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Order 1 congruences of lines with
smooth fundamental scheme

Christian Peskine

Abstract. In this note we present a notion of fundamental scheme for
Cohen-Macaulay, order 1, irreducible congruences of lines. We show
that such a congruence is formed by the k-secant lines to its fundamental
scheme for a number k that we call the secant index of the congruence.
If the fundamental scheme X is a smooth connected variety in PN , then
k = (N − 1)/(c − 1) (where c is the codimension of X) and X comes
equipped with a special tangency divisor cut out by a virtual hypersur-
face of degree k − 2 (to be precise, linearly equivalent to a section by
an hypersurface of degree (k − 2) without being cut by one). This is
explained in the main theorem of this paper. This theorem is followed
by a complete classification of known locally Cohen-Macaulay order 1
congruences of lines with smooth fundamental scheme. To conclude we
remark that according to Zak’s classification of Severi Varieties and
Hartshorne conjecture for low codimension varieties, this classification
is complete.
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1. Introduction

As usual P = PN = P(V ), where V is a complex vector space of dimension
(N + 1), is the complex projective space. A congruence of lines of P is an
(N − 1)-dimensional variety (reduced scheme) embedded in the Grassmann
variety of lines G(1, N) = G(2, V ).

We recall the following classical notations.

Definition 1.1. Let Σ ⊂ G(2, V ) be a congruence of lines.

1. The order o(Σ) of Σ is the number of lines of Σ passing through a general
point of P.

2. The (set theoretical) fundamental locus X(Σ) of Σ is the closed set formed
by all points x ∈ P through which pass infinitely many lines of Σ.
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Examples 1.2. Let C ⊂ P3 be a smooth projective curve of degree d and genus
g. The 2-secant lines to C form a congruence of lines Σ2(C) ⊂ G(1, 3). The
order of this congruence is o(Σ2(C)) = d(d− 3)/2− (g − 1) and the (set theo-
retical) fundamental locus contains C.

- The 2-secant lines to a twisted cubic curve form a congruence of order 1
whose (set theoretical) fundamental locus is the curve itself.

- The 2-secant lines to a normal elliptic curve C ⊂ P3 form a congruence
of order 2. Its fundamental locus is the union of the curve itself and of 4
points outside the curve, vertices of cones of 2-secant lines

To our knowledge the fundamental locus is classically defined as a set of
points. In this note, we claim that Cohen-Macaulay irreducible congruences
of order 1 have a well defined fundamental scheme and we state and prove a
theorem which hopefully justifies this point of view. My interest for order 1
congruences of lines goes back to Zak’s classification of Severi Varieties (see [4]).
In particular I have discussed often with Fyodor Zak about the congruences of 3-
secant lines to the projected Severi Varieties (also studied by Iliev and Manivel,
see ([3]). I remember with great pleasure the day, many years ago, when
discussing with F. Han and F. Zak we convinced ourselves that the congruence
of 2-secant lines to a twisted cubic C was in fact the congruence of 4-secant
lines to the full first infinitesimal neighborhood of C and that furthermore
quadric hypersurfaces cut a ”non-complete linear system” on this infinitesimal
neighborhood. This paper is in many aspects a partial survey of the pleasant
discussions I have had with F. Han (see [2]) and F. Zak since this discovery.
Fyodor Zak has been particularly generous with his time and his friendly critics.
I wish to thank him and Jean Vallès for helping me to write down these notes.

2. Notations and Examples

Let us start by organizing our notations. To this aim, we recall the Euler
complex on P

0→ ΩP → V ⊗OP(−1)→ OP → 0,

and the tautological complex of vector bundles on G(2, V )

0→ K∗ → V ⊗OG(2,V ) → Q→ 0,

where Q is the canonical quotient rank-2 vector bundle on G(2, V ).

We denote by I ⊂ G(1, N)×PN the incidence variety line/point. We recall
that

q : I = PG(1,N)(Q)→ G(1, N)



ORDER 1, IRREDUCIBLE CONGRUENCES OF LINES 205

is a projective line bundle on the one hand, and that

p : I = PPN (ΩPN (2))→ PN

is a projective (PN−1)-bundle on the other hand.
If x ∈ PN , we write PN−1(x) for the fiber p−1(x) and

Σ(x) = p−1(x) ∩ q−1(Σ)

for the scheme of lines of Σ passing through x. When o(Σ) 6= 0, it is the degree
of the generically finite morphism q−1(Σ)→ PN .

