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1. Introduction

The well-known Steffensen’s inequality states (see [12]):

Theorem 1.1. Suppose that f is nonincreasing and g is integrable on [a, b] with

0 ≤ g ≤ 1 and λ =
∫ b
a
g(t)dt. Then we have

∫ b

b−λ
f(t)dt ≤

∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt. (1)

The inequalities are reversed for f nondecreasing.

J. F. Steffensen proved this inequality in 1918 and since then it was gen-
eralized in numerous ways. Extensive overview of these generalizations can be
found in [7] or [11].

In [4] A. M. Fink obtained the following identity:
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1

n

(
f(x) +

n−1∑
k=1

Fk(x)

)
− 1

b− a

∫ b

a

f(t)dt

=
1

n!(b− a)

∫ b

a

(x− t)n−1k(t, x)f (n)(t)dt,

(2)

where

Fk(x) =
n− k
k!

f (k−1)(a)(x− a)k − f (k−1)(b)(x− b)k

b− a
,

k(t, x) =

{
t− a a ≤ t ≤ x ≤ b,
t− b a ≤ x < t ≤ b.

In [9] (see also [10, pp. 129-133]), the authors, starting from the extension of
the weighted Montgomery’s identity using Fink’s identity, gave generalizations
of Steffensen’s inequality. The aim of this paper is to obtain some new general-
izations of Steffensen’s inequality via Fink’s identity using different reasoning
from the one used in [9].

Mitrinović stated in [6] that the inequalities in (1) follow from the identities∫ a+λ

a

f(t)dt−
∫ b

a

f(t)g(t)dt

=

∫ a+λ

a

[f(t)− f(a+ λ)][1− g(t)]dt+

∫ b

a+λ

[f(a+ λ)− f(t)]g(t)dt

and ∫ b

a

f(t)g(t)dt−
∫ b

b−λ
f(t)dt

=

∫ b−λ

a

[f(t)− f(b− λ)]g(t)dt+

∫ b

b−λ
[f(b− λ)− f(t)][1− g(t)]dt.

These identities would be the starting point for our generalizations of Stef-
fensen’s inequality in this paper.

2. Generalizations of Steffensen’s inequality via Fink’s
identity

In this section we will obtain generalizations of Steffensen’s inequality for n-
convex functons using the identity (2).
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Firstly, let us denote:

Tk(x) =
n− 1− k

k!

f (k)(a)(x− a)k − f (k)(b)(x− b)k

b− a
.

Theorem 2.1. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is

positive and 0 ≤ g ≤ 1 on [a, b]. Let
∫ a+λ
a

u(t)dt =
∫ b
a
g(t)u(t)dt and let the

function G1 be defined by

G1(x) =

{∫ x
a

(1− g(t))u(t)dt x ∈ [a, a+ λ]∫ b
x
g(t)u(t)dt x ∈ [a+ λ, b].

(3)

Then ∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

= − 1

(b− a)(n− 2)!

∫ b

a

(∫ b

a

G1(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt.

(4)

Proof. We have∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt

=

∫ a+λ

a

[f(t)− f(a+ λ)][1− g(t)]u(t)dt+

∫ b

a+λ

[f(a+ λ)− f(t)]g(t)u(t)dt

=

[∫ x

a

(1− g(t))u(t)dt

]
(f(t)− f(a+ λ)|a+λa −

∫ a+λ

a

[∫ x

a

(1− g(t))u(t)dt

]
df(x)

+

[∫ b

x

g(t)u(t)dt

]
(f(a+ λ)− f(t))|ba+λ −

∫ b

a+λ

[∫ b

x

g(t)u(t)dt

]
df(x)

= −
∫ a+λ

a

[∫ x

a

(1− g(t))u(t)dt

]
df(x)−

∫ b

a+λ

[∫ b

x

g(t)u(t)dt

]
df(x)

= −
∫ b

a

G1(x)df(x) = −
∫ b

a

G1(x)f ′(x)dx.

Applying Fink’s identiy with f ′, and replacing n with n− 1 (n ≥ 2) we have

f ′(x) = −
n−2∑
k=0

Tk(x) +
1

(b− a)(n− 2)!

b∫
a

(x− t)n−2k(t, x)f (n)(t)dt. (5)
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Now using (5) we obtain∫ b

a

G1(x)f ′(x)dx = −
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

+
1

(b− a)(n− 2)!

∫ b

a

G1(x)

(∫ b

a

(x− t)n−2k(t, x)f (n)(t)dt

)
dx.

