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p-Buchsbaum rank 2 bundles on the
projective space
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Abstract. It has been proved by various authors that a normalized,
1-Buchsbaum rank 2 vector bundle on P3 is a nullcorrelation bundle,
while a normalized, 2-Buchsbaum rank 2 vector bundle on P3 is an
instanton bundle of charge 2. We find that the same is not true for
3-Buchsbaum rank 2 vector bundles on P3, and propose a conjecture
regarding the classification of such objects.
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Introduction

A coherent sheaf E on P3 is said to be p-Buchsbaum if p is the minimal power of
the irrelevant ideal which annihilatesH1

∗ (E). The complete list of p-Buchsbaum
rank 2 bundles on P3 for p ≤ 2 has been established by several authors, see for
example [7, 9, 14, 15, 16]. More precisely, we have the following.

Theorem 1. Let E be a normalized p-Buchsbaum rank 2 vector bundle on P3.
Then

• p = 0 if and only if E is direct sum of line bundles;

• p = 1 if and only if E is a null correlation bundle, i.e. an instanton
bundle of charge 1;

• p = 2 if and only if E is an instanton bundle of charge 2.

After examining this list, two questions natually arise. First, is every rank 2
instanton bundle of charge k on P3 k-Buchsbaum? Second, since every bundle
is p-Buchsbaum for some sufficiently high p, for which values of p can we find
a p-Buchsbaum rank 2 bundle which is not instanton?

The goal of this paper is to provide partial answers to these questions.
In particular, we show that every rank 2 instanton bundle of charge 3 is 3-
Buchsbaum. However, this is false for instantons of higher charge. On the other
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hand, we show that the generic instanton of charge 4 or 5 is also 3-Buchsbaum.
In addition, we provide an explicit example of a 3-Buchsbaum bundle of rank 2
which is not an instanton, and conjecture that every 3-Buchsbaum rank 2
bundle on P3 is one of these.

1. Preliminaries

In this section we will fix the notation and recall the basic definitions used
throughout this paper.

1.1. Buchsbaum sheaves
Let K be an algebraically closed field of characteristic zero. Let us denote by
S = K[x0, x1, x2, x3] the ring of polynomials in four variables, so that P3 :=
Proj(S), and let m = (x0, x1, x2, x3) denote the irrelevant ideal.

Let V be a K-vector space of dimension m+ 1, with V ∗ denoting its dual.
The projective space P(V ) = Pm is understood as the set of equivalence classes
of m-dimensional subspaces of V , or, equivalently, the equivalence classes of
the lines of V ∗.

Given a coherent sheaf E on P3, consider the following graded S-module:

H1
∗ (E) =

⊕
n∈Z

H1(E(n)).

Definition 1.1. A coherent sheaf E on P3 is said to be p-Buchsbaum if and
only if p is the minimal power of the irrelevant ideal which annihilates the
S-module H1

∗ (E), i.e.

p = min
{
t |mtH1

∗ (E) = 0
}
.

In this work, we will only consider locally free sheaves on P3.

1.2. Monads and regularity
Recall that a monad on a projective variety X of dimension n is a complex of
locally free sheaves on X of the form

M• : A
α−→ B

β−→ C

such that the map α is injective and the map β is surjective. It follows that
E := kerβ/ Imα is the only nontrivial cohomology of the complex M•. The
coherent sheaf E is called the cohomology of M•; it is locally free if and only if
the map α is injective in every fiber.

The monad M• is called a Horrocks monad if, in addition:
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i) A and C are direct sum of invertible sheaves,

ii) H1
∗ (B) = Hn−1

∗ (B) = 0.

Furthermore, the monad is also called minimal if it satisfies

iii) no direct sum of A is isomorphic to a direct sum of B,

iv) no direct sum of C is the image of a line subbundle of B.

Let us recall the following result on minimal Horrocks monads, cf. [12,
Theorem 2.3].