As a last set of notations, we denote the tautological line bundles on PN

and G(1, N) (Plücker embedding) by

OPN (1) = OPN (θ) and OG(1,N)(1) = OG(1,N)(η);

hoping to avoid too many stars, we write

OI(kη, lθ) = OI(kη + lθ) = q∗(OG(1,N)(kη))⊗OI p
∗(OPN (lθ)).

To conclude this section, we study a list of examples, with a special interest
in Σ(x), the family of lines of Σ passing through a (sometimes general) point
x of the fundamental locus. Our interest in this ”fiber” will be explained and
justified when we introduce the “fundamental scheme” of the congruence. We
present these examples in three separated groups. To be precise the congruences
we describe are all congruences of k-secant lines to classically known varieties
for 4 ≥ k ≥ 2. We choose, it will be justified later, to organize these examples
following the number k.

To avoid any misunderstanding, let us begin by being precise about what
is a k-secant line to a variety.

Definition 2.1. Let X ⊂ P be a projective variety and L ⊂ P a line. If L * X,
we say that L is a k-secant line to X if the finite scheme L∩X has degree ≥ k.

The k-secant lines to X which are not contained in X form a well defined
quasi-projective subscheme of the Grassmann variety (see [1] for example) of
lines in P. The closure Seck(X) in the Grassman Variety of this quasi-projective
scheme is the k-secant scheme to X.

From this definition, it is clear that if L ⊂ X, then {L} ∈ Sec2(X), but {L}
is not necessarily in Seck(X)for k ≥ 3. For example a Palatini 3-fold in P5 is
ruled over a cubic surface, but the family of lines of the ruling and Sec4(X) are
disjoint varieties in the Grassmann Variety.

Examples 2.2. 1. If C ⊂ P3 is a twisted cubic and Σ2(C) = Sec2(C) ⊂
G(1, 3) is the order 1 congruence of 2-secant lines to C, then Σ2(C)(x) ⊂
P2(x) ⊂ G(1, 3) is a conic for all x ∈ C.
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2. If C = L1 ∪ L2 ⊂ P3 is the disjoint union of two lines and Σ2(C) ⊂
G(1, 3) is the order 1 congruence of lines intersecting L1 and L2, then
Σ2(C)(x) ⊂ P2(x) ⊂ G(1, 3) is a line for all x ∈ C. Note that L1, L2 /∈
Σ2(C).

3. Let X ⊂ P5 be a normal rational ruled surface (of degree 4) without
exceptional line. If Σ2(X) ⊂ G(1, 5) is the order 1 congruence of 2-secant
lines to X, then Σ2(X)(x) ⊂ P4(x) ⊂ G(1, 5) is a ruled cubic surface for
all x ∈ X. Note here that the lines of the ruling are indeed elements of
the congruence Σ2(X).

We note that in the two first examples Σ2(C)(x) = P1 for x ∈ C, but
embedds as a conic in one case and as a line in the other case. This difference
will be explained by the structure of the fundamental schemes of these two
congruences.

The last of these 3 examples was communicated to me by E. Mezzetti and
P. De Poi.

Examples 2.3. 1. If S ⊂ P4 is a projected smooth Veronese surface and
Σ3(S) ⊂ G(1, 4) is the congruence of 3-secant lines to S, then o(Σ3(S)) =
1 and Σ3(S)(x) ⊂ P3(x) ⊂ G(1, 4) is a line for all x ∈ S.

2. If B ⊂ P4 is a Bordiga surface and Σ3(B) ⊂ G(1, 4) is the congruence of
3-secant lines to B, then o(Σ3(B)) = 1 and Σ3(B)(x) ⊂ P3(x) ⊂ G(1, 4)
is a twisted cubic for a general point x ∈ B.

We recall that a Bordiga surface in P4 is cut out by the 0-th Fitting ideal
of a (general enough) 3× 4 matrix with linear coefficients.

Examples 2.4. 1. If X ⊂ P5 is a Palatini 3-fold and Σ4(X) ⊂ G(1, 5) is the
congruence of 4-secant lines to X, then o(Σ4(X)) = 1 and Σ4(X)(x) ⊂
G(1, 5) is a line for all x ∈ X.

