
i=1

1

wsi
f (xi) . (11)

This result generalizes the Jensen type inequality obtained in [44] for s = 1.
Let K be a finite non-empty set of positive integers. We can define the

index set function, see also [53],

J (K) :=
∑
i∈K

h (wi) f (xi)− h (WK) f

(
1

WK

∑
i∈K

wixi

)
, (12)

where WK :=
∑
i∈K wi > 0, xi ∈ C, i ∈ K.

We notice that if h : [0,∞) → [0,∞) is a supermultiplicative function on
[0,∞) and the function f : C ⊆ X → [0,∞) is h-convex on the convex subset
C of the linear space X, then

J (K) ≥ h (WK)

[∑
i∈K

h

(
wi
WK

)
f (xi)− f

(
1

WK

∑
i∈K

wixi

)]
≥ 0. (13)

Theorem 1.9. Assume that h : [0,∞) → [0,∞) is a supermultiplicative func-
tion on [0,∞) and the function f : C ⊆ X → [0,∞) is h-convex on the convex
subset C of the linear space X. Let M and K be finite non-empty sets of positive
integers, wi > 0, xi ∈ C, i ∈ K ∪M. Then

J (K ∪M) ≥ J (K) + J (M) ≥ 0, (14)

i.e., J is a superadditive index set functional.
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This results was proved in an equivalent form in [53] for functions of a real
variable. The proof is similar for functions defined on convex sets in linear
spaces.

Corollary 1.10. With the assumptions of Theorem 1.9 and if we note Mk :=
{1, ..., k} , then

J (Mn) ≥ J (Mn−1) ≥ ... ≥ J (M2) ≥ 0 (15)

and

J (Mn) (16)

≥ max
1≤i<j≤n

{
h (wi) f (xi) + h (wj) f (xj)− h (wi + wj) f

(
wixi + wjxj
wi + wj

)}
≥ 0.

If we consider the functional

Js (K) :=
∑
i∈K

wsi ‖xi‖
s −

∥∥∥∥∥∑
i∈K

wixi

∥∥∥∥∥
s

for s ∈ (0, 1) , then we have the norm inequalities

n∑
i=1

wsi ‖xi‖
s −

∥∥∥∥∥
n∑
i=1

wixi

∥∥∥∥∥
s

≥
n−1∑
i=1

wsi ‖xi‖
s −

∥∥∥∥∥
n−1∑
i=1

wixi

∥∥∥∥∥
s

(17)

≥ ... ≥
2∑
i=1

wsi ‖xi‖
s −

∥∥∥∥∥
2∑
i=1

wixi

∥∥∥∥∥
s

≥ 0

and

n∑
i=1

wsi ‖xi‖
s −

∥∥∥∥∥
n∑
i=1

wixi

∥∥∥∥∥
s

(18)

≥ max
1≤i<j≤n

{
wsi ‖xi‖

s
+ wsj ‖xj‖

s − ‖wixi + wjxj‖s
}
≥ 0

where wi ≥ 0, xi ∈ X, i ∈ {1, ..., n} , n ≥ 2.

2. λ-convex functions

We start with the following definition (see also [24]):

Definition 2.1. Let λ : [0,∞) → [0,∞) be a function with the property that
λ (t) > 0 for all t > 0. A mapping f : C → R defined on convex subset C of a
linear space X is called λ-convex on C if

f

(
αx+ βy

α+ β

)
≤ λ (α) f (x) + λ (β) f (y)

λ (α+ β)
(19)
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for all α, β ≥ 0 with α+ β > 0 and x, y ∈ C.

We observe that if f : C → R is λ-convex on C, then f is h-convex on C

with h (t) = λ(t)
λ(1) , t ∈ [0, 1] . If f : C → [0,∞) is h-convex function with h

supermultiplicative on [0,∞) , then f is λ-convex with λ = h.

Indeed, if α, β ≥ 0 with α+ β > 0 and x, y ∈ C then

f

(
αx+ βy

α+ β

)
≤ h

(
α

α+ β

)
f (x) + h

(
β

α+ β

)
f (y)

≤ h (α) f (x) + h (β) f (y)

h (α+ β)
.

The following proposition contain some properties of λ-convex functions [24].

Proposition 2.2. Let f : C → R be a λ-convex function on C.

(i) If λ (0) > 0, then we have f (x) ≥ 0 for all x ∈ C;

(ii) If there exists x0 ∈ C so that f (x0) > 0, then

λ (α+ β) ≤ λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is subadditive on (0,∞) .