(6)

After applying Fubini’s theorem on the last term in (6) we obtain (4).

Theorem 2.2. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is

positive and 0 ≤ g ≤ 1 on [a, b]. Let
∫ b
b−λ u(t)dt =

∫ b
a
g(t)u(t)dt and let the

function G2 be defined by

G2(x) =

{∫ x
a
g(t)u(t)dt x ∈ [a, b− λ]∫ b

x
(1− g(t))u(t)dt x ∈ [b− λ, b].

(7)

Then ∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ
f(t)u(t)dt−

n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx

= − 1

(b− a)(n− 2)!

∫ b

a

(∫ b

a

G2(x)(x− t)n−2k(t, x)dx

)
f (n)(t)dt.

(8)

Proof. Similar to the proof of Theorem 2.1.

Now, using above obtained identities we give generalization of Steffensen’s
inequality for n-convex functions.

Theorem 2.3. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is

positive and 0 ≤ g ≤ 1 on [a, b]. Let
∫ a+λ
a

u(t)dt =
∫ b
a
g(t)u(t)dt and let the

function G1 be defined by (3). If f is n−convex and∫ b

a

G1(x)(x− t)n−2k(t, x)dx ≤ 0, t ∈ [a, b], (9)

then ∫ b

a

f(t)g(t)u(t)dt ≤
∫ a+λ

a

f(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx. (10)
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Proof. If the function f is n-convex, without loss of generality we can assume
that f is n−times differentiable and f (n) ≥ 0 (see [11, p. 16 and p. 293]). Now
we can apply Theorem 2.1 to obtain (10).

Theorem 2.4. Let f : [a, b] → R be such that f (n−1) is absolutely continuous
for some n ≥ 2 and let g, u be integrable functions on [a, b] such that u is

positive and 0 ≤ g ≤ 1 on [a, b]. Let
∫ b
b−λ u(t)dt =

∫ b
a
g(t)u(t)dt and let the

function G2 be defined by (7).
If f is n−convex and∫ b

a

G2(x)(x− t)n−2k(t, x)dx ≤ 0, t ∈ [a, b], (11)

then ∫ b

a

f(t)g(t)u(t)dt ≥
∫ b

b−λ
f(t)u(t)dt+

n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx. (12)

Proof. Similar to the proof of Theorem 2.3.

Taking u ≡ 1 and n = 2 in Theorems 2.3 and 2.4 we obtain following
corollary.

Corollary 2.5. Let f : [a, b] → R be such that f ′ is absolutely continuous.

Let g be an integrable function on [a, b] with 0 ≤ g ≤ 1 and let λ =
∫ b
a
g(t)dt.

(i) If f is convex and

t(b− a)

∫ t

a

g(x)dx+ (t− b)
∫ t

a

xg(x)dx+ (t− a)

∫ b

t

xg(x)dx

≤ (t− a)

(
λ2

2
+ λa

)
+

(b− a)(t− a)2

2
, t ∈ [a, a+ λ],

−t(b− a)

∫ b

t

g(x)dx+ (t− b)
∫ t

a

xg(x)dx+ (t− a)

∫ b

t

xg(x)dx

≤ (t− b)
(
λ2

2
+ λa

)
, t ∈ [a+ λ, b],

then∫ b

a

f(t)g(t)dt ≤
∫ a+λ

a

f(t)dt−(n−1)
f(a)− f(b)

b− a

(∫ b

a

tg(t)dt− λa− λ2

2

)
.
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(ii) If f is convex and

−t(b− a)

∫ t

a

g(x)dx+ (b− t)
∫ t

a

xg(x)dx+ (a− t)
∫ b

t

xg(x)dx

≤ (t− a)

(
λ2

2
− λb

)
, t ∈ [a, b− λ],

t(b− a)

∫ b

t

g(x)dx+ (b− t)
∫ t

a

xg(x)dx+ (a− t)
∫ b

t

xg(x)dx

≤ (t− b)
(
λ2

2
− λb

)
− (b− a)(t− b)2

2
, t ∈ [b− λ, b],

then∫ b

a

f(t)g(t)dt ≥
∫ b

b−λ
f(t)dt+(n−1)

f(a)− f(b)

b− a

(
bλ− λ2

2
−
∫ b

a

tg(t)dt

)
.

3. Ostrowski-type inequalities

In this section we give the Ostrowski-type inequalities related to generalizations
obtained in the previous section.