2. If Sc ⊂ P5 is the scroll over a K3 surface cut out in G(1, 5) by a general
P8 of the Plücker space, then the congruence Σ4(Sc) ⊂ G(1, 5) of 4-secant
lines to Sc has order 1 and Σ4(Sc)(x) ⊂ G(1, 5) is a conic for all x ∈ Sc.

The computation of Σ4(Sc)(x) ⊂ G(1, 5) in this last example was explained
to me separately by F. Zak and by P. De Poi and E. Mezzetti.

3. The scheme structure of the fundamental locus of
Cohen-Macaulay, order 1, irreducible congruences

From here Σ is a Cohen-Macaulay, order 1, irreducible congruence of lines.
Since Σ is irreducible, so is q−1(Σ).
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Note that since Σ is Cohen-Macaulay, so is q−1(Σ) and the finite and bira-
tional morphism q−1(Σ) \ p−1(X(Σ))→ PN \X(Σ) is flat, hence is an isomor-
phism. Since Σ is irreducible, so is q−1(Σ) and the fundamental locus X(Σ)
has codimension at least 2.

We denote by JΣ/G the sheaf of ideals of Σ in G(1, N) and we consider the
exact sequence

0→ JΣ/G(η)→ OG(η)→ OΣ(η)→ 0.

Recalling that p∗(q
∗OG(η)) = ΩPN (2θ), it induces obviously an exact sequence

0→ p∗(q
∗(JΣ/G(η)))→ ΩPN (2θ)→ p∗(q

∗(OΣ(η))).

Since p∗(q
∗(OΣ(η)) is a torsion free OPN -module of rank-1, free outside X(Σ)

there exists a positive number k and a sheaf of ideals J ⊂ OPN such that we
have an exact sequence

0→ p∗(q
∗(JΣ(η)))→ ΩPN (2θ)→ J(kθ)→ 0. (∗)

It is clear that J ⊂ OPN is the sheaf of ideals of a scheme with support in X(Σ).

Definition 3.1. 1. We define the fundamental scheme X(Σ) of Σ as the
subscheme of PN whose ideal is J . From now we denote this ideal by
JX(Σ)/PN .

2. We define the number k as the secant index of the congruence Σ.

As the reader understand, it is indeed possible to introduce the notion of
fundamental scheme without assuming that Σ is irreducible. This is not our
choice in this short paper.

The notion of secant index in justified by the coming theorem. From the
exact sequence (∗), we keep particularly in mind the surjective map ΩPN (2θ)→
JX(Σ)/P(kθ)→ 0. Its interpretation is the key to the next theorem.

Theorem 3.2. Let Σ be a Cohen-Macaulay, order 1, irreducible congruence of
lines.

1. q−1(Σ) is the blowing up of PN along the fundamental scheme X(Σ).

2. if k is the secant index of Σ, then q∗OΣ(η) = Oq−1(Σ)(kθ − E), where E
is the inverse image of X(Σ) in the blowing up.

3. L ∈ Σ if and only if L is a k-secant line to the fundamental scheme X(Σ).

4. The image of the composite map Λ2V = H0(ΩPN (2θ)) → H0(J(kθ)) is
a linear system of hypersurfaces of degree k defining the map q−1(Σ) →
Σ ⊂ G(2, V ) ⊂ P(Λ2V ).
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5. The linear system cut on X(Σ) by hypersurfaces of degree k − 2 is not
complete, i.e. H1(JX(Σ)/P(k − 2)) 6= 0.

Proof. From the exact sequence (∗) we deduce immediately 1 and 2.
To prove 3, consider {L} ∈ Σ. There is a scheme isomorphism

q−1({L}) ∩ E ' L ∩X(Σ).

Assume that L ( X(Σ). Since Oq−1(Σ)(E) = Oq−1(Σ)(kθ − η), it is clear that
L is a k-secant line to X(Σ). Conversely, if L is a k-secant line to X(Σ) (not
contained in Σ), then p−1(L) ⊂ q−1(Σ) is k-secant to E, hence it is contracted
by the line bundle Oq−1(Σ)(η) = Oq−1(Σ)(kθ − E). Consequently {L} ∈ Σ.

