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Abstract. We consider the parametrization (f0, f1, f2) of a plane
rational curve C, and we want to relate the splitting type of C (i.e.
the second Betti numbers of the ideal (f0, f1, f2) ⊂ K[P1]) with the
singularities of the associated Poncelet surface in P3. We are able of
doing this for Ascenzi curves, thus generalizing a result in [8] in the
case of plane curves. Moreover we prove that if the Poncelet surface
S ⊂ P3 is singular then it is associated with a curve C which possesses
at least a point of multiplicity ≥ 3.
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1. Introduction

We work over an algebraically closed ground field K. We are interested in
algebraic immersions f : P1 → P2, thus f = (f0, f1, f2) is a projective morphism
that is generically injective and generically smooth over its image. The fact
that f need not be everywhere injective or smooth means that the image f(P1)
may have singularities. It is well-known that any vector bundle on P1 splits
as a direct sum of line bundles (see [2, 7]). The determination of the splitting
type of the pull back f∗TP2 (or, which is equivalent, of f∗ΩP2(1)) is a very
investigated problem. If f∗ΩP2(1) is isomorphic to OP1(−a) ⊕ OP1(−b), then
we call (a, b) the splitting type of C = f(P1). It is easy to see that a+ b = n,
where n is the degree of C.

The numbers (a, b) also give the graded Betti numbers in the minimal free
resolution of the parameterization ideal (f0, f1, f2) ⊂ K[s, t] (e.g. see [6]).

The question arises as to what splitting types can occur. The multiplicities
of the singularities of C heavily influence the splitting type. For example, if C
has a point of multiplicity m, then results of Ascenzi [1] show that

min(m,n−m) ≤ a ≤ min
(
n−m,

⌊n
2

⌋)
; (1)
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see also [6]. These bounds are tightest when we use the largest possible value
for m; i.e., when m is the multiplicity of a point of C of maximum multiplicity.
If 2m+ 1 ≥ n, it follows from these bounds that a = min(m,n−m) and hence
b = max(m,n−m). So we give the following definition.

Definition 1.1. A rational projective plane curve C is Ascenzi if it has a point
of multiplicity m, with 2m+ 1 ≥ n.

For example, it is easy to see that for each n ≥ 3 there is a rational projective
plane curve C of degree n with exactly one singular point of multiplicity n− 1;
hence C is Ascenzi, and its splitting type is (1, n− 1).

In [8] the authors introduce the Poncelet variety associated with the param-
eterization of a rational curve in Pk. Their Theorem 3.9 gives in particular for
k = 2, that for the general C with splitting type (1, n− 1) the Poncelet surface
is singular with a special configuration of points and lines.

We are interested in understanding the relation between the singularities of
the curve C and the splitting type, with a particular regard to understanding
when the multiplicities of the singularities determine the splitting type. As
we already mentioned, this is well known in the Ascenzi case, while the non-
Ascenzi cases are more difficult to handle (e.g. see [3], [4] and [5]). We would
like to understand if the Poncelet surface is a good tool for this purpose.

In this paper, as a first step in this direction, we give a generalization for
plane curves of the result in [8] cited above (see Proposition 3.1). As a corollary,
we get that if C is an Ascenzi curve with splitting type (m, d −m), then the
corresponding Poncelet surface has a particular configuration of

(
m
3

)
singular

points. Finally in Theorem 3.3 we show that if the Poncelet surface S ⊂ P3 is
singular then it is associated with a curve C which possesses at least a point
of multiplicity ≥ 3.

2. Preliminaries

Since we want to study linear systems 〈f0, f1, f2〉 ⊂ K[s, t]n, i.e. g2n’s on P1

that give a projective immersion f : P1 → P2, whose image is a rational curve
C ∈ P2, we will follow the ideas in [8] by considering the following construction
of Schwarzenberger Bundles.

