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Abstract. This is an introductory survey, from a geometric perspec-
tive, on the Singular Value Decomposition (SVD) for real matrices,
focusing on the role of the Terracini Lemma. We extend this point of
view to tensors, we define the singular space of a tensor as the space
spanned by singular vector tuples and we study some of its basic prop-
erties.
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1. Introduction

The Singular Value Decomposition (SVD) is a basic tool frequently used in
Numerical Linear Algebra and in many applications, which generalizes the
Spectral Theorem from symmetric n×n matrices to general m×n matrices. We
introduce the reader to some of its beautiful properties, mainly related to the
Eckart-Young Theorem, which has a geometric nature. The implementation of
a SVD algorithm in the computer algebra software Macaulay2 allows a friendly
use in many algebro-geometric computations.

This is the content of the paper. In Section 2 we see how the best rank
r approximation of a matrix can be described through its SVD; this is the
celebrated Eckart-Young Theorem, that we revisit geometrically, thanks to the
Terracini Lemma. In Section 3 we review the construction of the SVD of
a matrix by means of the Spectral Theorem and we give a coordinate free
version of SVD for linear maps between Euclidean vector spaces. In Section 4
we define the singular vector tuples of a tensor and we show how they are related
to tensor rank; in the symmetric case, we get the eigentensors. In Section 5 we
define the singular space of a tensor, which is the space containing its singular
vector tuples and we conclude with a discussion of the Euclidean Distance (ED)
degree, introduced first in [5]. We thank the referee for many useful remarks.
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2. SVD and the Eckart-Young theorem

The vector spaceM =Mm,n of m×n matrices with real entries has a natural
filtration with subvarieties Mr = {m× n matrices of rank ≤ r}. We have

M1 ⊂M2 ⊂ . . . ⊂Mmin{m,n}

where the last subvariety Mmin{m,n} coincides with the ambient space.

Theorem 2.1 (Singular Value Decomposition). Any real m× n matrix A has
the SVD

A = UΣV t

where U , V are orthogonal (respectively of size m × m and n × n) and
Σ = Diag(σ1, σ2, . . .), with σ1 ≥ σ2 ≥ . . . ≥ 0. The m × n matrix Σ has
zero values at entries (ij) with i 6= j and sometimes it is called pseudodiagonal
(we use the term diagonal only for square matrices).

The diagonal entries σi are called singular values of A and it is immediate to
check that σ2

i are the eigenvalues of both the symmetric matrices AAt and AtA.
We give a proof of Theorem 2.1 in §3. We recommend [12] for a nice historical
survey about SVD. Decomposing Σ = Diag(σ1, 0, 0, · · · ) + Diag(0, σ2, 0, · · · ) +
· · · =: Σ1 + Σ2 + · · · we find

A = UΣ1V
t + UΣ2V

t + · · ·

and the maximum i for which σi 6= 0 is equal to the rank of the matrix A.

Denote by uk, vl the columns, respectively, of U and V in the SVD above.
From the equality A = UΣV t we get AV = UΣ and considering the ith columns
we get Avi = (AV )i = (UΣ)i = ((u1, · · · , um)Diag(σ1, σ2, · · · ))i = σiui, while,
from the transposed equality At = V ΣtU t, we get Atui = σivi.

So if 1 ≤ i ≤ min{m,n}, the columns ui and vi satisfy the conditions

Avi = σiui and Atui = σivi. (1)

Definition 2.2. The pairs (ui, vi) in (1) are called singular vector pairs.
More precisely, if 1 ≤ i ≤ min{m,n}, the vectors ui and vi are called,

respectively, left-singular and right-singular vectors for the singular value σi.
If the value σi appears only once in Σ, then the corresponding pair (ui, vi)

is unique up to sign multiplication.

Remark 2.3. The right-singular vectors corresponding to zero singular values
of A span the kernel of A; they are the last n− rk(A) columns of V .

The left-singular vectors corresponding to non-zero singular values of A span
the image of A; they are the first rk(A) columns of U .
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Remark 2.4. The uniqueness property mentioned in Definition 2.2 shows that
SVD of a general matrix is unique up to simultaneous sign change in each pair
of singular vectors ui and vi. With an abuse of notation, it is customary to
think projectively and to refer to “the” SVD of A, forgetting the sign change.
See Theorem 3.4 for more about uniqueness.

For later use, we observe that UΣiV
t = σiui · vti .

Let ||−|| denote the usual l2 norm (called also Frobenius or Hilbert-Schmidt
norm) on M, that is ∀A ∈M
||A|| :=

√
tr(AAt) =

√∑
i,j a

2
ij . Note that if A = UΣV t, then ||A|| =

√∑
i σ

2
i .

The Eckart-Young Theorem uses SVD of the matrix A to find the matrices
in Mr which minimize the distance from A.

Theorem 2.5 (Eckart-Young, 1936). Let A = UΣV t be the SVD of a matrix
A. Then

• UΣ1V
t is the best rank 1 approximation of A, that is

||A− UΣ1V
t|| ≤ ||A−X|| for every matrix X of rank 1.

• For any 1 ≤ r ≤ rank(A), UΣ1V
t + . . . + UΣrV

t is the best rank r
approximation of A, that is ||A−UΣ1V

t− . . .−UΣrV
t|| ≤ ||A−X|| for

every matrix X of rank ≤ r.