The point 4 is clear.
To prove 5 we intend to show that the map

H1(ΩPN )→ H1(JX(Σ)/P((k − 2)θ)

is non zero. Let {L} ∈ Σ be general. Then L is a k-secant line to X(Σ) not
contained in X(Σ). Consequently, JX(Σ)/P(kθ) ⊗ OL = OL ⊕ T (where T is a
torsion (finite) sheaf on L). From the construction we get a surjective map

ΩPN (2θ)⊗OL = OL ⊕ (N − 1)OL(θ)→ JX(Σ)/P(kθ)⊗OL ' OL ⊕ T.

This shows that the composite map

C = H1(ΩPN )→ H1(OL(−2θ)⊕(N−1)OL(−θ))→ H1(JX(Σ)/P((k−2)θ)⊗OL)

is not zero. Since it factorizes through H1(JX(Σ)/P((k−2)θ)), we are done.

Remark 3.3. Since o(Σ) = 1, a general line of Σ is not contained in X(Σ).

The following remark and the question it brings up are obviously of interest.

Remark 3.4. Dualizing the exact sequence (∗), we notice that the fundamental
scheme of a Cohen-Macaulay, irreducible congruence of order 1 is the zero locus
of a section of Ω∨PN (k − 2) (where k is the secant index of the congruence).

Question 3.5. Which are the sections of Ω∨PN (k − 2) whose zero locus is the
fundamental scheme of a Cohen-Macaulay, irreducible congruence of order 1
with secant index k ?

It is clear that a section of Ω∨PN (k− 2) defines an embedding of the blowing

up P̃N of PN along the zero locus of the section in the incidence variety. Its
image in G(1, N) is a congruence of order 1 if and only if

(L, x) ∈ P̃⇔ (L, y) ∈ P̃, ∀y ∈ L.

The following example needs no comment.
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Example 3.6. The zero locus of a section of Ω∨(−1) = Ω∨(1 − 2) is a point.
This point, with its reduced structure, is the fundamental scheme of the con-
gruence formed by lines through it. The secant index of this congruence is 1.

We describe briefly the fundamental scheme and the secant index for all
the examples discussed earlier. We follow the same organization in three dif-
ferent groups. It is important to note immediately that the secant index of a
congruence of k-secant lines to a smooth variety X is not necessarily k and the
fundamental scheme of the congruence is not necessarily X. The description
of the fundamental scheme in each of the coming examples makes this (as well
as the fact that the secant index is a multiple of k) clear. All the congruences
studied in the following examples are Cohen-Macaulay and irreducible (in some
cases it is obvious, but not in all cases).

Examples 3.7. 1. The fundamental scheme of the congruence Σ of 2-secant
lines to a twisted cubic C is the first infinitesimal neighborhood of C, in
other words JX(Σ)/P = J2

C/P. The secant index of this congruence is 4.

For x ∈ C, we have Σ(x) = P1 and Oq−1(Σ)(η)⊗OΣ(x) = OP1(2).

2. The fundamental scheme of the congruence Σ formed by the lines joining
two skew space lines L1 and L2 is L1 ∪ L2, i.e. JX(Σ)/P = J(L1∪L2)/P =
JL1/P∩JL2/P. The secant index of this congruence is 2. For x ∈ L1∪L2,
we have Σ(x) = P1 and Oq−1(Σ)(η)⊗OΣ(x) = OP1(1).

3. The fundamental scheme of the congruence of 2-secant lines to a nor-
mal rational ruled surface (without exceptional line) S ⊂ P5 is a multiple
structure of order 4 on S, containing strictly the first infinitesimal neigh-
borhood of S. The secant index is 4.

More precisely, there is an exact sequence 0 → JX(Σ) → J2
S/P5 → L2,

where L is the quotient of the conormal bundle of S defined by the family
of P3 tangent to S along a line.

Next we come back to congruences of 3-secant lines. Note that we get a
secant index 3 in one case and a secant index 9 in the other case. This is well
explained by the description of the fundamental scheme.

Examples 3.8. 1. The fundamental scheme of the congruence of 3-secant
lines to a projected Veronese surface (in P4) is the projected Veronese
surface itself. The secant index is 3.

2. The ideal of the fundamental scheme of the congruence of 3-secant lines
to a Bordiga surface B ⊂ P4 is J3

B/P4 ∩JP1/P4 ∩ ...∩JP9/P4 (where (Pi)
9
i=1

are the 9 ”parasitic” planes cutting a plane cubic curve in B). The secant
index is 9.



210 CHRISTIAN PESKINE

Finally, we describe the secant index and the fundamental scheme for two
examples of congruence of 4-secant lines.