Theorem 3.1. Suppose that all assumptions of Theorem 2.1 hold. Assume
(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let∣∣f (n)∣∣p : [a, b]→ R be an R-integrable function for some n ≥ 2. Then we have∣∣∣∣∣
∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

∣∣∣∣∣
≤ 1

(b− a)(n− 2)!

∥∥∥f (n)∥∥∥
p

(∫ b

a

∣∣∣∣∣
∫ b

a

G1(x)(x− t)n−2k(t, x)dx

∣∣∣∣∣
q

dt

) 1
q

.

(13)

The constant on the right-hand side of (13) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. Let us denote

C(t) =
−1

(b− a)(n− 2)!

∫ b

a

G1(x)(x− t)n−2k(t, x)dx.
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By taking the modulus on (4) and applying Hölder’s inequality we obtain∣∣∣∣∣
∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

∣∣∣∣∣
=

∣∣∣∣∣
∫ b

a

C(t)f (n)(t)dt

∣∣∣∣∣ ≤ ∥∥∥f (n)∥∥∥p
(∫ b

a

|C(t)|q dt

) 1
q

.

For the proof of the sharpness of the constant
(∫ b

a
|C(t)|q dt

) 1
q

let us find a

function f for which the equality in (13) is obtained.
For 1 < p <∞ take f to be such that

f (n)(t) = sgnC(t) |C(t)|
1

p−1 .

For p =∞ take f (n)(t) = sgnC(t).
For p = 1 we prove that∣∣∣∣∣

∫ b

a

C(t)f (n)(t)dt

∣∣∣∣∣ ≤ max
t∈[a,b]

|C(t)|

(∫ b

a

∣∣∣f (n)(t)∣∣∣ dt) (14)

is the best possible inequality. Suppose that |C(t)| attains its maximum at
t0 ∈ [a, b]. First we assume that C(t0) > 0. For ε small enough we define fε(t)
by

fε(t) =


0 a ≤ t ≤ t0,
1
ε n! (t− t0)n t0 ≤ t ≤ t0 + ε,
1
n! (t− t0)n−1 t0 + ε ≤ t ≤ b.

Then for ε small enough∣∣∣∣∣
∫ b

a

C(t)f (n)(t)dt

∣∣∣∣∣ =

∣∣∣∣∫ t0+ε

t0

C(t)
1

ε
dt

∣∣∣∣ =
1

ε

∫ t0+ε

t0

C(t)dt.

Now from the inequality (14) we have

1

ε

∫ t0+ε

t0

C(t)dt ≤ C(t0)

∫ t0+ε

t0

1

ε
dt = C(t0).

Since

lim
ε→0

1

ε

∫ t0+ε

t0

C(t)dt = C(t0)

the statement follows. In the case C(t0) < 0, we define fε(t) by

fε(t) =


1
n! (t− t0 − ε)

n−1 a ≤ t ≤ t0,
− 1
εn! (t− t0 − ε)

n t0 ≤ t ≤ t0 + ε,

0 t0 + ε ≤ t ≤ b,
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and the rest of the proof is the same as above.

Using the identity (8) we obtain the following result.

Theorem 3.2. Suppose that all assumptions of Theorem 2.2 hold. Assume
(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let∣∣f (n)∣∣p : [a, b]→ R be an R-integrable function for some n ≥ 2. Then we have∣∣∣∣∣
∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ
f(t)u(t)dt−

n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx

∣∣∣∣∣
≤ 1

(b− a)(n− 2)!

∥∥∥f (n)∥∥∥
p

(∫ b

a

∣∣∣∣∣
∫ b

a

G2(x)(x− t)n−2k(t, x)dx

∣∣∣∣∣
q

dt

) 1
q

.

(15)

The constant on the right-hand side of (15) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

Proof. Similar to the proof of Theorem 3.1.

Taking u ≡ 1 and n = 2 in Theorems 3.1 and 3.2 we obtain the following
corollaries.