Among the infinitely many rank one decompositions available for matrices,
the Eckart-Young Theorem detects the one which is particularly nice in opti-
mization problems. We will prove Theorem 2.5 in the more general formulation
of Theorem 2.9.

2.1. Secant varieties and the Terracini Lemma

Secant varieties give basic geometric interpretation of rank of matrices and also
of rank of tensors, as we will see in section 4.

Let X ⊂ PV be an irreducible variety. The k-secant variety of X is defined
by

σk(X ) :=
⋃

p1,...,pk∈X
PSpan {p1, . . . , pk} (2)

where PSpan {p1, . . . , pk} is the smallest projective linear space containing
p1, . . . , pk and the overbar means Zariski closure (which is equivalent to Eu-
clidean closure in all cases considered in this paper).

There is a filtration X = σ1(X ) ⊂ σ2(X ) ⊂ . . .
This ascending chain stabilizes when it fills the ambient space.
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Example 2.6 (Examples of secant varieties in matrix spaces.). We may identify
the space M of m × n matrices with the tensor product Rm ⊗ Rn. Hence we
have natural inclusions Mr ⊂ Rm ⊗ Rn. Since Mr are cones, with an abuse
of notation we may call with the same name the associated projective variety
Mr ⊂ P(Rm ⊗ Rn). The basic equality we need is

σr(M1) =Mr

which corresponds to the fact that any rank r matrix can be written as the sum
of r rank one matrices.

In this case the Zariski closure in (2) is not necessary, since the union is
already closed.

The Terracini Lemma (see [9] for a proof) describes the tangent space T of
a k-secant variety at a general point.

Lemma 2.7 (Terracini Lemma). Let z ∈ PSpan {p1, . . . , pk} be general. Then

Tzσk(X ) = PSpan {Tp1X , . . . ,TpkX} .

Example 2.8 (Tangent spaces to Mr). The tangent space to M1 at a point
u⊗ v is Rm ⊗ v + u⊗ Rn:

any curve γ(t) = u(t) ⊗ v(t) in M1 with γ(0) = u ⊗ v has derivative for
t = 0 given by u′(0)⊗ v + u⊗ v′(0) and since u′(0), v′(0) are arbitrary vectors
in Rm,Rn respectively, we get the thesis.

As we have seen in Example 2.6, the varietyMr can be identified with the r-
secant variety ofM1, so the tangent space toMr at a point U(Σ1 + · · ·+Σr)V

t

can be described, by the Terracini Lemma, as TUΣ1V tM1 + · · ·+TUΣrV tM1 =
Tσ1u1⊗vt1M1+· · ·+Tσrur⊗vtrM1 = (Rm⊗vt1+u1⊗Rn)+· · ·+(Rm⊗vtr+ur⊗Rn).

2.2. A geometric perspective on the Eckart-Young
Theorem

Consider the variety Mr ⊂ Rm ⊗ Rn of matrices of rank ≤ r and for any
matrix A ∈ Rm ⊗ Rn let dA(−) = d(A,−) : Mr → R be the (Euclidean)
distance function from A. If rkA ≥ r then the minimum on Mr of dA is
achieved on some matrices of rank r. This can be proved by applying the
following Theorem 2.9 toMr′ for any r′ ≤ r. Since the varietyMr is singular
exactly on Mr−1, the minimum of dA can be found among the critical points
of dA on the smooth part Mr \Mr−1.

Theorem 2.9 (Eckart-Young revisited [5, Example 2.3]). Let A = UΣV t be
the SVD of a matrix A and let 1 ≤ r ≤ rk(A). All the critical points of
the distance function from A to the (smooth) variety Mr \ Mr−1 are given
by U(Σi1 + . . . + Σir )V t, where Σi = Diag(0, . . . , 0, σi, 0, . . . , 0), with 1 ≤ i ≤
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rk(A). If the nonzero singular values of A are distinct then the number of

critical points is
(
rk(A)
r

)
.

Note that UΣiV
t are all the critical points of the distance function from A

to the variety M1 of rank one matrices. So we have the important fact that
all the critical points of the distance function from A to M1 allow to recover
the SVD of A.

For the proof of Theorem 2.9 we need

Lemma 2.10. If A1 = u1 ⊗ v1, A2 = u2 ⊗ v2 are two rank one matrices, then
< A1, A2 >=< u1, u2 >< v1, v2 >.

Proof. < A1, A2 >= tr(A1A
t
2) =

tr[


 u11

...
u1m

 · (v11, · · · , v1n)



 v21

...
v2n

 · (u21, · · · , u2m)

] =

∑
i u1i (

∑
k v1kv2k)u2i =

∑
i u1iu2i

∑
k v1kv2k =< u1, u2 >< v1, v2 >.

Lemma 2.11. Let B ∈M. If < B,Rm ⊗ v >= 0, then < Row(B), v >= 0.
If < B, u⊗ Rn >= 0, then < Col(B), u >= 0.

Proof. Let {e1, · · · , em} be the canonical basis of Rm; then, by hypothesis,
< B, ek ⊗ v >= 0 ∀k = 1, · · · ,m.

We have 0 = tr [B(vt ⊗ etk)] = tr [B(0, · · · , 0, v, 0, · · · , 0)] =< Bk, v >,
where Bk denotes the kth row of B, so that the space Row(B) is orthogonal
to the vector v. In a similar way, we get < Col(B), u >= 0.

By using Terracini Lemma 2.7 we can prove Theorem 2.9.