Let Cn = νn(P1) ⊂ Pn be the rational normal curve in Pn; then consider
the space P(K[s, t]3) ∼= P3; every point in this space corresponds (modulo
proportionality) to a polynomial of degree 3, and its roots give three points
(counted with multiplicity) in P1, hence one of the 3-secant planes in the third
secant variety

σ3(Cn) =
⋃

P1,P2,P3∈Cn

〈P1, P2, P3〉 ⊂ Pn.
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If we consider coordinates x0, . . . , x3 in P3 and zi+j in Pn, with xi = sit3−i

and zi+j = si+jtn−i−j , i = 0, . . . , 3, j = 0, . . . , n − 3, then the variety σ3(Cn)
can be viewed in the following way: consider the incidence variety of secant
planes and points Y ⊂ P3 × Pn defined by the equations

3∑
i=0

xizi+j = 0, j = 0, . . . , n− 3. (2)

We have that the (n− 2)× (n+ 1) matrix of coefficients of (2) in the zi+j ’s
is:

A =


x0 x1 x2 x3 0 0 · · · 0
0 x0 x1 x2 x3 0 · · · 0

...
0 0 · · · 0 x0 x1 x2 x3

 ,

while the 4× (n− 2) matrix of coefficients of (2) in the xi’s is

M =


z0 z1 z2 z3 · · · · · · zn−3
z1 z2 z3 z4 · · · · · · zn−2
z2 z3 z4 · · · · · · · · · zn−1
z3 z4 · · · · · · · · · zn−1 zn

 . (3)

Then if we consider the two projections p1 : Y → P3 and p2 : Y → Pn,
we get that p1 gives a projective bundle structure on P3, with fibers P2’s (this
is a Schwarzenberger Bundle); while p2(Y ) = σ3(Cn) and p2 is a desingu-
larization of σ3(Cn). Notice that the fibers of p2 have dim p−12 (p) = i when
p ∈ σ3−i(Cn)\σ2−i(Cn), i = 0, 1, 2, e.g. see [8].

Moreover, ∀P ∈ P3, we have that p2(p−11 (P )) is a trisecant plane of Cn ⊂
Pn, thus showing as P3 parameterizes the 3-secant planes of σ3(Cn).

Now let us consider 〈f0, f1, f2〉 ⊂ K[s, t]n, with fk = ak0s
n + ak1s

n−1t +
· · · + aknt

n, k = 0, 1, 2; when we associate our coordinates zi with sn−iti, we
can associate to 〈f0, f1, f2〉 an (n− 3)-dimensional subspace Π ⊂ Pn, given by
the equations

fk(z) = ak0z0 + ak1z1 + · · ·+ aknzn = 0, k = 0, 1, 2. (4)

Actually it is not hard to check that the projection of Cn from Π on the
plane Π⊥ ⊂ Pn is exactly C, i.e. the image of f : P1 → Π⊥.

If we consider the equations (4) in P3 × Pn, we get a scheme Π̃ = p−12 (Π)
and the intersection scheme Y ′ = Y ∩ Π̃ which is a surface (dimY = 5);
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p1(Y ′) = S ⊂ P3 is the so-called Poncelet variety (surface) associated with
〈f0, f1, f2〉.

The equation of S is given by the determinant of the (n+1)×(n+1) matrix:

A′ =



x0 x1 x2 x3 0 0 · · · 0
0 x0 x1 x2 x3 0 · · · 0

...
0 0 · · · 0 x0 x1 x2 x3
a00 a01 a02 a03 · · · · · · a0n−1 a0n
a10 a11 a12 a13 · · · · · · a1n−1 a1n
a20 a21 a22 a23 · · · · · · a2n−1 a2n


.

Hence we have degS = n− 2.

Since the singularities of C depend on the position of Π with respect to
σ3(Cn), we would like to find a way to connect this data to the splitting type
of C.

3. The singularities of the Poncelet surface

Proposition 3.1. Every ordinary singular point on C of multiplicity m ≥ 3
gives

(
m
3

)
singular points in the Poncelet surface S which are the vertices of a

configuration given by
(
m
2

)
lines contained in S, each of them with m−2 of the

points on it.

Proof. In fact let P ∈ C be an ordinary singular point of multiplicity m ≥ 3;
P is the projection of m simple points P1, . . . , Pm ∈ Cn (from Π), which come
together on C. This can happen if Π intersects the m-secant space Hm de-
fined by the Pi’s along a subspace H ′m = Hm ∩ Π, with dimH ′m = m − 2, so
that the (n − 2)-spaces 〈Π, P1〉, . . . , 〈Π, Pm〉 are the same. We will have that
H ′m ∩ Cn ⊂ Π ∩ Cn = ∅, otherwise f0, f1, f2 would have a common factor.