(iii) If there exists x0, y0 ∈ C with f (x0) > 0 and f (y0) < 0, then

λ (α+ β) = λ (α) + λ (β)

for all α, β > 0, i.e. the mapping λ is additive on (0,∞) .

We have the following result providing many examples of subadditive func-
tions λ : [0,∞)→ [0,∞) .

Theorem 2.3 ([24]). Let h (z) =
∑∞
n=0 anz

n a power series with nonnegative
coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R) with
R > 0 or R =∞. If r ∈ (0, R) then the function λr : [0,∞)→ [0,∞) given by

λr (t) := ln

[
h (r)

h (r exp (−t))

]
(20)

is nonnegative, increasing and subadditive on [0,∞) .

We have the following fundamental examples of power series with positive
coefficients:
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h (z) =

∞∑
n=0

zn =
1

1− z
, z ∈ D (0, 1) (21)

h (z) =

∞∑
n=0

1

n!
zn = exp (z) z ∈ C,

h (z) =

∞∑
n=0

1

(2n)!
z2n = cosh z, z ∈ C;

h (z) =

∞∑
n=0

1

(2n+ 1)!
z2n+1 = sinh z, z ∈ C;

h (z) =

∞∑
n=1

1

n
zn = ln

1

1− z
, z ∈ D (0, 1) .

Other important examples of functions as power series representations with
positive coefficients are:

h (z) =

∞∑
n=1

1

2n− 1
z2n−1 =

1

2
ln

(
1 + z

1− z

)
, z ∈ D (0, 1) ; (22)

h (z) =

∞∑
n=0

Γ
(
n+ 1

2

)
√
π (2n+ 1)n!

z2n+1 = sin−1 (z) , z ∈ D (0, 1) ;

h (z) =

∞∑
n=1

1

2n− 1
z2n−1 = tanh−1 (z) , z ∈ D (0, 1) ;

h (z) =2 F1 (α, β, γ, z) =

∞∑
n=0

Γ (n+ α) Γ (n+ β) Γ (γ)

n!Γ (α) Γ (β) Γ (n+ γ)
zn, α, β, γ > 0,

z ∈ D (0, 1) ;

where Γ is Gamma function.

Remark 2.4. Now, if we take h (z) = 1
1−z , z ∈ D (0, 1) , then

λr (t) = ln

[
1− r exp (−t)

1− r

]
(23)

is nonnegative, increasing and subadditive on [0,∞) for any r ∈ (0, 1) .
If we take h (z) = exp (z) , z ∈ C then

λr (t) = r [1− exp (−t)] (24)

is nonnegative, increasing and subadditive on [0,∞) for any r > 0.



248 SEVER S. DRAGOMIR

Corollary 2.5 ([24]). Let h (z) =
∑∞
n=0 anz

n be a power series with nonneg-
ative coefficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R)
with R > 0 or R = ∞ and r ∈ (0, R) . For a mapping f : C → R defined on
convex subset C of a linear space X, the following statements are equivalent:

(i) The function f is λr-convex with λr : [0,∞)→ [0,∞) ,

λr (t) := ln

[
h (r)

h (r exp (−t))

]
;

(ii) We have the inequality[
h (r)

h (r exp (−α− β))

]f(αx+βyα+β )
≤
[

h (r)

h (r exp (−α))

]f(x) [
h (r)

h (r exp (−β))

]f(y)
(25)

for any α, β ≥ 0 with α+ β > 0 and x, y ∈ C.
(iii) We have the inequality

[h (r exp (−α))]
f(x)

[h (r exp (−β))]
f(y)

[h (r exp (−α− β))]
f(αx+βyα+β )

≤ [h (r)]
f(x)+f(y)−f(αx+βyα+β ) (26)

for any α, β ≥ 0 with α+ β > 0 and x, y ∈ C.

Remark 2.6. We observe that, in the case when

λr (t) = r [1− exp (−t)] , t ≥ 0,

then the function f is λr-convex on convex subset C of a linear space X iff

f

(
αx+ βy

α+ β

)
≤ [1− exp (−α)] f (x) + [1− exp (−β)] f (y)

1− exp (−α− β)
(27)

for any α, β ≥ 0 with α+ β > 0 and x, y ∈ C.
We observe that this definition is independent of r > 0.
The inequality (27) is equivalent with

f

(
αx+ βy

α+ β

)
≤ exp (β) [exp (α)− 1] f (x) + exp (α) [exp (β)− 1] f (y)

exp (α+ β)− 1
(28)

for any α, β ≥ 0 with α+ β > 0 and x, y ∈ C.