Proof of Theorem 2.9. The matrix U(Σi1 + · · ·+ Σir )V t is a critical point
of the distance function from A to the variety Mr if and only if the vec-
tor A − (U(Σi1 + · · · + Σir )V t) is orthogonal to the tangent space (see 2.8)
TU(Σi1

+···+Σir )V tMr = (Rm ⊗ vti1 + ui1 ⊗ Rn) + · · ·+ (Rm ⊗ vtir + uir ⊗ Rn).

From the SVD of A we have A − (U(Σi1 + · · · + Σir )V t) = U(Σj1 + · · · +
Σjl)V

t = σj1uj1 ⊗vtj1 + · · · +σjlujl ⊗vtjl where {j1, · · · , jl} is the set of indices
given by the difference {1, · · · , rk(A)}\{i1, · · · , ir}.

Let {e1, · · · , em} be the canonical basis of Rm. By Lemma 2.10 we get:
< σjhujh ⊗ vtjh , el ⊗ vtik >= σjh < ujh , el >< vjh , vik >= 0 since vjh , vik are
distinct columns of the orthogonal matrix V . So the matrices UΣjhV

t are
orthogonal to the spaces Rm ⊗ vtik .

In a similar way, since U is an orthogonal matrix, the matrices UΣjhV
t are

orthogonal to the spaces uik ⊗Rn. So A− (U(Σi1 + · · ·+ Σir )V t) is orthogonal
to the tangent space and U(Σi1 + · · ·+ Σir )V t is a critical point.

Let now B ∈Mr be a critical point of the distance function from A toMr.
Then A−B is orthogonal to the tangent space TBMr.
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Let B = U ′(Σ′1 + · · ·Σ′r)V ′t, A − B = U ′′(Σ′′1 + · · ·Σ′′l )V ′′t be SVD of B
and A−B respectively, with Σ′r 6= 0 and Σ′′l 6= 0.

Since A − B is orthogonal to TBMr = (Rm ⊗ v′1
t

+ u′1 ⊗ Rn) + · · · +
(Rm ⊗ v′rt + u′r ⊗ Rn), by Lemma 2.11 we get < Col(A − B), u′k >= 0 and
< Row(A − B), v′k >= 0 k = 1, · · · , r. In particular, Col(A − B) is a vec-
tor subspace of Span{u′1, · · · , u′r}⊥ and has dimension at most m − r while
Row(A − B) is a vector subspace of Span{v′1, · · · , v′r}⊥ and has dimension at
most n− r, so that l ≤ min{m,n} − r.

From the equality A − B = (u′′1 , . . . , u
′′
l , 0 . . . , 0) (Σ′′1 + · · ·Σ′′l )V ′′t we get

Col(A−B) ⊂ Span{u′′1 , . . . , u′′l } and equality holds by dimensional reasons.
In a similar way, Row(A − B) = Span{v′′1 , · · · , v′′l }. This implies that the

orthonormal columns u′′1 , · · · , u′′l , u′1, · · · , u′r can be completed with orthonor-
mal m−l−r columns of Rm to obtain an orthogonal m×m matrix U , while the
orthonormal columns v′′1 , · · · , v′′l , v′1, · · · , v′r can be completed with orthonormal
n− l − r columns of Rn to obtain an orthogonal n× n matrix V .

We get A−B = U

Σ′′ 0 0
0 0 0
0 0 0

V t, B = U

 0 0 0
0 Σ′ 0
0 0 0

V t, where

Σ′′ = Diag(σ′′1 , . . . , σ
′′
l ) and Σ′ = Diag(σ′1, . . . , σ

′
r).

So A = (A − B) + B = U

Σ′′ 0 0
0 Σ′ 0
0 0 0

V t can easily be transformed to

a SVD of A by just reordering the diagonal elements σ′i’s and σ′′i ’s and the
critical point B is of the desired type.

The following result has the same flavour of Eckart-Young Theorem 2.9.

Theorem 2.12 (Baaijens, Draisma [1, Theorem 3.2]). Let A = UΣV t be the
SVD of a n×n matrix A. All the critical points of the distance function from A
to the variety O(n) of orthogonal matrices are given by the orthogonal matrices
UDiag(±1, . . . ,±1)V t and their number is 2n.

Actually, in [1], the result is stated in a slightly different form, which is
equivalent to this one, that we have chosen to make more transparent the
link with SVD. It is easy to check that, among the critical points computed
in Theorem 2.12, the one with all plus signs, corresponding to the orthogonal
matrix UV t, gives the orthogonal matrix closest to A. This is called the Löwdin
orthogonalization (or symmetric orthogonalization) of A.

3. SVD via the Spectral Theorem

In this section we prove Theorem 2.1 as a consequence of the Spectral Theorem.
We recall



A GEOMETRIC PERSPECTIVE ON THE SVD 113

Theorem 3.1 (Spectral Theorem). For any symmetric real matrix B, there
exists an orthogonal matrix V such that V −1BV = V tBV is a diagonal matrix.

Remark 3.2. Since the Euclidean inner product is positive definite, it is ele-
mentary to show that for any real m×n matrix A we have Ker(AtA) = Ker(A)
and Ker(AAt) = Ker(At).