Examples 3.9. 1. The fundamental scheme of the congruence of 4-secant
lines to a Palatini 3-fold (in P5) is the Palatini 3-fold itself. The secant
index is 4.

2. The ideal of the fundamental scheme of the congruence of 4-secant lines
to a scroll Sc ⊂ P5 over a K3 surface is J2

Sc/P5 . The secant index is 8.

Considering these examples, we note that the fundamental scheme is smooth
(and the secant index is what it should) in the following cases:

- the congruence of lines passing through a point in PN (secant index 1),

- the congruence of lines joining 2 skew lines in P3 (secant index 2),

- the congruence of 3-secant lines to a projected Veronese surface in P4

(secant index 3),

- the congruence of 4-secant lines to a Palatini 3-fold in P5 (secant index 4).

To conclude this section, we describe a particular (and well known) family
of smooth, order 1, congruences of lines with smooth fundamental scheme and
secant index 2.

Proposition 3.10. Let V = V1 ⊕ V2 be a decomposed complex vector space.
The surjective homomorphism Λ2V → V1 ⊗ V2 induces an isomorphism

P(V1)× P(V2) ' G(2, V ) ∩ P(V1 ⊗ V2).

The smooth congruence P(V1)×P(V2) so defined has order 1, it parametrizes
the lines joining P(V1) and P(V2) in P(V ).

The fundamental scheme of the congruence is the smooth disconnected union
P(V1)∪P(V2), except if there exists an i such that Vi has dimension 1, in which
case the fundamental locus is the point P(Vi).

The secant index of the congruence is 2, except when the fundamental locus
is a point, in which case the secant index is 1.

The proof is left to the reader.

4. Cohen-Macaulay, order 1, irreducible congruences of
lines with smooth fundamental scheme

We begin with an almost obvious result.
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Proposition 4.1. If Σ ⊂ G(1, N) is a Cohen-Macaulay, order 1, irreducible
congruence of lines with smooth fundamental scheme X(Σ), then Σ(x) ⊂ G(1, N)
is a linear space for all x ∈ X.

To be precise, for x /∈ X(Σ) then Σ(x) = P0; for x ∈ X(Σ) then Σ(x) =
Pc−1 ⊂ G(1, N) where c is the codimension in PN of the connected component
of X(Σ) containing x.

Proof. This is a clear consequence of the exact sequence (∗). Indeed, the sur-
jective map ΩPN (2θ) → JX(Σ)/PN (kθ) induces for all x ∈ X(Σ) a surjective
map

(ΩPN (2θ))(x)→ (N∨X(Σ)/PN (kθ))(x),

hence an embedding

Σ(x) = P(N∨X(Σ)/PN (x)) ' Pc−1 ⊂ PN−1(x)

Definition 4.2. A congruence Σ ⊂ G(2, V ) is linear if it is cut out in G(2, V )
(scheme theoretically, but not necessarily properly) by a linear subspace of the
Plücker space P(∧2V ).

It is clear that the order of a linear congruence is either 0 or 1.

Remark 4.3. A congruence of lines Σ in P2 is linear if and only if there exists
x ∈ P2 such that Σ = P1(x) parametrizes the lines through x.

This is obvious. The case of linear congruences of order 1 in P3 is almost
as easy to describe.

Proposition 4.4. Σ is a linear congruence of order 1 of lines in P3 if and only
if one of the three following conditions is verified:

1. there exists a point x ∈ P3 such that Σ = P2(x) parametrizes the lines
through x,

2. there exist two skew lines L1, L2 ⊂ P3 such that Σ parametrizes the lines
joining L1 and L2,

3. there exists x ∈ H ⊂ P3 such that Σ = P2(x) ∪H∗ (where H is a plane
and H∗ the dual plane)

Proof. Indeed G(1, 3) is a quadric in P5, hence a linear congruence will be cut
out by 2 or 3 hyperplanes. If the congruence Σ is cut out by 3 hyperplanes, the
congruence is a plane. Since the lines in a plane form a congruence of order 0,
only case 1 can occur.

If the congruence is cut by a pencil of hyperplanes, this pencil contains two
special linear complexes. If the two corresponding lines are disjoint we are in
case 2, if they intersect (in a point x), 3 holds.
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Note here that the congruence Σ = P2(x) ∪ H∗ described in 3 is Cohen-
Macaulay but (obviously) not irreducible. It is in fact the union of a smooth,
linear, irreducible congruence of order 1 and a smooth, linear, irreducible con-
gruence of order 0. This example explains why we prefer irreducible congru-
ences.