Theorem 1.2. Let X be an arithmetically Cohen–Macaulay variety of dimen-
sion n ≥ 3, and let E be a locally free sheaf on X. Then there is a 1-1
correspondence between collections

{n1, . . . , nr,m1, . . . ,ms} with ni ∈ H1(E∨ ⊗ ωX(ki)) and mj ∈ H1(E(−lj))

for integers ki’s and lj’s, and equivalence classes of Horrocks monads of the
form

M• :

r⊕
i=1

ωX(ki)
α−→ F

β−→
s⊕
j=1

OX(lj),

whose cohomology is isomorphic to E.
Moreover, the correspondence is such that M• is minimal if and only if the

elements mj generate H1
∗ (E) and the elements ni generate H1

∗ (E
∨ ⊗ ωX) as

modules.

Recall that a coherent sheaf E on Pn is said to be m-regular in the sense
of Castelnuovo–Mumford if Hi(Pn, E(m − i)) = 0 for i > 0. Costa and Miró-
Roig studied in [3] the Castelnuovo–Mumford regularity of the cohomology of
a certain class of monads which include monads of the following form:

OP3(−l)⊕k α−→
2+2k⊕
j=1

OP3(bj)
β−→ OP3(d)⊕k, (1)

where l, k, c ≥ 1 and −l < b1 ≤ · · · ≤ b2+2k < d. Specializing [3, Theorem 3.2]
to monads of the form (1), one obtains the following result.

Proposition 1.3. If E is the cohomology of a monad of the form (1), then E
is m-regular for any integer m such that

m ≥ max{(k + 2)d− (b1 + · · ·+ bk+3)− 2, l}.
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1.3. Cohomology of generic instanton bundles

Recall that a bundle E of rank 2 on P3 is called an instanton bundle if it is
isomorphic to the cohomology of a monad of the following form:

OP3(−1)⊕k α−→ O⊕2+2k
P3

β−→ OP3(1)⊕k (2)

The integer k is called the charge of E; notice that c1(E) = 0 and c2(E) =
k. Note also that nullcorrelation bundles are precisely instanton bundles of
charge 1.

Alternatively, an instanton bundle can also be defined as a bundle E on P3

with c1(E) = 0 and satisfying the following cohomological conditions:

h0(E(−1)) = h1(E(−2)) = h2(E(−2)) = h3(E(−3)) = 0.

The Hilbert polynomial of an instanton bundle is given by

PE(t) = 2(k + 1)χ(OP3(t))− kχ(OP3(t− 1))− kχ(OP3(t+ 1)) (3)

=
1

3
(t+ 2)((t+ 3)(t+ 1)− 3k)

=
1

3
(t+ 2)(t+ 2 +

√
3k + 1)(t+ 2−

√
3k + 1).

Note also that PE(t) = h0(E(t))− h1(E(t)) for t ≥ −2.
On another direction, recall that a coherent sheaf F on P3 is said to have

natural cohomology if for each t ∈ Z, at most one of the cohomology groups
Hp(F (t)), where p = 0, . . . , 3, is nonzero; every torsion free coherent sheaf with
natural cohomology is in fact locally free [10, Lemma 1.1]. In addition, every
rank 2 locally free sheaf with c1 = 0, c2 > 0 and natural cohomology is an
instanton bundle [10, p. 365].

Hartshorne and Hirschowitz have shown in [10] that the generic instanton
bundle has natural cohomology. More precisely, let I(k) denote the moduli
space of rank 2 locally free instanton sheaves of charge k; this is known to
be an affine [4], irreducible [18, 19], nonsingular variety of dimension 8k − 3
[13]. Let N (k) denote the subset of I(k) consisting of instanton bundles with
natural cohomology; it is easy to see that N (k) is open within I(k), and [10,
Theorem 0.1 (a)] tells us that it is nonempty.

More recently, Eisenbud and Schreyer have introduced the notion of super-
natural bundles, see [6, p. 862]: a locally free sheaf on P3 is called supernatural
if it has natural cohomology and its Hilbert polynomial has distinct integral
roots. Therefore we see that there exists a rank 2 supernatural bundle with
c1 = 0 and c2 = k > 0 if and only if 3k + 1 is a perfect square; the first three
possible values for k are k = 1, 5, 8.
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2. Instanton vs Buchsbaum

We start by introducing the following function on the positive integers

m(k) =
⌊√

3k + 1− 2
⌋
,

where b·c denotes the largest positive integer which is smaller than or equal to
the argument.