Proof of Theorem 2.1 Let A be an m × n matrix with real entries. The
matrix AtA is a symmetric matrix of order n and it’s positive semidefinite. By
the Spectral Theorem, there exists an orthogonal matrix V (of order n) such
that

V −1(AtA)V = V t(AtA)V =

(
D 0
0 0

)
where D is diagonal of order r = rk(AtA) = rk(A) (see Remark 3.2) and is
positive definite: D = Diag(d1, · · · , dr) with d1 ≥ d2 ≥ · · · dr > 0.
Let v1, · · · , vn be the columns of V ; then

(AtA)(v1, · · · , vn) = (v1, · · · , vn)

(
D 0
0 0

)
= (d1v1, · · · , drvr, 0, · · · , 0)

and vr+1, · · · , vn ∈ Ker(AtA) = Ker(A) (see Remark 3.2).
Let σi =

√
di, i = 1, · · · , r and let ui = (1/σi)Avi ∈ Rm. These vectors are

orthonormal since < ui, uj >= 1
σiσj

< Avi, Avj >= 1
σiσj

< vi, A
tAvj >=

1
σiσj

< vi, djvj >= σi

σj
< vi, vj >= σi

σj
δij . Thus it’s possible to find m − r or-

thonormal vectors in Rm such that the matrix U := (u1, · · · , ur, ur+1, · · · , um)

is an m×m orthogonal matrix. Define Σ :=

(
D1/2 0

0 0

)
to be an m× n matrix

with m− r zero rows, D1/2 = Diag(σ1, · · · , σr). Then

UΣV t =

(
1

σ1
Av1, · · · ,

1

σr
Avr, ur+1, · · · , um

)


σ1v
t
1

...
σrv

t
r

0
...
0


= A(v1, · · · , vr)

v
t
1
...
vtr

 .

Since V is orthogonal we have

In =
(
v1 · · · vn

)v
t
1
...
vtn

 =
(
v1 · · · vr

)v
t
1
...
vtr

+
(
vr+1 · · · vn

)v
t
r+1
...
vtn


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Hence we get

UΣV t = A

In − (vr+1 · · · vn
)v

t
r+1
...
vtn


 = A

since vr+1, · · · , vn ∈ Ker(A).

Lemma 3.3. • (1) Let σ2
1 > · · · > σ2

k > 0 be the distinct non zero eigenval-
ues of AtA and Vi = Ker(AtA− σ2

i In) be the corresponding eigenspaces,

V0 = Ker(AtA) = Ker(A). Then

Rn =
(
⊕ki=1Vi

)
⊕ V0

is an orthogonal decomposition of Rn.

• (2) Let Ui = Ker(AAt − σ2
i Im) , U0 = Ker(AAt) = Ker(At). Then

AVi = Ui and AtUi = Vi if i = 1, · · · , r.

• (3) Rm =
(
⊕ki=1Ui

)
⊕ U0

is an orthogonal decomposition of Rm and σ2
1 > · · · > σ2

k > 0 are the
distinct non zero eigenvalues of AAt.

• (4) The isomorphism 1
σi
A|Vi : Vi −→ Ui is an isometry with inverse

1
σi
At|Ui

: Ui −→ Vi.

Proof. (1) is the Spectral Theorem. In order to prove (2), AVi ⊆ Ui since
∀w ∈ Vi one has (AAt)(Aw) = A(AtA)w = σ2

iAw. In a similar way, AtUi ⊆ Vi.
On the other hand, ∀z ∈ Ui one has z = 1

σ2
i
(AAt)z = A( 1

σ2
i
Atz) ∈ AVi so that

AVi = Ui. In a similar way, AtUi = Vi. (3) and (4) are immediate from (2).

Lemma 3.3 may be interpretated as the following coordinate free version of
SVD, that shows precisely in which sense SVD is unique.

Theorem 3.4 (Coordinate free version of SVD). Let V, U be real vector spaces
of finite dimension endowed with inner products <,>V and <,>U and let
F : V → U be a linear map with adjoint F t : U → V, defined by the prop-
erty < Fv, u >U=< v, F tu >V ∀v ∈ V,∀u ∈ U . Then there is a unique
decomposition (SVD)

F =

k∑
i=1

σiFi

with σ1 > . . . > σk > 0, Fi : V → U linear maps such that



A GEOMETRIC PERSPECTIVE ON THE SVD 115

• FiF tj and F ti Fj are both zero for any i 6= j,

• Fi|Im(F t
i ) : Im(F ti )→ Im(Fi) is an isometry with inverse F ti .

Both the singular values σi and the linear maps Fi are uniquely determined
from F .

By taking the adjoint in Theorem 3.4, F t =
∑k
i=1 σiF

t
i is the SVD of F t.

The first interesting consequence is that

FF t =

k∑
i=1

σ2
i FiF

t
i and F tF =

k∑
i=1

σ2
i F

t
i Fi

are both spectral decomposition (and SVD) of the self-adjoint operators FF t

and F tF . This shows the uniqueness in Theorem 3.4. Note that
V =

(
⊕ki=1Im(F ti )

)⊕
KerF and U =

(
⊕ki=1Im(Fi)

)⊕
KerF t are both

orthogonal decompositions and that rkF =
∑k
i=1 rkFi.

Moreover, F+ =
∑k
i=1 σ

−1
i F ti is the Moore-Penrose inverse of F , expressing

also the SVD of F+.
Theorem 3.4 extends in a straightforward way to finite dimensional complex

vector spaces V and U endowed with Hermitian inner products.

4. Basics on tensors and tensor rank

We consider tensors A ∈ Kn1+1 ⊗ . . . ⊗ Knd+1 where K = R or C. It is
convenient to consider complex tensors even if one is interested only in the real
case.