The following question was raised by Fyodor Zak.

Question 4.5. Are the two following conditions equivalent ?

1. Σ is a linear congruence,

2. For every x ∈ PN , the scheme Σ(x) is a linear subspace of PN−1(x).

Time has come to state and prove the main theorem of this paper.

Theorem 4.6. Let Σ ⊂ G(1, N) be an order 1, Cohen-Macaulay, irreducible
congruence of lines with smooth fundamental scheme X(Σ) and secant index k.

1. If k ≤ 2, the fundamental locus is either a point (k = 1) or a union of 2
complementary linear spaces (k = 2).

2. If k ≥ 3, then X(Σ) is connected and k = (N − 1)/(c− 1) where c is the
codimension of X(Σ) in P.

3. KΣ = OΣ(−c).

4. The linear system cut out on X(Σ) by hypersurfaces of degree k − 2 is
not complete, i.e. H1(JX(Σ)/P(k − 2)) 6= 0.

The scheme D = {x ∈ X(Σ), Σ(x) ⊂ TX,x} is the zero variety of a
section of OX(k − 2) not cut out by a hypersurface of degree k − 2.

Its inverse image in the divisor E ⊂ q−1(Σ) is the ramification locus of
the finite (degree k) map E → Σ.

Proof. The proof of 1 is straightforward.
To prove 2, note that if X(Σ) is not connected then it must have two

connected components such that the lines of Σ join the two components. But
the lines parametrizing the join of two varieties form a family of dimension at
most N − 1. It has to be the congruence Σ, and it implies that X(Σ) is the
union of two linear spaces and k = 2. A contradiction.

From the general projection theorem (see [1]) we know that if the k-secant
lines to a connected smooth variety in PN form a congruence of lines, then
k = (N − 1)/(c− 1). This proves 2.

3 is proved by computing twice the canonical line bundle Kq−1(Σ). On the
one hand q−1(Σ) = PΣ(Q | Σ) and this implies

Kq−1(Σ) = q∗KΣ ⊗Oq−1(Σ)(η − 2θ).
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On the other hand q−1(Σ) is the blowing up of P along X(Σ) and this proves

Kq−1(Σ) = Oq−1(Σ)(−(N + 1)θ + (c− 1)E).

Since Oq−1(Σ)(E) = OIΣ
(kθ − η) we find

q∗KΣ(η − 2θ) = Oq−1(Σ)(−2θ − [N − 1− (c− 1)k]θ − [c− 1]η)

which proves 4 (by using 2).
The first assertion of 4 has already been proved without assuming that

X(Σ) is smooth.
Concerning the second assertion, we note first that an elementary compu-

tation proves that the ramification KE ⊗ q∗K∨Σ of the generically finite map
E → Σ is a section of OE((k − 2)θ). We claim that the ramification is not cut
out by a hypersurface of degree k−2 of P. Indeed, following an idea of F. Han,
we consider the relative Euler complex

0→ Oq−1(Σ)(η − 2θ)→ Q(−θ)→ Oq−1(Σ) → 0

of the bundle map q−1(Σ)→ Σ. It fits in the following commutative diagram,
with exact rows and columns:

0 0y y
Oq−1(Σ)(η − kθ) = Oq−1(Σ)(η − kθ)y y

0→ Oq−1(Σ)(η − 2θ) → Q(−θ) → Oq−1(Σ) → 0∥∥ y y
0→ Oq−1(Σ)(η − 2θ) → JR/q−1(Σ)((k − 2)θ) → OE → 0y y

0 0

where JR/q−1(Σ) is the ideal of the ramification in q−1(Σ). This diagram proves
that H0(JR/q−1(Σ)((k − 2)θ)) = 0 and confirms that JR/E((k − 2)θ) = OE .
Since the divisor R ⊂ E is the inverse image of the divisor D ⊂ X(Σ), we are
done.

Remark 4.7. The surjective homomorphism ΩPN (2θ)⊗OX(Σ) → N∨X(Σ)/PN (kθ)

defines a map from X(Σ) to the Fano variety of linear spaces of dimension c−1
in Σ (Zak’s map).

This map is easily proved to be an isomorphism (communicated by F. Zak)
but this is not the subject of this paper.
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The above theorem comes with two natural conjectures that I failed to prove
(very irritating!).