We can give now more examples of subadditive functions that can be used
to define λ-convex mappings on linear spaces.

Let I = (0,∞) or [0,∞) . A function h : I → R is called superadditive
(subadditive) on I if

(iii) h (t+ s) ≥ (≤)h (t) + h (s) for any t, s ∈ I
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and nonnegative (strictly positive) on I if, obviously, it satisfies

(iv) h (t) ≥ (>) 0 for each t ∈ I.

The following result holds:

Theorem 2.7. If h : I → [0,∞) is a superadditive (subadditive) function on I
and p ≥ 1 (0 < p < 1) then the function

Ψp : I → [0,∞) ,Ψp (t) = t1−
1
ph (t) (29)

is superadditive (subadditive) on I.

Proof. First of all we observe that the following elementary inequality holds:

(α+ β)
p ≥ (≤)αp + βp (30)

for any α, β ≥ 0 and p ≥ 1 (0 < p < 1) .
Indeed, if we consider the function fp : [0,∞) → R, fp (t) = (t+ 1)

p − tp

we have f ′p (t) = p
[
(t+ 1)

p−1 − tp−1
]
. Observe that for p > 1 and t > 0

we have that f ′p (t) > 0 showing that fp is strictly increasing on the interval
[0,∞). Now for t = α

β (β > 0, α ≥ 0) we have fp (t) > fp (0) giving that(
α
β + 1

)p
−
(
α
β

)p
> 1, i.e., the desired inequality (30).

For p ∈ (0, 1) we have that fp is strictly decreasing on [0,∞) which proves
the second case in (30).

Now, if h is superadditive (subadditive) and p ≥ 1 (0 < p < 1) then we have
by (30) that

hp (t+ s) ≥ (≤) [h (t) + h (s)]
p ≥ (≤)hp (t) + hp (s) (31)

for all t, s ∈ I. Utilising (31) we have for any t, s ∈ I that

hp (t+ s)

t+ s
≥ (≤)

hp (t) + hp (s)

t+ s
=
t · h

p(t)
t + s · h

p(s)
s

t+ s
(32)

=
t ·
[
h(t)
t1/p

]p
+ s ·

[
h(s)
s1/p

]p
t+ s

=: I.

Since for p ≥ 1 (0 < p < 1) the power function g (t) = tp is convex (concave),
then

I ≥ (≤)

[
t · h(t)

t1/p
+ s · h(s)

s1/p

t+ s

]p
=

[
h (t) t1−1/p + h (s) s1−1/p

t+ s

]p
(33)

for any t, s ∈ I.
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By combining (32) with (23) we get

hp (t+ s)

t+ s
≥ (≤)

[
h (t) t1−1/p + h (s) s1−1/p

t+ s

]p
,

which is equivalent with

h (t+ s)

(t+ s)
1/p
≥ (≤)

h (t) t1−1/p + h (s) s1−1/p

t+ s

i.e., by multiplying with t+ s,

Ψp (t+ s) ≥ (≤) Ψp (t) + Ψp (s)

for any t, s ∈ I and the proof is complete.

Corollary 2.8. If h : I → [0,∞) is a superadditive (subadditive) function on
I and p, q ≥ 1 (0 < p, q < 1) then the two parameter function

Ψp,q : I → [0,∞) ,Ψp,q (t) = tq(1−
1
p )hq (t) (34)

is superadditive (subadditive) on I.

Proof. Observe that Ψp,q (t) = [Ψp (t)]
q

for t ∈ I. Therefore, by Theorem 2.7
and the inequality (30) for q ≥ 1 (0 < q < 1) we have that

Ψp,q (t+ s) = [Ψp (t+ s)]
q ≥ (≤) [Ψp (t) + Ψp (s)]

q

≥ (≤) [Ψp (t)]
q

+ [Ψp (s)]
q

= Ψp,q (t) + Ψp,q (s)

for any t, s ∈ I and the statement is proved.

Remark 2.9. If we consider the function ψp (t) := tp−1hp (t) then for p ≥ 1
(0 < p < 1) and h : I → [0,∞) a superadditive (subadditive) function on I, the
function ψp is also superadditive (subadditive) on I.