Corollary 3.3. Let f : [a, b]→ R be such that f ′ is absolutely continuous, let g

be an integrable function on [a, b] with 0 ≤ g ≤ 1 and let λ =
∫ b
a
g(t)dt. Assume

(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let
|f ′′|p : [a, b]→ R be an R-integrable function. Then we have∣∣∣∣∣
∫ a+λ

a

f(t)dt−
∫ b

a

f(t)g(t)dt− (n− 1)
f(a)− f(b)

b− a

(∫ b

a

tg(t)dt− λa− λ2

2

)∣∣∣∣∣
≤ ‖f ′′‖p

(∫ a+λ

a

∣∣∣∣∣t(b−a)

∫ t

a

g(x)dx+ (t−b)
∫ t

a

xg(x)dx+ (t−a)

∫ b

t

xg(x)dx

− (t− a)

(
λa+

λ2

2

)
− (b− a)(t− a)2

2

∣∣∣∣q dt+

∫ b

a+λ

∣∣∣∣∣−t(b− a)

∫ b

t

g(x)dx

+ (t− b)
∫ t

a

xg(x)dx+ (t− a)

∫ b

t

xg(x)dx− (t− b)
(
λ2

2
+ λa

)∣∣∣∣∣
q

dt

) 1
q

.

(16)

The constant on the right-hand side of (16) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.
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Corollary 3.4. Let f : [a, b]→ R be such that f ′ is absolutely continuous, let g

be an integrable function on [a, b] with 0 ≤ g ≤ 1 and let λ =
∫ b
a
g(t)dt. Assume

(p, q) is a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞, 1/p+ 1/q = 1. Let
|f ′′|p : [a, b]→ R be an R-integrable function. Then we have∣∣∣∣∣
∫ b

a

f(t)g(t)dt−
∫ b

b−λ
f(t)dt− (n− 1)

(f(a)−f(b))

b− a

(
bλ− λ2

2
−
∫ b

a

tg(t)dt

)∣∣∣∣∣
≤ ‖f ′′‖p

(∫ b−λ

a

∣∣∣∣(t−a)

(
bλ− λ2

2

)
− t(b−a)

∫ t

a

g(x)dx+ (b−t)
∫ t

a

xg(x)dx

+ (a− t)
∫ b

t

xg(x)dx

∣∣∣∣∣
q

dt+

∫ b

b−λ

∣∣∣∣ (b− a)(t− b)2

2
− (t− b)

(
λ2

2
− bλ

)

+ t(b− a)

∫ b

t

g(x)dx+ (b− t)
∫ t

a

xg(x)dx+ (a− t)
∫ b

t

xg(x)dx

∣∣∣∣∣
q

dt

) 1
q

.

(17)

The constant on the right-hand side of (17) is sharp for 1 < p ≤ ∞ and the
best possible for p = 1.

4. Generalizations related to the bounds for the Čebyšev
functional

For two Lebesgue integrable functions f, h : [a, b] → R consider the Čebyšev
functional

T (f, h) :=
1

b− a

∫ b

a

f(t)h(t)dt− 1

b− a

∫ b

a

f(t)dt · 1

b− a

∫ b

a

h(t)dt.

In [3] the authors proved the following theorems.

Theorem 4.1. Let f : [a, b] → R be a Lebesgue integrable function and h :
[a, b]→ R be an absolutely continuous function with (· − a)(b− ·)[h′]2 ∈ L[a, b].
Then we have the inequality

|T (f, h)| ≤ 1√
2

[T (f, f)]
1
2

1√
b− a

(∫ b

a

(x− a)(b− x)[h′(x)]2dx

) 1
2

. (18)

The constant 1√
2

in (18) is the best possible.



230 J. PEČARIĆ ET AL.

Theorem 4.2. Assume that h : [a, b]→ R is monotonic nondecreasing on [a, b]
and f : [a, b] → R is absolutely continuous with f ′ ∈ L∞[a, b]. Then we have
the inequality

|T (f, h)| ≤ 1

2(b− a)
‖f ′‖∞

∫ b

a

(x− a)(b− x)dh(x). (19)

The constant 1
2 in (19) is the best possible.

In the sequel we use the above theorems to get some new bounds for the
integrals on the left hand side in the perturbed version of identities (4) and (8).
Firstly, let us denote

Φi(t) =

∫ b

a

Gi(x)(x− t)n−2k(t, x)dx, i = 1, 2. (20)

Theorem 4.3. Let f : [a, b] → R be such that f (n) is absolutely continuous
function for some n ≥ 2 with (· − a)(b − ·)[f (n+1)]2 ∈ L[a, b] and let g, u be
integrable functions on [a, b] such that u is positive and 0 ≤ g ≤ 1 on [a, b]. Let∫ a+λ
a

u(t)dt =
∫ b
a
g(t)u(t)dt and let the functions G1 and Φ1 be defined by (3)

and (20). Then

∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx

+
f (n−1)(b)− f (n−1)(a)

(b− a)2(n− 2)!