Figure 1: The visualization of a tensor in K3 ⊗K2 ⊗K2.

Entries of A are labelled by d indices as ai1...id .
For example, the expression in coordinates of a 3 × 2 × 2 tensor A as in

Figure 1 is, with obvious notations,

A = a000x0y0z0 + a001x0y0z1 + a010x0y1z0 + a011x0y1z1+

a100x1y0z0 + a101x1y0z1 + a110x1y1z0 + a111x1y1z1+

a200x2y0z0 + a201x2y0z1 + a210x2y1z0 + a211x2y1z1.
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Definition 4.1. A tensor A is decomposable if there exist xi ∈ Kni+1, for i =
1, . . . , d, such that ai1...id = x1

i1
x2
i2
. . . xdid . In equivalent way, A = x1⊗ . . .⊗xd.

Define the rank of a tensor A as the minimal number of decomposable
summands expressing A, that is

rk(A) := min{r|A =

r∑
i=1

Ai, Ai are decomposable}

For matrices, this coincides with usual rank. For a (nonzero) tensor, de-
composable ⇐⇒ rank one.

Any expression A =
∑r
i=1Ai with Ai decomposable is called a tensor de-

composition.
As for matrices, the space of tensors of format (n1 +1)× . . .× (nd+1) has a

natural filtration with subvarieties Tr = {A ∈ Kn1+1⊗. . .⊗Knd+1| rank (A) ≤
r}. We have

T1 ⊂ T2 ⊂ . . .
Corrado Segre in XIX century understood this filtration in terms of projec-

tive geometry, since Ti are cones.
The decomposable (or rank one) tensors give the “Segre variety”

T1 ' Pn1 × . . .× Pnd ⊂ P(Kn1+1 ⊗ . . .⊗Knd+1)

The variety Tk is again the k-secant variety of T1, like in the case of matrices.

For K = R, the Euclidean inner product on each space Rni+1 induces
the inner product on the tensor product Rn1+1 ⊗ . . . ⊗ Rnd+1 (compare with
Lemma 2.10). With respect to this product we have the equality ||x1 ⊗ . . . ⊗
xd||2 =

∏d
i=1 ||xi||2. A best rank r approximation of a real tensor A is a tensor

in Tr which minimizes the l2-distance function from A. We will discuss mainly
the best rank one approximations of A, considering the critical points T ∈ T1

for the l2-distance function from A to the variety T1 of rank 1 tensors, trying
to extend what we did in §2. The condition that T is a critical point is again
that the tangent space at T is orthogonal to the tensor A− T .

Theorem 4.2 (Lim, variational principle [10]). The critical points x1 ⊗ . . .⊗
xd ∈ T1 of the distance function from A ∈ Rn1+1 ⊗ . . . ⊗ Rnd+1 to the variety
T1 of rank 1 tensors are given by d-tuples (x1, . . . , xd) ∈ Rn1+1 × . . . × Rnd+1

such that

A · (x1 ⊗ . . . x̂i . . .⊗ xd) = λxi ∀i = 1, . . . , d (3)

where λ ∈ R, the dot means contraction and the notation x̂i means that xi has
been removed.
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Note that the left-hand side of (3) is an element in the dual space of Rni+1,
so in order for (3) to be meaningful it is necessary to have a metric identifying
Rni+1 with its dual. We may normalize the factors xi of the tensor product
x1⊗ . . .⊗xd in such a way that ||xi||2 does not depend on i. Note that from (3)
we get A ·(x1⊗ . . .⊗xd) = λ||xi||2. Here, (x1, . . . , xd) is called a singular vector
d-tuple (defined independently by Qi in [11]) and λ is called a singular value.
Allowing complex solutions to (3), λ may be complex.

Example 4.3. We may compute all singular vector triples for the following
tensor in R3 ⊗ R3 ⊗ R2

f =6x0y0z0 +2x1y0z0 + 6x2y0z0

− 2014x0y1z0 +121x1y1z0 − 11x2y1z0

+ 48x0y2z0 −13x1y2z0 − 40x2y2z0

− 31x0y0z1 +93x1y0z1 + 97x2y0z1

+ 63x0y1z1 +41x1y1z1 − 94x2y1z1

− 3x0y2z1 +47x1y2z1 + 4x2y2z1

We find 15 singular vector triples, 9 of them are real, 6 of them make 3
conjugate pairs.

The minimum distance is 184.038 and the best rank one approximation is
given by the singular vector triple

(x0−.0595538x1+.00358519x2)(y0−289.637y1+6.98717y2)(6.95378z0−.2079687z1). Tensor
decomposition of f can be computed from the Kronecker normal form and gives
f as sum of three decomposable summands, that is

f = (.450492x0 − 1.43768x1 − 1.40925x2)(−.923877y0 − .986098y1 − .646584y2)(.809777z0 + 68.2814z1)+

(−.582772x0 + .548689x1 + 1.93447x2)(.148851y0 − 3.43755y1 − 1.07165y2)(18.6866z0 + 28.1003z1) +

(1.06175x0 − .0802873x1 − .0580488x2)(−.0125305y0 + 3.22958y1 − .0575754y2)(−598.154z0 + 10.8017z1)

Note that the best rank one approximation is unrelated to the three sum-
mands of minimal tensor decomposition, in contrast with the Eckart-Young
Theorem for matrices.