Conjectures 4.8. If Σ is as in the theorem, then

1. Σ ⊂ G(2, V ) ⊂ P(Λ2V ) is linearly normal (see [3]).

2. X(Σ) is k-regular (Castelnuovo-Mumford regularity).

These two conjectures are perhaps justified, more probably explained, by
the classification of all order 1 congruences with smooth fundamental scheme
and secant index ≤ 3 and the description of the two known examples with
secant index 4.

Theorem 4.9. (Classification Theorem) Let Σ ⊂ G(1, N) be an order 1, Cohen-
Macaulay, irreducible congruence of lines with smooth fundamental scheme. Let
k be the secant index of Σ.

1. If k = 1, then Σ = PN−1(x), with x ∈ PN and X(Σ) = {x}.
The ramification divisor is empty and cut out by a non zero section of
O{x}(−1).

2. If k = 2, there exists a decomposition W = V1 ⊕ V2 with dimC(Vi) ≥ 2
and Σ = P(V1) × P(V2) = P(V1 ⊗ V2) ∩ G(1, N) ⊂ P(ΛV ) and X(Σ) =
P(V1) ∪ P(V2).

The ramification divisor is empty and cut out by an everywhere non zero
section of OX(Σ).

3. If k = 3, Σ is the congruence of 3-secant lines to a projected Severi variety
S = X(Σ).

The ramification divisor D is cut out in X(Σ) by a ”virtual hyperplane”,
i.e. OX(Σ)(D) = OX(Σ)(θ) but D is not cut out by an hyperplane in
X(Σ).

Proof. 1 and 2 are obvious from our main theorem.
From the same theorem we see that if k = 3 then N−1 = 3(c−1) and X(Σ)

is not linearly normal. By Zak’s celebrated classification of Severi varieties ([4])
we see that X(Σ) has to be one of the projected Severi varieties and Σ the
variety formed by its 3-secant lines. Note that Iliev and Manivel have proved
that Σ is indeed linearly complete (hence projectively Cohen-Macaulay) in this
case.

Next we recall the two known order 1 congruences with smooth fundamental
scheme and secant index 4.

Proposition 4.10. There exist two known congruences with secant index 4.
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a. Σ ⊂ G(1, 5) is formed of the 4-secant lines to its fundamental scheme,
the Palatini 3-fold X(Σ) ⊂ P5.

The ramification locus is cut out in X(Σ) by a ”virtual quadric”.

b. The second congruence Σ ⊂ G(1, 9) is formed of the 4-secant lines to its
fundamental scheme, the second Palatini variety (sometimes described
under another name) X(Σ) a 6-dimensional smooth variety, cut out by
the maximal pfaffian ideal of a general form τ ∈ H0(Λ2ΩP9(2)).

Proof. We have already seen the case of the 4-secant lines to a Palatini 3-fold
(which as we know is not quadratically normal).

For b), consider a general τ ∈ Λ3V = H0(Λ2ΩP9(2)). It induces a map
V ∨ → Λ2V which cuts out a linear space in the Plücker space P(Λ2V ). This
linear space cuts (improperly) a linear congruence Σ ⊂ G(1, 9) whose fun-
damental scheme in P9 is the variety cut out by the maximal pfaffian ideal
of τ .

We conclude with a conjecture (relating our classification to Hartshorne low
codimension conjecture).

Conjecture 4.11. The congruences listed in the theorem and the proposition
form the exhaustive list of Cohen-Macaulay, order 1, irreducible congruences
with smooth fundamental scheme.

We recall here Hartshorne’s celebrated conjecture for smooth varieties of
low codimension: if N > 3c, a smooth variety of codimension c in PN is a
complete intersection.

From our main theorem, we know that if Σ ⊂ G(1, N) has smooth funda-
mental scheme, then X(Σ) is not projectively normal, hence not a complete
intersection.

An elementary computation shows that if Hartshorne’s conjecture is true,
the only possible unknown Cohen-Macaulay, order 1, irreducible congruences
with smooth fundamental scheme would have the following invariants:

- k = 4 and N = 5 or N = 9, precisely the invariants of the congruences
of 4-secant lines to the two Palatini varieties,

- k = 5 and N = 6, in other words X(Σ) would be a smooth codimension
2 variety in P6 not cubically normal.
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