∫ b

a

Φ1(t)dt = S1
u,n(f ; a, b),

(21)

where the remainder S1
u,n(f ; a, b) satisfies the estimation∣∣S1

u,n(f ; a, b)
∣∣

≤ 1√
2(n− 2)!

[T (Φ1,Φ1)]
1
2

1√
b− a

∣∣∣∣∣
∫ b

a

(t− a)(b− t)[f (n+1)(t)]2dt

∣∣∣∣∣
1
2

.
(22)

Proof. Applying Theorem 4.1 for f → Φ1 and h→ f (n) we obtain∣∣∣∣∣ 1

b− a

∫ b

a

Φ1(t)f (n)(t)dt− 1

b− a

∫ b

a

Φ1(t)dt · 1

b− a

∫ b

a

f (n)(t)dt

∣∣∣∣∣
≤ 1√

2
[T (Φ1,Φ1)]

1
2

1√
b− a

∣∣∣∣∣
∫ b

a

(t− a)(b− t)[f (n+1)(t)]2dt

∣∣∣∣∣
1
2

.

(23)
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Now if we add

1

(b− a)(n− 2)!

∫ b

a

Φ1(t)dt · 1

b− a

∫ b

a

f (n)(t)dt

=
f (n−1)(b)− f (n−1)(a)

(b− a)2(n− 2)!

∫ b

a

Φ1(t)dt

to both side of the identity (4) and use the inequality (23) we obtain the
representation (21) and the bound (22).

Theorem 4.4. Let f : [a, b] → R be such that f (n) is absolutely continuous
function for some n ≥ 2 with (· − a)(b − ·)[f (n+1)]2 ∈ L[a, b] and let g, u be
integrable functions on [a, b] such that u is positive and 0 ≤ g ≤ 1 on [a, b]. Let∫ b
b−λ u(t)dt =

∫ b
a
g(t)u(t)dt and let the functions G2 and Φ2 be defined by (7)

and (20). Then

∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ
f(t)u(t)dt−

n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx

+
f (n−1)(b)− f (n−1)(a)

(b− a)2(n− 2)!

∫ b

a

Φ2(t)dt = S2
u,n(f ; a, b),

(24)

where the remainder S2
u,n(f ; a, b) satisfies the estimation∣∣S2

u,n(f ; a, b)
∣∣

≤ 1√
2(n− 2)!

[T (Φ2,Φ2)]
1
2

1√
b− a

∣∣∣∣∣
∫ b

a

(t− a)(b− t)[f (n+1)(t)]2dt

∣∣∣∣∣
1
2

.

Proof. Similar to the proof of Theorem 4.3.

The following Grüss-type inequalities also hold.

Theorem 4.5. Let f : [a, b] → R be such that f (n) (n ≥ 2) is absolutely
continuous function and f (n+1) ≥ 0 on [a, b]. Let the functions Φi, i = 1, 2, be
defined by (20).

(a) Let
∫ a+λ
a

u(t)dt =
∫ b
a
g(t)u(t)dt.

Then we have the representation (21) and the remainder S1
u,n(f ; a, b) sat-

isfies the bound∣∣S1
u,n(f ; a, b)

∣∣
≤ 1

(n− 2)!
‖Φ′1‖∞

{
f (n−1)(b) + f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b− a

}
.

(25)
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(b) Let
∫ b
b−λ u(t)dt =

∫ b
a
g(t)u(t)dt.

Then we have the representation (24) and the remainder S2
u,n(f ; a, b) sat-

isfies the bound∣∣S2
u,n(f ; a, b)

∣∣
≤ 1

(n− 2)!
‖Φ′2‖∞

{
f (n−1)(b) + f (n−1)(a)

2
− f (n−2)(b)− f (n−2)(a)

b− a

}
.

Proof. (a) Applying Theorem 4.2 for f → Φ1 and h→ f (n) we obtain∣∣∣∣∣ 1

b− a

∫ b

a

Φ1(t)f (n)(t)dt− 1

b− a

∫ b

a

Φ1(t)dt · 1

b− a

∫ b

a

f (n)(t)dt

∣∣∣∣∣
≤ 1

2(b− a)
‖Φ′1‖∞

∫ b

a

(t− a)(b− t)f (n+1)(t)dt.

(26)

Since∫ b

a

(t− a)(b− t)f (n+1)(t)dt =

∫ b

a

[2t− (a+ b)]f (n)(t)dt

= (b− a)
[
f (n−1)(b) + f (n−1)(a)

]
− 2

(
f (n−2)(b)− f (n−2)(a)

)
.