The following result also holds:

Theorem 2.10. If h : I → (0,∞) is a superadditive function on I and 0 <
m < 1, then the function

Φp : I → [0,∞) ,Φp (t) =
t1−

1
m

h (t)
(35)

is subadditive on I.
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Proof. Let m := −p ∈ [−1, 0). For m < 0 we have the following inequality

(α+ β)
m ≤ αm + βm (36)

for any α, β > 0. Indeed, by the convexity of the function fs (t) = tm on (0,∞)
with m < 0 we have that

(α+ β)
m ≤ 2m−1 (αm + βm)

for any α, β > 0 and since, obviously, 2m−1 (αm + βm) ≤ αm + βm, then (36)
holds true.

Taking into account that h is superadditive, then by (36) we have

hm (t+ s) ≤ [h (t) + h (s)]
m ≤ hm (t) + hm (s) (37)

for any t, s ∈ I. By (36) we have that

hm (t+ s)

t+ s
≤ hm (t) + hm (s)

t+ s
(38)

=
t ·
[
h(t)
t1/m

]m
+ s ·

[
h(s)
s1/m

]m
t+ s

=
t ·
[
t1/m

h(t)

]−m
+ s ·

[
s1/m

h(s)

]−m
t+ s

=: J.

By the concavity of the function g (t) = t−m with m ∈ [−1, 0) we also have

J ≤

 t · t1/mh(t) + s · s
1/m

h(s)

t+ s

−m . (39)

Making use of (38) and (39) we get

hm (t+ s)

t+ s
≤

 t · t1/mh(t) + s · s
1/m

h(s)

t+ s

−m

for any t, s ∈ I, which is equivalent to

h−1 (t+ s)

(t+ s)
−1/m ≤

t1+1/m

h(t) + s1+1/m

h(s)

t+ s

and, with

(t+ s)
1+1/m

h (t+ s)
≤ t1+1/m

h (t)
+
s1+1/m

h (s)

for any t, s ∈ I.
This completes the proof.
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The following result may be stated as well:

Corollary 2.11. If h : I → [0,∞) is a superadditive function on I and 0 <
p, q < 1 then the two parameter function

Φp,q : I → [0,∞) ,Φp,q (t) =
tq(1−

1
p )

hq (t)
(40)

is subadditive on I.

Proof. Observe that Φp,q (t) = [Φp (t)]
q

for t ∈ I. Therefore, by Theorem 2.10
and the inequality (30) for 0 < q < 1 we have that

Φp,q (t+ s) = [Φp (t+ s)]
q ≤ [Φp (t) + Φp (s)]

q

≤ [Φp (t)]
q

+ [Φp (s)]
q

= Φp,q (t) + Φp,q (s)

for any t, s ∈ I and the statement is proved.

Remark 2.12. If we consider the function ϕp (t) := tp−1

hp(t) then for 0 < p < 1

and h : I → [0,∞) a superadditive function on I, the function ψp is subadditive
on I.

3. Jensen’s type inequalities

The following inequality of Jensen’s type holds:

Theorem 3.1. Let λ : [0,∞) → [0,∞) be a function with the property that
λ (t) > 0 for all t > 0 and a mapping f : C → R defined on convex subset C of
a linear space X. The following statements are equivalent:

(i) f is λ-convex on C;
(ii) For all xi ∈ C and pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0 we

have the inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

λ (Pn)

n∑
i=1

λ (pi) f (xi) . (41)

Proof. ”(ii)⇒ (i)”. Follows for n = 2.
”(i)⇒ (ii)”. For n = 2 the inequality (30) follows by the Definition 2.1.
Assume that the inequality (41) is true for 2, ..., n− 1 (n ≥ 3) and let prove

it for n.
Let pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 3 so that Pn > 0. If Pn−1 = 0, then

p1 = ... = pn−1 = 0 and pn > 0 and the inequality (41) becomes

f (xn) ≤ λ (0) (f (x1) + ...+ f (xn−1)) + λ (pn) f (xn)

λ (pn)
,
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which is equivalent to

λ (0) (f (x1) + ...+ f (xn−1)) ≥ 0. (42)

Since f is λ-convex on C then for β > 0 and x ∈ C we have

f

(
0x+ βy

0 + β

)
≤ λ (0) f (x) + λ (β) f (y)

λ (β)

from where we get
λ (0) f (x)

λ (β)
≥ 0

and since λ (β) > 0 we get λ (0) f (x) ≥ 0. This implies that the inequality (42)
is true for any x1, ..., xn−1 ∈ C.