Theorem 4.4 (Lim, variational principle in symmetric case [10]). The critical
points of the distance function from A ∈ SymdRn+1 to the variety T1 of rank 1
tensors are given by d-tuples xd ∈ SymdRn+1 such that

A · (xd−1) = λx. (4)

The tensor x in (4) is called a eigenvector, the corresponding power xd is a
eigentensor , λ is called a eigenvalue.

4.1. Dual varieties and hyperdeterminant

If X ⊂ PV then

X ∗ := {H ∈ PV ∗|∃ smooth point p ∈ X s.t. TpX ⊂ H}
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is called the dual variety of X (see [7, Chapter 1]). So X ∗ consists of hyperplanes
tangent at some smooth point of X .

In Euclidean setting, duality may be understood in terms of orthogonality.
Considering the affine cone of a projective variety X , the dual variety consists
of the cone of all vectors which are orthogonal to some tangent space to X .

Let m ≤ n. The dual variety of m × n matrices of rank ≤ r is given by
m × n matrices of rank ≤ m − r ([7, Prop. 4.11]). In particular, the dual of
the Segre variety of matrices of rank 1 is the determinant hypersurface.

Let n1 ≤ . . . ≤ nd. The dual variety of tensors of format (n1 + 1) ×
. . . × (nd + 1) is by definition the hyperdeterminant hypersurface, whenever

nd ≤
∑d−1
i=1 ni. Its equation is called the hyperdeterminant. Actually, this

defines the hyperdeterminant up to scalar multiple, but it can be normalized
asking that the coefficient of its leading monomial is 1.

5. Basic properties of singular vector tuples and of
eigentensors. The singular space of a tensor.

5.1. Counting the singular tuples

In this subsection we expose the results of [6] about the number of singular
tuples (see Theorem 4.2 ) of a general tensor.

Theorem 5.1 ([6]). The number of (complex) singular d-tuples of a general

tensor t ∈ P(Rn1+1 ⊗ . . .⊗Rnd+1) is equal to the coefficient of
∏d
i=1 t

ni
i in the

polynomial
d∏
i=1

t̂i
ni+1 − tni+1

i

t̂i − ti
where t̂i =

∑
j 6=i tj.

Amazingly, for d = 2 this formula gives the expected value min(n1 + 1, n2 + 1).
For the proof, in [6] the d-tuples of singular vectors were expressed as zero

loci of sections of a suitable vector bundle on the Segre variety T1.
Precisely, let T1 = P(Cn1+1)× . . .×P(Cnd+1) and let πi : T1 → P(Cni+1) be

the projection on the i-th factor. Let O(1, . . . , 1︸ ︷︷ ︸
d

) be the very ample line bundle

which gives the Segre embedding and let Q be the quotient bundle.
Then the bundle is ⊕di=1 (π∗iQ) ⊗ O( 1 , . . . , 1 , 0 , 1, . . . , 1).

↑
i

The top Chern class of this bundle gives the formula in Theorem 5.1.
In the format (2, . . . , 2︸ ︷︷ ︸

d

) the number of singular d-tuples is d!.
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The following table lists the number of singular triples in the format (d1, d2, d3)

d1, d2, d3 c(d1, d2, d3)
2, 2, 2 6
2, 2, n 8 n ≥ 3
2, 3, 3 15
2, 3, n 18 n ≥ 4
2, n, n n(2n− 1)
3, 3, 3 37
3, 3, 4 55
3, 3, n 61 n ≥ 5
3, 4, 4 104
3, 4, 5 138
3, 4, n 148 n ≥ 6

The number of singular d-tuples of a general tensor A ∈ Cn1+1⊗. . .⊗Cnd+1,
when n1, . . . , nd−1 are fixed and nd increases, stabilizes for nd ≥

∑d−1
i=1 ni, as

it can be shown from Theorem 5.1.
For example, for a tensor of size 2×2×n, there are 6 singular vector triples

for n = 2 and 8 singular vector triples for n ≥ 3.
The format with nd =

∑d−1
i=1 ni is the boundary format, well known in

hyperdeterminant theory [7]. It generalizes the square case for matrices.
The symmetric counterpart of Theorem 5.1 is the following

Theorem 5.2 (Cartwright-Sturmfels [2]). The number of (complex) eigenten-
sors of a general tensor t ∈ P(SymdRn+1) is equal to

(d− 1)n+1 − 1

d− 2
.

5.2. The singular space of a tensor

We start informally to study the singular triples of a 3-mode tensor A, later
we will generalize to any tensor. The singular triples x⊗ y⊗ z of A satisfy (see
Theorem 4.2) the equations∑

i0,i1

Ai0i1kxi0yi1 = λzk ∀k

hence, by eliminating λ, the equations (for every k < s)∑
i0,i1

(Ai0i1kxi0yi1zs −Ai0i1sxi0yi1zk) = 0

which are linear equations in the Segre embedding space. These equations can
be permuted on x, y, z and give
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
∑
i0,i1

(Ai0i1kxi0yi1zs −Ai0i1sxi0yi1zk) = 0 for 0 ≤ k < s ≤ n3∑
i0,i2

(Ai0ki2xi0yszi2 −Ai0si2xi0ykzi2) = 0 for 0 ≤ k < s ≤ n2∑
i1,i2

(Aki1i2xsyi1zi2 −Asi1i2xkyi1zi2) = 0 for 0 ≤ k < s ≤ n1

(5)

These equations define the singular space of A, which is the linear span of
all the singular vector triples of A.

The tensor A belongs to the singular space of A, as it is trivially shown by
the following identity (and its permutations)∑

i0,i1

(Ai0i1kAi0i1s −Ai0i1sAi0i1k) = 0.