Using the representation (4) and the inequality (26) we deduce (25).

(b) Similar to the first part.

Taking u ≡ 1 and n = 2 in the previous theorem we obtain the following
corollary.

Corollary 4.6. Let f : [a, b] → R be such that f ′′ is absolutely continuous

function and f ′′′ ≥ 0 on [a, b]. Let λ =
∫ b
a
g(t)dt.

(i) Then we have∫ a+λ

a

f(t)dt−
∫ b

a

f(t)g(t)dt

− (n− 1)
f(a)− f(b)

b− a

(∫ b

a

xg(x)dx− λ2

2
− λa

)

+
f ′(b)− f ′(a)

(b− a)2

∫ b

a

Φ1(t)dt = S1
1,2(f ; a, b)
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and the remainder S1
1,2(f ; a, b) satisfies the bound∣∣S1

1,2(f ; a, b)
∣∣ ≤ ‖Φ′1‖∞{f ′(b) + f ′(a)

2
− f(b)− f(a)

b− a

}
where

Φ′1(t) =


∫ b
a
xg(x)dx+ (b− a)

∫ t
a
g(x)dx

−(t− a)(b− a)− λ2

2 − λa t ∈ [a, a+ λ];∫ b
a
xg(x)dx− (b− a)

∫ b
t
g(x)dx− λ2

2 − λa t ∈ [a+ λ, b].

(ii) Then we have∫ b

a

f(t)g(t)dt−
∫ b

b−λ
f(t)dt

− (n− 1)
f(a)− f(b)

b− a

(
bλ− λ2

2
−
∫ b

a

xg(x)dx

)

+
f ′(b)− f ′(a)

(b− a)2

∫ b

a

Φ2(t)dt = S2
1,2(f ; a, b)

and the remainder S2
1,2(f ; a, b) satisfies the bound∣∣S2

1,2(f ; a, b)
∣∣ ≤ ‖Φ′2‖∞{f ′(b) + f ′(a)

2
− f(b)− f(a)

b− a

}
where

Φ′2(t) =


bλ− λ2

2 −
∫ b
a
xg(x)dx− (b− a)

∫ t
a
g(x)dx t ∈ [a, b− λ];

bλ− λ2

2 − (b− a)(b− t)−
∫ b
a
xg(x)dx

+(b− a)
∫ b
t
g(x)dx t ∈ [b− λ, b].

5. Mean value theorems

In this section we show how to generate means from the generalized Steffensen’s
inequality.

Motivated by inequalities (10), (12) and under the assumptions of Theo-
rems 2.3 and 2.4 we define the following linear functionals:

L1(f) =

∫ a+λ

a

f(t)u(t)dt−
∫ b

a

f(t)g(t)u(t)dt−
n−2∑
k=0

∫ b

a

Tk(x)G1(x)dx, (27)



234 J. PEČARIĆ ET AL.

L2(f) =

∫ b

a

f(t)g(t)u(t)dt−
∫ b

b−λ
f(t)u(t)dt−

n−2∑
k=0

∫ b

a

Tk(x)G2(x)dx. (28)

Now, we give mean value theorems related to defined functionals.

Theorem 5.1. Let f : [a, b]→ R be such that f ∈ Cn[a, b]. If the inequality (9)
holds in case i = 1, or (11) in case i = 2 then there exist ξi ∈ [a, b] such that

Li(f) = f (n)(ξi)Li(ϕ), i = 1, 2, (29)

where ϕ(x) = xn

n! and Li, i = 1, 2, are defined by (27) and (28).

Proof. One proceeds similarly as in proof of [9, Theorem 3.1].

Theorem 5.2. Let f, f̂ : [a, b] → R be such that f, f̂ ∈ Cn[a, b] and f̂ (n) 6= 0.
If (9) holds in case i = 1 or (11) in case i = 2, then there exist ξi ∈ [a, b] such
that

Li(f)

Li(f̂)
=
f (n)(ξi)

f̂ (n)(ξi)
, i = 1, 2, (30)

where Li, i = 1, 2, are defined by (27) and (28).

Proof. One proceeds similarly as in proof of [9, Corollary 3.1].

Remark 5.3. Theorem 5.2 enables us to define various types of means, because
if f (n)/f̂ (n) has inverse, from (30) we have

ξi =

(
f (n)

f̂ (n)

)−1(
Li(f)

Li(f̂)

)
,

which means that ξi is mean of numbers a, b for given functions f and f̂ .