Now, let assume that Pn−1 > 0. Then we have

f

(
1

Pn

n∑
i=1

pixi

)
= f

(
Pn−1 · 1

Pn−1

∑n−1
i=1 pixi + pnxn

Pn−1 + pn

)

≤
λ (Pn−1) f

(
1

Pn−1

∑n−1
i=1 pixi

)
+ λ (pn) f (xn)

λ (Pn)
.

By the induction hypothesis we have

f

(
1

Pn−1

n−1∑
i=1

pixi

)
≤ 1

λ (Pn−1)

n−1∑
i=1

λ (pi) f (xi)

and thus, by the above inequality, we can state that

f

(
1

Pn

n∑
i=1

pixi

)
≤
λ (Pn−1) 1

λ(Pn−1)

∑n−1
i=1 λ (pi) f (xi) + λ (pn) f (xn)

λ (Pn)

=
1

λ (Pn)

n∑
i=1

λ (pi) f (xi) ,

and the theorem is thus proved.

Corollary 3.2. Let f : C → R be a λ-convex function on C and αi ∈ [0, 1] ,
i ∈ {1, ..., n} with

∑n
i=1 αi = 1. Then for any xi ∈ C with i ∈ {1, ..., n} we

have the inequality

f

(
n∑
i=1

αixi

)
≤ 1

λ (1)

n∑
i=1

λ (αi) f (xi) . (43)
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In particular, we have

f

(
x1 + ...+ xn

n

)
≤ c (n)

f (x1) + ...+ f (xn)

n
(44)

where

c (n) :=
nλ
(
1
n

)
λ (1)

, n ≥ 2.

We have the following version of Jensen’s inequality:

Corollary 3.3. Let f : C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0. Then we have the inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

λ (1)

n∑
i=1

λ

(
pi
Pn

)
f (xi) . (45)

The proof follows by (43) for αi = pi
Pn
, i ∈ {1, ..., n} .

Corollary 3.4. Let h (z) =
∑∞
n=0 anz

n a power series with nonnegative co-
efficients an ≥ 0 for all n ∈ N and convergent on the open disk D (0, R) with
R > 0 or R = ∞. For a mapping f : C → R defined on convex subset C of a
linear space X, the following statements are equivalent:

(i) The function f is λr-convex with λr : [0,∞)→ [0,∞)

λr (t) := ln

[
h (r)

h (r exp (−t))

]
on C;

(ii) We have the inequality

[
h (r)

h (r exp (−Pn))

]f( 1
Pn

∑n
i=1 pixi)

≤
n∏
i=1

[
h (r)

h (r exp (−pi))

]f(xi)
(46)

for any xi ∈ C and pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0.

Now, let define the mapping:

J (I, p, x, f) :=
∑
i∈I

λ (pi) f (xi)− λ (PI) f

(
1

PI

∑
i∈I

pixi

)
,

where p := (pi)i∈N ≥ 0, I ∈ F (N) := {I ⊂ N| I is finite} , x := (xi)i∈N ⊂ C
and PI :=

∑
i∈I pi > 0.
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Theorem 3.5. Assume that f : C → R is a λ-convex function on C and p, x
are as above. Then

(i) For all I,K ∈ F (N) \ {∅} with I ∩K = ∅ we have the inequality

J (I ∪K, p, x, f) ≥ J (I, p, x, f) + J (K, p, x, f) ≥ 0, (47)

i.e. the mapping J (·, p, x, f) is superadditive as an index set map on F (N) ;
(ii) For all I,K ∈ F (N) \ {∅} with K  I one has the inequality

J (I, p, x, f) ≥ J (K, p, x, f) ≥ 0, (48)

i.e. the mapping J (·, p, x, f) is monotonic nondecreasing as an index set map
on F (N) .

Proof. (i) Let I,K ∈ F (N) \ {∅} with I ∩K = ∅, then

J (I ∪K, p, x, f)

=
∑
i∈I

λ (pi) f (xi) +
∑
j∈K

λ (pj) f (xj)

− λ (PI + PK) f

 1

PI + PK

∑
i∈I

pixi +
∑
j∈K

pjxj


=
∑
i∈I

λ (pi) f (xi) +
∑
j∈K

λ (pj) f (xj)

− λ (PI + PK) f

[
PI

PI + PK

(∑
i∈I pixi

PI

)
+

PK
PI + PK

(∑
j∈K pjxj

PK

)]
.