In the symmetric case, the eigentensors xd of a symmetric tensor
A ∈ SymdCn+1 are defined by the linear dependency of the two rows of the
2× (n+ 1) matrix (

∇A(xd−1)
x

)
Taking the 2× 2 minors we get the following

Definition 5.3. If A ∈ SymdCn+1 is a symmetric tensor, then the singular
space is given by the following

(
n+1

2

)
linear equations in the unknowns xd

∂A(xd−1)

∂xj
xi −

∂A(xd−1)

∂xi
xj = 0

It follows from the definition that the singular space of A is spanned by all
the eigentensors xd of A.

Proposition 5.4. The symmetric tensor A ∈ SymdCn+1 belongs to the singu-
lar space of A. The dimension of the singular space is

(
n+d
d

)
−
(
n+1

2

)
. The

eigentensors are independent for a general A (and then make a basis of the
singular space) just in the cases SymdC2, Sym2Cn+1, Sym3C3.

Proof. To check that A belongs to the singular space, consider dual variables

yj = ∂
∂xj

. Then we have
(
∂A
∂yj

yi − ∂A
∂yi

yj

)
· A(x) = ∂A

∂yj
· ∂A∂xi

− ∂A
∂yi
· ∂A∂xj

, which

vanishes by symmetry. To compute the dimension of the singular space, first
recall that symmetric tensors in SymdCn+1 correspond to homogeneous poly-
nomials of degree d in n + 1 variables. We have to show that for a general
polynomial A, the

(
n+1

2

)
polynomials ∂A

∂xj
xi − ∂A

∂xi
xj for i < j are independent.

This is easily checked for the Fermat polynomial A =
∑n
i=0 x

d
i for d ≥ 3 and
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for the polynomial A =
∑
p<q xpxq for d = 2. The case listed are the ones

where the inequality

(d− 1)n+1 − 1

d− 2
≥
(
n+ d

d

)
−
(
n+ 1

2

)
is an equality (for d = 2 the left-hand side reads as

∑n
i=0(d− 1)i = n+ 1).

Denote by ej the canonical basis in any vector space Cn.

Proposition 5.5. Let n1 ≤ . . . ≤ nd . If A ∈ Cn1+1 ⊗ . . . ⊗ Cnd+1 is a
tensor, then the singular space of A is given by the following

∑d
i=1

(
ni+1

2

)
linear

equations. The
(
ni+1

2

)
equations of the i-th group (i = 1, . . . , d) for x1⊗ . . .⊗xd

are

A(x1, x2, . . . , ep , . . . , x
d)(xi)q −A(x1, x2, . . . , eq , . . . , x

d)(xi)p = 0
↑ ↑
i i

for 0 ≤ p < q ≤ ni. The tensor A belongs to this linear space, which we call
again the singular space of A.

Proof. Let A =
∑
i1,...,id

Ai1,...,idx
1
i1
⊗ . . . ⊗ xdid . Then we have for the first

group of equations∑
i2,...,id

(Ak,i2,...,idAs,i2,...,id −As,i2,...,idAk,i2,...,id) = 0 for 0 ≤ k < s ≤ n1

and the same argument works for the other groups of equations.

We state, with a sketch of the proof, the following generalization of the
dimensional part of Prop. 5.4.

Proposition 5.6. Let n1 ≤ . . . ≤ nd and N =
∏d−1
i=1 (ni + 1).

If A ∈ Cn1+1 ⊗ . . .⊗Cnd+1 is a tensor, the dimension of the singular space of
A is 

∏d
i=1(ni + 1)−∑d

i=1

(
ni+1

2

)
for nd + 1 ≤ N(

N+1
2

)
−∑d−1

i=1

(
ni+1

2

)
for nd + 1 ≥ N.

The singular d-tuples are independent (and then make a basis of this space)
just in cases d = 2, C2 ⊗ C2 ⊗ C2, C2 ⊗ C2 ⊗ Cn for n ≥ 4.

Proof. Note that if nd+1 ≥ N , for any tensor A ∈ Cn1+1⊗ . . .⊗Cnd+1, there is
a subspace L ⊂ Cnd+1 of dimension N such that A ∈ Cn1+1⊗. . .⊗Cnd−1+1⊗L,
hence all singular d-tuples of A lie in A ∈ Cn1+1 ⊗ . . . ⊗ Cnd−1+1 ⊗ L. Note
that for nd + 1 =

∏d−1
i=1 (ni + 1), then the singular space has dimension N =
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∏d
i=1(ni + 1) −∑d

i=1

(
ni+1

2

)
. It can be shown that posing k(i1, . . . , id−1) =∑d−1

j=1

[(∏
s≤j−1(ns + 1)

)
ij

]
, then the tensor

A =

n1∑
i1=0

. . .

nd−1∑
id−1=0

k(i1, . . . , id−1)e1
i1 . . . e

d−1
id−1

edk(i1,...,id−1)

is general in the sense that the
∑d
i=1

(
ni+1

2

)
corresponding equations are in-

dependent (note that k(i1, . . . , id−1) covers all integers between 0 and N − 1).

For nd + 1 ≥ N the dimension stabilizes to N2 −∑d−1
i=1

(
ni+1

2

)
−
(
N+1

2

)
=(

N+1
2

)
−∑d−1

i=1

(
ni+1

2

)
.