6. k−exponential convexity generated from Steffensen’s
functionals

In this section we use the previously defined functionals to construct exponen-
tially convex functions. Let us begin by recalling some definitions and results
related to k−exponential convexity. For more details see, e.g., [2, 5, 8].

Definition 6.1. A function ψ : I → R is k-exponentially convex in the Jensen
sense on I if

k∑
i,j=1

ξiξj ψ

(
xi + xj

2

)
≥ 0,
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hold for all choices ξ1, . . . , ξk ∈ R and all choices x1, . . . , xk ∈ I. A function
ψ : I → R is k-exponentially convex if it is k-exponentially convex in the Jensen
sense and continuous on I.

Definition 6.2. A function ψ : I → R is exponentially convex in the Jensen
sense on I if it is k-exponentially convex in the Jensen sense for all k ∈ N.

A function ψ : I → R is exponentially convex if it is exponentially convex
in the Jensen sense and continuous.

Remark 6.3. It is known that ψ : I → R is a log-convex in the Jensen sense if
and only if

α2ψ(x) + 2αβψ

(
x+ y

2

)
+ β2ψ(y) ≥ 0,

holds for every α, β ∈ R and x, y ∈ I. It follows that a positive function is
log-convex in the Jensen sense if and only if it is 2-exponentially convex in the
Jensen sense.

A positive function is log-convex if and only if it is 2-exponentially convex.

Proposition 6.4. If f is a convex function on I and if x1 ≤ y1, x2 ≤ y2, x1 6=
x2, y1 6= y2, then the following inequality is valid

f(x2)− f(x1)

x2 − x1
≤ f(y2)− f(y1)

y2 − y1
.

If the function f is concave, the inequality is reversed.

Definition 6.5. Let f be a real-valued function defined on the segment [a, b].
The divided difference of order n of the function f at distinct points x0, ..., xn ∈
[a, b], is defined recursively (see [1, 11]) by

f [xi] = f(xi), (i = 0, . . . , n)

and

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0
.

The value f [x0, . . . , xn] is independent of the order of the points x0, . . . , xn.
The definition may be extended to include the case that some (or all) of the
points coincide. Assuming that f (j−1)(x) exists, we define

f [x, . . . , x︸ ︷︷ ︸
j−times

] =
f (j−1)(x)

(j − 1)!
. (31)

Now, we use an idea from [8] to generate k−exponentially and exponentially
convex functions applying defined functionals. The notation log denotes the
natural logarithm function. In the sequel I and J will be intervals in R.
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Theorem 6.6. Let Λ = {fp : p ∈ J}, where J is an interval in R, be a family of
functions defined on an interval I in R such that the function p 7→ fp[x0, . . . , xn]
is k−exponentially convex in the Jensen sense on J for every (n+ 1) mutually
different points x0, . . . , xn ∈ I. Let Li, i = 1, 2, be linear functionals defined
by (27) and (28). Then p 7→ Li(fp) is k−exponentially convex function in the
Jensen sense on J .
If the function p 7→ Li(fp) is continuous on J , then it is k−exponentially convex
on J .

Proof. One proceeds similarly as in proof of [9, Theorem 3.2].

As an immediate consequences of the above theorem we obtain the following
corollaries.

Corollary 6.7. Let Λ = {fp : p ∈ J}, where J is an interval in R, be a
family of functions defined on an interval I in R, such that the function p 7→
fp[x0, . . . , xn] is exponentially convex in the Jensen sense on J for every (n+1)
mutually different points x0, . . . , xn ∈ I. Let Li, i = 1, 2, be linear functionals
defined by (27) and (28). Then p 7→ Li(fp) is an exponentially convex function
in the Jensen sense on J . If the function p 7→ Li(fp) is continuous on J, then
it is exponentially convex on J .

Corollary 6.8. Let Λ = {fp : p ∈ J}, where J is an interval in R, be
a family of functions defined on an interval I in R, such that the function
p 7→ fp[x0, . . . , xn] is 2-exponentially convex in the Jensen sense on J for every
(n + 1) mutually different points x0, . . . , xn ∈ I. Let Li, i = 1, 2, be linear
functionals defined by (27) and (28). Then the following statements hold:

(i) If the function p 7→ Li(fp) is continuous on J , then it is 2-exponentially
convex function on J . If p 7→ Li(fp) is additionally strictly positive, then
it is also log-convex on J . Furthermore, the following inequality holds
true:

[Li(fs)]
t−r ≤ [Li(fr)]

t−s
[Li(ft)]

s−r
, i = 1, 2,

for every choice r, s, t ∈ J , such that r < s < t.