As f is λ-convex function on C, then

f

[
PI

PI + PK

(∑
i∈I pixi

PI

)
+

PK
PI + PK

(∑
j∈K pjxj

PK

)]

≤
λ (PI) f

(∑
i∈I pixi
PI

)
+ λ (PK) f

(∑
j∈K pjxj

PK

)
λ (PI + PK)

.

Therefore

J (I ∪K, p, x, f) ≥
∑
i∈I

λ (pi) f (xi) +
∑
j∈K

λ (pj) f (xj)

− λ (PI) f

(∑
i∈I pixi

PI

)
− λ (PK) f

(∑
j∈K pjxj

PK

)
= J (I, p, x, f) + J (K, p, x, f)
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and the inequality (47) is proved.
(ii) By the use of the inequality (47) we have

J (I, p, x, f) = J (K ∪ (I \K) , p, x, f) ≥ J (K, p, x, f) + J (I \K, p, x, f)

≥ J (K, p, x, f)

since J (I \K, p, x, f) ≥ 0, and the inequality (48) is proved.

With the above assumptions, and if p := (pi)i∈N > 0 we can consider the
sequence

Jn (p, x, f) :=

n∑
i=1

λ (pi) f (xi)− λ (Pn) f

(
1

Pn

n∑
i=1

pixi

)
, n ≥ 2.

Corollary 3.6. Assume that f : C → R is a λ-convex function on C, then

Jn (p, x, f) ≥ Jn−1 (p, x, f) ≥ ... ≥ J2 (p, x, f) ≥ 0 (49)

and we have the inequality

Jn (p, x, f) (50)

≥ max
1≤i<j≤n

{
λ (pi) f (xi) + λ (pj) f (xj)− λ (pi + pj) f

(
pixi + pjxj
pi + pj

)}
≥ 0

for all n ≥ 2.

For a function f that is λr-convex on C with λr : [0,∞)→ [0,∞) and

λr (t) := ln

[
h (r)

h (r exp (−t))

]
,

we can consider the functional

Q (I, p, x, f) :=

∏
i∈I

[
h(r)

h(r exp(−pi))

]f(xi)
[

h(r)
h(r exp(−PI))

]f( 1
PI

∑
i∈I pixi

) ,

where p := (pi)i∈N ≥ 0, I ∈ F (N) := {I ⊂ N| I is finite} , x := (xi)i∈N ⊂ C
and PI :=

∑
i∈I pi > 0.

Corollary 3.7. Assume that f : C → R is a λr-convex function on C and p,
x are as above. Then
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(i) For all I,K ∈ F (N) \ {∅} with I ∩K = ∅ we have the inequality

Q (I ∪K, p, x, f) ≥ Q (I, p, x, f)Q (K, p, x, f) , (51)

i.e. the mapping Q (·, p, x, f) is supermultiplicative as an index set map on
F (N) ;

(ii) For all I,K ∈ F (N) \ {∅} with K  I one has the inequality

Q (I, p, x, f) ≥ Q (K, p, x, f) ≥ 1. (52)

The proof follows by Theorem 3.5 on observing that

lnQ (I, p, x, f) = J (I, p, x, f)

for λ = λr. In particular, if we consider the sequence

Qn (p, x, f) :=

n∏
i=1

[
h(r)

h(r exp(−pi))

]f(xi)
[

h(r)
h(r exp(−Pn))

]f( 1
Pn

∑n
i=1 pixi)

, n ≥ 2

then by Corollary 3.6 we have that

Qn (p, x, f) ≥ Qn−1 (p, x, f) ≥ ... ≥ Q2 (p, x, f) ≥ 1 (53)

and

Qn (p, x, f) ≥ max
1≤i<j≤n


[

h(r)
h(r exp(−pi))

]f(xi) [ h(r)
h(r exp(−pj))

]f(xj)
[

h(r)
h(r exp(−pi−pj))

]f( 1
pi+pj

(pixi+pjxj)
)
 ≥ 1. (54)

Remark 3.8. If the function f : C → R is a λ-convex function on C with

λr (t) = 1− exp (−t) , t ≥ 0,

then for any xi ∈ C and pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0 we
have the Jensen’s type inequality

f

(
1

Pn

n∑
i=1

pixi

)
≤ 1

1− exp (−Pn)

n∑
i=1

[1− exp (−pi)] f (xi) . (55)