Proposition 2.1. A rank 2 instanton bundle E is p-Buchsbaum if and only if
h1(E(p − 2)) 6= 0 and h1(E(p − 1)) = 0. In addition, every rank 2 instanton
bundle of charge k is p-Buchsbaum for some m(k) + 2 ≤ p ≤ k.

Proof. By Theorem 1.2, we get that H1
∗ (E) is generated in H1(E(−1)). Thus

if h1(E(p − 2)) 6= 0 and h1(E(p − 1)) = 0 (and hence h1(E(t)) = 0 for every
t ≥ p−1), thenH1

∗ (E)must be p-Buchsbaum. Conversely, if E is p-Buchsbaum,
then h1(E(p−2)) 6= 0 (otherwise, H1

∗ (E) would be annihilated by the (p−1)-th
power of the irrelevant ideal) and h1(E(p− 1)) = 0.

By Proposition 1.3, we have that E is k-regular (cf. also [3, Corollary 3.3]).
Hence H1(E(k − 1)) = 0, and it follows that every rank 2 instanton bundle is
at most k-Buchsbaum.

Finally, note from (3) that for −1 ≤ t ≤ m(k) we have χ(E(t)) < 0. Since
h3(E(t)) = 0 in this range, it follows that h1(E(t)) 6= 0 for t = m(k). Thus
every rank 2 instanton bundle is at least (m(k) + 2)-Buchsbaum.

Since m(3)+2 = 3, the first immediate consequence of the previous Propo-
sition is given by the following Corollary.

Corollary 2.2. Every rank 2 instanton bundle of charge 3 is
3-Buchsbaum.

However, it is not true that every rank 2 instanton bundle of charge 3 has
natural cohomology, as observed in [10, Example 1.6.1]. Indeed, recall that an
instanton bundle E is called a ’t Hooft instanton if h0(E(1)) 6= 0, cf. [1]; more
formally, consider the set

H(k) := {E ∈ I(k) | h0(E(1)) 6= 0} ,

which is known to be a locally closed subvariety of I(k) of dimension 5k + 4,
irreducible and rational [1, Theorem 2.5]. On the other hand, let U(k) :=
I(k) \ N (k), the subvariety of “unnatural" instanton bundles.

Lemma 2.3. For every k ≥ 3, we have H(k) ⊂ U(k), while H(3) = U(3).
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Proof. If E is a rank 2 instanton bundle of charge k ≥ 3, then h1(E(1)) 6= 0
(because χ(E(−1)) < 0). Hence if E is a ’t Hooft instanton, then it does not
have natural cohomology, showing that H(k) ⊂ U(k).

Conversely, let now E be a rank 2 instanton bundle of charge 3 which does
not have natural cohomology. We then know that

(i) h0(E(t)) = 0 for t ≤ 0;

(ii) h1(E(t)) = 0 for t 6= −1, 0, 1;

(iii) h2(E(t)) = 0 for t 6= −5,−4,−3;

(iv) h3(E(t)) = 0 for t ≥ −4.

The last two claims are obtained by Serre duality and the fact E ' E∗.
Therefore the only way in which E may fail to have natural cohomology is
if h0(E(1)) = h3(E(−5)) 6= 0. It follows that U(3) ⊂ H(3).

It would be interesting to determine properties of the U(k) for k ≥ 4,
particularly its dimension and number of irreducible components. The previous
lemma tells us that dimU(k) ≥ 5k + 4.

Another immediate consequence of Proposition 2.1 is the following.

Corollary 2.4. The generic rank 2 instanton bundle of charge k is (m(k)+2)-
Buchsbaum.

In particular, since m(4) + 2 = m(5) + 2 = 3, the generic rank 2 instanton
bundle of charges 4 and 5 are 3-Buchsbaum, while instanton bundles of charge
k ≥ 6 are at least 4-Buchsbaum.