(ii) If the function p 7→ Li(fp) is strictly positive and differentiable on J, then
for every p, q, u, v ∈ J , such that p ≤ u and q ≤ v, we have

µp,q(Li,Λ) ≤ µu,v(Li,Λ), (32)

where

µp,q(Li,Λ) =


(
Li(fp)
Li(fq)

) 1
p−q

p 6= q,

exp

(
d
dpLi(fp)

Li(fp)

)
p = q,

(33)

for fp, fq ∈ Λ.
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Proof. One proceeds similarly as in proof of [9, Corollary 3.3].

Remark 6.9. Note that the results from the above theorem and corollaries
still hold when two of the points x0, . . . , xn ∈ I coincide, say x1 = x0, for a
family of differentiable functions fp such that the function p 7→ fp[x0, . . . , xn] is
n-exponentially convex in the Jensen sense (exponentially convex in the Jensen
sense, log-convex in the Jensen sense), and furthermore, they still hold when
all n+1 points coincide for a family of n differentiable functions with the same
property. The proofs use (31) and suitable characterization of convexity.

7. Applications to Stolarsky type means

In this section, we present some families of functions which fulfil the conditions
of Theorem 6.6, Corollary 6.7, Corollary 6.8 and Remark 6.9. This enables us
to construct a large families of functions which are exponentially convex (see
also [9]).

Example 7.1. Let us consider a family of functions

Λ1 = {fp : R→ R : p ∈ R}

defined by

fp(x) =

{ epx

pn p 6= 0,
xn

n! p = 0.

Since
dnfp
dxn (x) = epx > 0, the function fp is n-convex on R for every p ∈ R and

p 7→ dnfp
dxn (x) is exponentially convex by definition. Using analogous arguing as

in the proof of Theorem 6.6 we also have that p 7→ fp[x0, . . . , xn] is exponen-
tially convex (and so exponentially convex in the Jensen sense). Now, using
Corollary 6.7 we conclude that p 7→ Li(fp), i = 1, 2, are exponentially convex in
the Jensen sense. It is easy to verify that this mapping is continuous (although
the mapping p 7→ fp is not continuous for p = 0), so it is exponentially convex.
For this family of functions, µp,q(Li,Λ1), i = 1, 2, from (33), becomes

µp,q(Li,Λ1) =


(
Li(fp)
Li(fq)

) 1
p−q

p 6= q,

exp
(
Li(id·fp)
Li(fp)

− n
p

)
p = q 6= 0,

exp
(

1
n+1

Li(id·f0)
Li(f0)

)
p = q = 0,

where id is the identity function. By Corollary 6.8 µp,q(Li,Λ1) is a monotonic
function in parameters p and q.

Since (
dnfp
dxn

dnfq
dxn

) 1
p−q

(log x) = x,
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using Theorem 5.2 it follows that

Mp,q(Li,Λ1) = logµp,q(Li,Λ1), i = 1, 2,

satisfies
a ≤Mp,q(Li,Λ1) ≤ b, i = 1, 2.

So, Mp,q(Li,Λ1) is a monotonic mean.

Example 7.2. Consider a family of functions

Λ2 = {ψp : (0,∞)→ R : p ∈ (0,∞)}

defined by

ψp(x) =
e−x
√
p

(−√p)n
.

Since
dnψp

dxn (x) = e−x
√
p is the Laplace transform of a non-negative function

(see [13]) it is exponentially convex. Obviously ψp are n-convex functions for
every p > 0. For this family of functions, µp,q(Li,Λ2), i = 1, 2, from (33) is
equal to

µp,q(Li,Λ2) =


(
Li(ψp)
Li(ψq)

) 1
p−q

p 6= q,

exp
(
− Li(id·ψp)

2
√
pLi(ψp)

− n
2p

)
p = q,

where id is the identity function. This is monotone function in parameters p
and q by (32). Using Theorem 5.2 it follows that

Mp,q(Li,Λ2) = −(
√
p+
√
q) logµp,q(Li,Λ2), i = 1, 2,

satisfies a ≤Mp,q(Li,Λ2) ≤ b, so Mp,q(Li,Λ2), i = 1, 2, is a monotonic mean.
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