If αi ∈ [0, 1] , i ∈ {1, ..., n} with
∑n
i=1 αi = 1, then for any xi ∈ C with

i ∈ {1, ..., n} we also have the inequality

f

(
n∑
i=1

αixi

)
≤ e

e− 1

n∑
i=1

[1− exp (−αi)] f (xi) . (56)
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Finally, if pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0, then for any xi ∈ C
with i ∈ {1, ..., n} we have the inequality:

f

(
1

Pn

n∑
i=1

pixi

)
≤ e

e− 1

n∑
i=1

[
1− exp

(
− pi
Pn

)]
f (xi) . (57)

4. Inequalities for double sums

We have the following result:

Theorem 4.1. Let f : C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0. For α, β ≥ 0 with α + β > 0
we have the inequalities[

λ (α)

λ (α+ β)
+

λ (β)

λ (α+ β)

]
1

λ (Pn)

n∑
i=1

λ (pi) f (xi)
1

λ (Pn)

n∑
i=1

λ (pi) (58)

≥ 1

λ2 (Pn)

n∑
i=1

n∑
j=1

λ (pi)λ (pj) f

(
αxi + βxj
α+ β

)

≥ 1

λ (Pn)

n∑
i=1

λ (pi) f

(
αxi + β 1

Pn

∑n
j=1 pjxj

α+ β

)
≥ f

(
1

Pn

n∑
i=1

pixi

)
.

Proof. From the λ-convexity of the function f on C we have

λ (α) f (xi) + λ (β) f (xj)

λ (α+ β)
≥ f

(
αxi + βxj
α+ β

)
(59)

for any i, j ∈ {1, ..., n}. If we multiply (59) by

λ (pi)λ (pj)

λ2 (Pn)
≥ 0, i, j ∈ {1, ..., n}

and sum over i and j from 1 to n we get

n∑
i=1

n∑
j=1

[
λ (α)

λ (α+ β)
f (xi) +

λ (β)

λ (α+ β)
f (xj)

]
λ (pi)λ (pj)

λ2 (Pn)
(60)

≥
n∑
i=1

n∑
j=1

λ (pi)λ (pj)

λ2 (Pn)
f

(
αxi + βxj
α+ β

)
.
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Since
n∑
i=1

n∑
j=1

[
λ (α)

λ (α+ β)
f (xi) +

λ (β)

λ (α+ β)
f (xj)

]
λ (pi)λ (pj)

λ2 (Pn)

=
λ (α)

λ (α+ β)

n∑
i=1

n∑
j=1

λ (pi)λ (pj)

λ2 (Pn)
f (xi) +

λ (β)

λ (α+ β)

n∑
i=1

n∑
j=1

λ (pi)λ (pj)

λ2 (Pn)
f (xj)

=
λ (α)

λ (α+ β)

1

λ2 (Pn)

n∑
i=1

λ (pi) f (xi)

n∑
j=1

λ (pj)

+
λ (β)

λ (α+ β)

1

λ2 (Pn)

n∑
j=1

λ (pj) f (xj)

n∑
i=1

λ (pi)

=

[
λ (α)

λ (α+ β)
+

λ (β)

λ (α+ β)

]
1

λ (Pn)

n∑
i=1

λ (pi) f (xi)
1

λ (Pn)

n∑
i=1

λ (pi) ,

then by (60) we get the first inequality in (58).
By the Jensen inequality we have the inequality

1

λ (Pn)

n∑
j=1

λ (pj) f

(
αxi + βxj
α+ β

)
≥ f

 1

Pn

n∑
j=1

pj

(
αxi + βxj
α+ β

)
= f

(
αxi + β 1

Pn

∑n
j=1 pjxj

α+ β

)
for all i ∈ {1, ..., n} .

If we multiply this inequality by λ(pi)
λ(Pn)

and sum over i from 1 to n we get

1

λ2 (Pn)

n∑
i=1

n∑
j=1

λ (pi)λ (pj) f

(
αxi + βxj
α+ β

)

≥ 1

λ (Pn)

n∑
i=1

λ (pi) f

(
αxi + β 1

Pn

∑n
j=1 pjxj

α+ β

)
and the second inequality in (58) is proved.