3. A 3-Buchsbaum rank 2 bundle with c1 = −1

Theorem 1 tells us, in particular, that the first Chern class of every 1- and
2-Buchsbaum rank 2 bundle on P3 is zero. In this section, we show that the
same is not true for p-Buchsbaum bundles with p ≥ 3, providing an example
of a 3-Buchsbaum rank 2 bundle with c1 = −1.

Indeed, consider the monad

OP3(−2) α−→ O⊕2P3 ⊕OP3(−1)⊕2 β−→ OP3(1) , (4)

which is the simplest example of a class of monads originally introduced by
Ein in [5, eq. 3.1.A]. The existence of such monads can be easily established;
consider for instance the following explicit maps

α =


−z2
−w2

x
y

 and β =


x
y
z2

w2
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where [x : y : z : w] are homogeneous coordinates on P3.
Let F denote the locally free cohomology of a monad of the form (4); it is

a rank 2 bundle with c1(F ) = −1 and c2(F ) = 2. Ein claims in [5, p. 21],
without proof, that F is µ-stable. For the sake of completeness, we include a
proof below.

Lemma 3.1. Every locally free sheaf F obtained as the cohomology of a monad
of the form (4) is µ-stable.

Proof. First consider the kernel bundle K := kerβ defined by the sequence

0→ K → O⊕2P3 ⊕OP3(−1)⊕2 β−→ OP3(1).

It follows from [2, Theorem 2.7] that K is µ-semistable (but not µ-stable).
Therefore, since µ(K) = −1, we must have h0(K) = 0. Now, from the sequence

0→ OP3(−2) α−→ K → F → 0

we have that h0(F ) = 0, which implies that F is µ-stable.

We now show that the bundles considered in this Section are 3-Buchsbaum.

Proposition 3.2. Every locally free sheaf F obtained as cohomology of a monad
of the form (4) is 3-Buchsbaum.

Proof. By Theorem 1.2, we get that H1
∗ (F ) is generated in H1(F (−1)). On

the other hand, Proposition 1.3 tells us that F is 3-regular, thus h1(F (2)) = 0.
If we also had h1(F (1)) = 0, F would be 2-Buchsbaum, which, by Theorem 1

cannot happen. Therefore F must be 3-Buchsbaum.

Note also that, since h0(F (1)) = h1(F (1)) = 1 [11, 2.2], such bundles do
not have natural cohomology.

Based on the evidence here presented and also motivated by results due to
Roggero and Valabrega in [17], specially Propositions 5 and 6 and Theorem 2
there, we propose the following classification of 3-Buchsbaum rank 2 bundles
on P3.

Conjecture 3.3. Every normalized, 3-Buchsbaum rank 2 bundle on P3 is ei-
ther an instanton bundle of charge 3, 4 or 5, if c1 = 0, or the cohomology of a
monad of the form (4), if c1 = −1.

Finally, let us comment on p-Buchsbaum rank 2 bundles on P3 for p ≥ 4.
An interesting, possible source of examples of such bundles is provided by Ein’s
generalized nullcorrelation bundles, described in [5]. These are bundles obtained
as cohomologies of monads of the following two types:
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OP3(−d) −→ OP3(−b)⊕OP3(−a)⊕OP3(a)⊕OP3(b) −→ OP3(d) , (5)

and

OP3(−d−1) −→ OP3(−b−1)⊕OP3(−a−1)⊕OP3(a)⊕OP3(b) −→ OP3(d) , (6)

where d > b ≥ a ≥ 0. Let us denote the cohomology of such monads by Ea,b,d
and Fa,b,d, respectively.

Note that, by Theorem 1.2 and Proposition 1.3, H1
∗ (Ea,b,d) is generated in

degree −d, and that Ea,b,d is (3d − 2)-regular when d ≥ 1. Therefore, such
bundles are at most (4d− 3)-Buchsbaum, being precisely (4d− 3)-Buchsbaum
provided h1(Ea,b,d(3d− 4)) 6= 0.

Similarly, note that H1
∗ (Fa,b,d) is generated in degree −d, and that Fa,b,d is

3d-regular. Therefore, such bundles are at most (4d− 1) – Buchsbaum, being
precisely (4d− 1) –Buchsbaum provided h1(Fa,b,d(3d− 2)) 6= 0.
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