Remark 5.7. For a general A ∈ Cn1+1 ⊗ . . . ⊗ Cnd+1, the
∑d
i=1

(
ni+1

2

)
linear

equations of the singular space of A are independent if nd + 1 ≤ N + 1.

Remark 5.8. In the case of symmetric matrices, the singular space of A con-
sists of all matrices commuting with A. If A is regular, this space is spanned
by the powers of A. If A is any matrix (not necessarily symmetric), the sin-
gular space of A consists of all matrices with the same singular vector pairs
as A. These properties seem not to generalize to arbitrary tensors. Indeed the
tensors in the singular space of a tensor A may have singular vectors differ-
ent from those of A, even in the symmetric case. This is apparent for binary
forms. The polynomials g having the same eigentensors as f , satisfy the equa-
tion gxy − gyx = λ(fxy − fyx) for some λ, which in degree d even has (in
general) the solutions g = µ1f + µ2(x2 + y2)d/2 with µ1, µ2 ∈ C, while for de-
gree d odd has (in general) the solutions g = µ1f . In both cases, these solutions
are strictly contained in the singular space of f .

In any case, a positive result which follows from Prop. 5.4, 5.5, 5.6 is the
following

Corollary 5.9. (i) Let n1 ≤ . . . ≤ nd, N =
∏d−1
i=1 (ni + 1) and M =

min(N,nd + 1). A general tensor A ∈ Cn1+1 ⊗ . . . ⊗ Cnd+1 has a ten-

sor decomposition given by NM −∑d−1
i=1

(
ni+1

2

)
−
(
N+1

2

)
singular vector

d-tuples.

(ii) A general symmetric tensor A ∈ SymdCn+1 has a symmetric tensor de-
composition given by

(
n+d
d

)
−
(
n+1

2

)
eigentensors.

The decomposition in (i) is not minimal unless d = 2, when it is given by
the SVD.

The decomposition in (ii) is not minimal unless d = 2, when it is the spectral
decomposition, as sum of (n+ 1) (squared) eigenvectors.
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5.3. The Euclidean Distance Degree and its duality
property

The construction of critical points of the distance from a point p, can be gen-
eralized to any affine (real) algebraic variety X .

Following [5], we call Euclidean Distance Degree (shortly ED degree) the
number of critical points of dp = d(p,−) : X → R, allowing complex solutions.
As before, the number of critical points does not depend on p, provided p is
generic. For a elementary introduction, see the nice survey [13].

Theorem 2.9 says that the ED degree of the variety Mr defined in §2 is(
min{m,n}

r

)
, while Theorem 2.12 says that the ED degree of the variety O(n)

is 2n. The values computed in Theorem 5.1 give the ED degree of the Segre
variety Pn1× . . .×Pnd , while the Cartwright-Sturmfels formula in Theorem 5.2
gives the ED degree of the Veronese variety vd(Pn).

Theorem 5.10 ([5, Theorem 5.2, Corollary 8.3]). Let p be a tensor. There is
a canonical bijection between

• critical points of the distance from p to rank ≤ 1 tensors

• critical points of the distance from p to hyperdeterminant hypersurface.

Correspondence is x 7→ p− x
In particular, from the 15 critical points for the distance from the 3× 3× 2

tensor f defined in Example 4.3 to the variety of rank one matrices, we may
recover the 15 critical points for the distance from f to the hyperdeterminant
hypersurface. It follows that Det(f − pi) = 0 for the 15 critical points pi.

The following result generalizes Theorem 5.10 to any projective variety X .

Theorem 5.11 ([5, Theorem 5.2]). Let X ⊂ Pn be a projective variety, p ∈ Pn.
There is a canonical bijection between

• critical points of the distance from p to X
• critical points of the distance from p to the dual variety X ∗.

Correspondence is x 7→ p− x. In particular EDdegree(X ) = EDdegree(X ∗)

5.4. Higher order SVD

In [3], L. De Lathauwer, B. De Moor, and J. Vandewalle proposed a higher order
generalization of SVD. This paper has been quite influential and we sketch this
contruction for completeness (in the complex field).

Theorem 5.12 (HOSVD, De Lathauwer, De Moor, Vandewalle, [3]). A tensor
A ∈ Cn1+1⊗ . . .⊗Cnd+1 can be multiplied in the i-th mode by unitary matrices
Ui ∈ U(ni + 1) in such a way that the resulting tensor S has the following
properties:
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X

X ∗

p
x1

x2

p− x1

p− x2

Figure 2: The bijection between critical points on X and critical points on X ∗.

1. (all-orthogonality) For any i = 1, . . . , d and α = 0, . . . , ni denote by Siα
the slice in Cn1+1 ⊗ . . . Ĉni+1 . . . ⊗ Cnd+1 obtained by fixing the i-index
equal to α. Then for 0 ≤ α < β ≤ ni we have Siα · Siβ = 0, that is any
two parallel slices are orthogonal according to Hermitian product.

2. (ordering) for the Hermitian norm, for all i = 1, . . . , d∥∥Si0∥∥ ≥ ∥∥Si1∥∥ ≥ . . . ≥ ∥∥Sini

∥∥
∥∥Sij∥∥ are the i-mode singular values and the columns of Ui are the i-mode

singular vectors. For d = 2,
∥∥Sij∥∥ do not depend on i and we get the classical

SVD. This notion has an efficient algorithm computing it. We do not pursue
it further because the link with the critical points of the distance is weak,
although it can be employed by suitable iterating methods.
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