If we apply Jensen inequality again we get

1

λ (Pn)

n∑
i=1

λ (pi) f

(
αxi + β 1

Pn

∑n
j=1 pjxj

α+ β

)

≥ f

(
1

Pn

n∑
i=1

pi

(
αxi + β 1

Pn

∑n
j=1 pjxj

α+ β

))
= f

(
1

Pn

n∑
i=1

pixi

)
and the last part of (58) is proved.
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Corollary 4.2. Let f : C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0. We have the inequalities

inf
α>0

(
2λ (α)

λ (2α)

)
1

λ (Pn)

n∑
i=1

λ (pi) f (xi)
1

λ (Pn)

n∑
i=1

λ (pi) (61)

≥ 1

λ2 (Pn)

n∑
i=1

n∑
j=1

λ (pi)λ (pj) f

(
xi + xj

2

)

≥ 1

λ (Pn)

n∑
i=1

λ (pi) f

(
xi + 1

Pn

∑n
j=1 pjxj

2

)
≥ f

(
1

Pn

n∑
i=1

pixi

)
.

We have the following result as well:

Theorem 4.3. Let f : C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0. For α, β ≥ 0 with α + β > 0
we have the inequalities[

λ (α)

λ (α+ β)
+

λ (β)

λ (α+ β)

]
1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj) f (xi) (62)

≥ 1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj) f

(
αxi + βxj
α+ β

)
≥ f

(
1

Pn

n∑
i=1

pixi

)
.

Proof. From the λ-convexity of the function f on C we have

λ (α) f (xi) + λ (β) f (xj)

λ (α+ β)
≥ f

(
αxi + βxj
α+ β

)
(63)

for any i, j ∈ {1, ..., n} . If we multiply (63) by

λ (pipj)

λ (P 2
n)
≥ 0, i, j ∈ {1, ..., n}

and sum over i and j from 1 to n we get

1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj)

[
λ (α) f (xi) + λ (β) f (xj)

λ (α+ β)

]
(64)

≥ 1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj) f

(
αxi + βxj
α+ β

)
.
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We have

n∑
i=1

n∑
j=1

λ (pipj)

[
λ (α) f (xi) + λ (β) f (xj)

λ (α+ β)

]

=
λ (α)

λ (α+ β)

n∑
i=1

n∑
j=1

λ (pipj) f (xi) +
λ (β)

λ (α+ β)

n∑
i=1

n∑
j=1

λ (pipj) f (xj)

and since
n∑
i=1

n∑
j=1

λ (pipj) f (xi) =

n∑
i=1

n∑
j=1

λ (pipj) f (xj)

then we get from (64) the first inequality in (62).

By Jensen’s inequality we have

1

λ
(∑n

i=1

∑n
j=1 pipj

) n∑
i=1

n∑
j=1

λ (pipj) f

(
αxi + βxj
α+ β

)

≥ f

 1∑n
i=1

∑n
j=1 pipj

n∑
i=1

n∑
j=1

pipj

(
αxi + βxj
α+ β

)
= f

(
1

Pn

n∑
i=1

pixi

)

and the last part of (62) is thus proved.

Corollary 4.4. Let f : C → R be a λ-convex function on C and xi ∈ C and
pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0. We have the inequalities

inf
α>0

(
2λ (α)

λ (2α)

)
1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj) f (xi) (65)

≥ 1

λ (P 2
n)

n∑
i=1

n∑
j=1

λ (pipj) f

(
xi + xj

2

)
≥ f

(
1

Pn

n∑
i=1

pixi

)
.

It is known that if (X, ‖·‖) is a normed linear space, then the function
f (x) = ‖x‖s , s ∈ (0, 1) is Breckner s-convex on X.

If xi ∈ X and pi ≥ 0 with i ∈ {1, ..., n}, n ≥ 2 so that Pn > 0, then



262 SEVER S. DRAGOMIR

from (61) we have

21−s
1

P sn

n∑
i=1

psi
1

P sn

n∑
i=1

psi ‖xi‖
s

(66)

≥ 1

P 2s
n

n∑
i=1

n∑
j=1

psip
s
j

∥∥∥∥xi + xj
2

∥∥∥∥s

≥ 1

P sn

n∑
i=1

psi

∥∥∥∥∥xi + 1
Pn

∑n
j=1 pjxj

2

∥∥∥∥∥
s

≥

∥∥∥∥∥ 1

Pn

n∑
i=1

pixi

∥∥∥∥∥
s

.
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[46] J. E. Pečarić and S. S. Dragomir, On an inequality of Godunova-Levin
and some refinements of Jensen integral inequality, Itinerant Seminar on Func-
tional Equations, Approximation and Convexity (Cluj-Napoca, 1989), 263–268,
Preprint, 89-6, Univ. ”Babeş-Bolyai”, Cluj-Napoca, 1989.
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