Let Pi, Pj , Pk be any three among the m points, let πijk be the plane defined
by them and let rPi,Pj

be the line through Pi and Pj . We have that πijk ∩ Π
is a line L. If we consider the three points P ′i = L ∩ rPjPk

, P ′j = L ∩ rPiPk
,

P ′k = L ∩ rPiPj , we have that the back image of each of them on Y ′ is a line.
In fact its coordinates in the zi+j make the matrix M defined in (3) to have
rank 2 (because each point is on σ2(Cn)), hence it yields a line given by the
solution of the system (2). So p1(p−12 (πijk)) is given by three lines through a
common point (the point parameterizing πijk) in S. Note that these three lines
cannot be coplanar, otherwise the coefficients in M of one of them would be a
linear combination of those in the other two of them, hence the points Pi, Pj , Pk

would be collinear, which is impossible. So the three lines are independent and
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they intersect in a point Pijk which is singular for S. The points Pijk and the
lines given in this construction give the required configuration.

This proposition gives (for plane curves) a generalization of Theorem 3.9
in [8].

Corollary 3.2. Let C be an Ascenzi curve of degree n with a point of multi-
plicity m, with n ≤ 2m + 1; then the corresponding Poncelet surface S has a
configuration of

(
m
3

)
singular points as described in Proposition 3.1.

Now we want to check that actually the singularities on the Poncelet surfaces
are only the ones forced by the singularities of C of multiplicity at least 3.

Theorem 3.3. If the Poncelet surface S ⊂ P3 is singular then it is associated
with a curve C which possesses at least a point of multiplicity ≥ 3.

Proof. Consider the variety Y ⊂ P3 × Pn defined by the equation (2) and the
scheme Y ′ = Y ∩ Π̃ where Π̃ = p−12 (Π) with Π = 〈f0, f1, f2〉. The Poncelet
surface is S = p1(Y ′) ⊂ P3.

Let P ∈ S be a point, and YP = p−11 (P ) ' P2. Observe that the intersection
YP ∩ Π̃ is a linear space, so that generically it is a point (the map p1|Y ′ is
generically 1:1), and the only way to get P singular is that YP ∩ Π̃ is a line L.
Therefore p2(L) ⊂ Pn is again a line contained in Π∩p2(YP ); the plane p2(YP )
is 3-secant to Cn. Therefore the projection of Cn from Π to C gets a singular
point of multiplicity at least 3.

Example 3.4. Consider the quartic curve C ⊂ P2 given by the equation y4 −
x3z + 4xy2z + 2x2z2 − xz3 = 0, with the following parameterization: x = s4

y = −s3t+ st3

z = t4
.

The associated Poncelet surface S ⊂ P3 has equation x21−x0x2−x22+x1x3 = 0.
It is easy to check that C has only 3 double points and that S is smooth.

Example 3.5. Let C ⊂ P2 be xz3 − y4 = 0. This is a rational quartic curve
with a triple (non ordinary) point in [1, 0, 0]. We take the following parameter-
ization:  x = s4

y = st3

z = t4
.

It is easy to check that the associated Poncelet surface S ⊂ P3 is the quadric
cone given by the equation x21 − x0x2 = 0, singular in the vertex [0, 0, 0, 1].
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in the plane: a geometric approach, Trans. Amer. Math. Soc. 361 (2009), 1103–
1127.

[4] A. Gimigliano, B. Harbourne, and M. Idà, The role of the cotangent bundle
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generation: Conjectures for fat points in the plane, Bull. Belg. Math. Soc. Simon
Stevin 16 (2009), no. 5, 853–860.

[6] A. Gimigliano, B. Harbourne, and M. Idà, On plane rational curves and the
splitting of the tangent bundle, Ann. Sc. Norm. Super. Pisa Vl. Sci. XII (2013),
no. 5, 1–35.

[7] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de
Riemann, Amer. J. Math. 79 (1957), 121–138.

[8] G. Ilardi, P. Supino, and J. Vallès, Geometry of syzygies via Poncelet vari-
eties, Boll. UMI 2 (2009), no. IX, 579–589.

Authors’ addresses:

Alessandra Bernardi
Dipartimento di Matematica
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